2023 Design, Automation & Test in Europe Conference (DATE 2023)

Two-Stream Neural Network
for Post-Layout Waveform Prediction

1°* Sanghwi Kim
DRAM Design Team

2" Hyejin Shin
DRAM Data Science

3" Hyunkyu Kim
DRAM Data Science

SK Hynix SK Hynix SK Hynix
Icheon, Korea Icheon, Korea Icheon, Korea
sanghwil kim@sk.com hyejin2.shin@sk.com hyunkyu2.kim@sk.com

Abstract—The gap between pre- and post-simulation, as well as
the considerable layout time, increases the significance of the post-
layout waveform prediction in dynamic random access memory
(DRAM) design. This study develops a post-layout prediction
model using the following two-stream neural network: (1) a multi-
layer perceptron neural network to calculate the coupling noise
by using the physical properties of global interconnects, and
(2) a convolutional neural network to compute the time series
trends of the waveforms by referencing adjacent signals. The
proposed model trains two types of heterogeneous data such that
accuracy of 95.5% is achieved on the 1b DRAM process 16Gb
DDRS composed of hundreds of millions of transistors. The model
significantly improves the design completeness by pre-detecting
the deterioration in the signal quality via post-layout waveform
prediction. Generally, although a few weeks are required to obtain
post-layout waveforms after the circuit design process, waveforms
can be instantly predicted using our proposed model.

Index Terms—DRAM, layout, post-layout waveform, prediction

I. INTRODUCTION

Dynamic random access memory (DRAM) requires ex-
tremely complex net connections despite the aggressive scaling
used presently. Consequently, the capacitive coupling noise
between nets creates unexpected glitches in the post-layout
simulation. Noise degrades the signal quality and even causes
defects that require much time to redesign. However, an ac-
curate evaluation of noise can only be achieved with post-
layout waveforms [1]. Furthermore, circuit designers generally
estimate coupling noise from previous experiences, resulting
in design variabilities and inaccuracies [2]. In DRAM layout
design flow, considerable time is required to obtain post-
layout waveforms, owing to the complex nature of the layout
design. Therefore, post-layout waveforms should be estimated
in early layout designs to prevent defects and decrease the total
design time. Accordingly, this study proposes a deep learning-
based technique to calculate coupling noise and predict the
post-layout waveform. Previous studies used the information
contained in the schematics to predict interconnect parasitic
RC for pre-layout circuits [3]. This study effectively estimates
the delay, rise/fall time, and duty cycle; however, the cou-
pling noise cannot be easily predicted owing to the lack of
information regarding adjacent signals. In the DRAM layout
design flow, global interconnects are generally placed earlier;

thus, information on adjacent signals can be obtained through
the global interconnects. The section where the glitch occurs
can be specified using the patterns of the target and adjacent
signals. The proposed technique can assist designers in quickly
exploring the waveforms of critical signals.

II. METHODOLOGY
A. Data Description

The pre-layout waveform and the layout data are required
as input data to predict the post-layout waveform. The pre-
layout waveform data type is a time series data. As shown
in Fig. 1, the original waveform data is too sparse; therefore,
empty points should be interpolated between points. The victim
signal is a target signal to be predicted. Further, among the
adjacent signals of the victim signal, two major adjacent signals
with the largest coupling capacitance are aggressor signals.
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Fig. 1. Data preprocessing: interpolation
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Fig. 2. Input and output data. The logical waveforms of the target signal

(victim) and the two most influential adjacent signals (aggressors). Physical
properties of the target and relation between signals. Post-simulation analog
waveform of the target signal.
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Therefore, one victim signal should be predicted, and two
major adjacent signals should be used as input data. The layout
data consist of 11 features related to physical information
which are extracted by designers on a regular basis with in-
house tools. The features are rigorously selected, based on
the values used in conventional calculation methods, such as
the ground capacitance, coupling capacitance, and driver size.
For accurate noise prediction, time series data are fixed and
approximately 1.5 million post-layout waveforms generated
according to changes in layout data are used as y data.

B. Two-Stream Neural Network

We used two deep learning architectures for the two data
types (layout and waveform) and then combined the two archi-
tectures into one model. The structure of the model is shown in
Fig. 3. The first stream utilizes a multi-layer perceptron (MLP)
model the layout data. Regarding the pre-layout waveform data,
we applied a 1-dimensional convolutional neural network(1D
CNN), which is mostly used for time series forecasting. Be-
cause time series data have waveforms of one victim signal
and two aggressors, the 1D CNN converts three stacked vectors
into a single vector. Finally, the features from the two separate
streams are concatenated into a single vector, and we obtain
the output through three perceptron layers.
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Fig. 3. The structure of the model

IIT. EXPERIMENTAL RESULTS

We evaluated the proposed method using the mean absolute
percentage error (MAPE) to measure the model’s accuracy. We
applied the model to 15nm DRAM process 16Gb DDRS5 and
achieved an accuracy of 95.5%. The predicted and actual (post-
layout) waveforms of the test samples are shown in Fig. 4. The
predicted waveform is almost identical to the actual waveform
when the points of the glitches are accurately predicted.

Compared with other models, the two-stream neural network
model shows a higher performance of approximately 10%.
Furthermore, when CNN and MLP are trained simultaneously
for 20 epochs, the highest performance and shortest training
time are recorded as shown in Table. I. The lower performance
for complex models such as inception/FCN suggests that simple
models are more suitable for this study.

Our experiment was performed on a cloud-based platform
with GeForce GT 730 GPU and 16GB memory.
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Fig. 4. The predicted, pre-layout, and post-layout waveforms of the 1b DRAM

process 16Gb DDRS5
TABLE I

COMPARISON OF POST-LAYOUT WAVEFORM PREDICTION USING DEEP
LEARNING MODELS AND PRE-LAYOUT WAVEFORMS

Model performance
Model MAPE(%) | Training time(s)
1 Two-stream (CNN + MLP) 95.5 340
2 | Two-stream (CNN + CNN) 929 410
3 Inception / FCN 83.3 4500
4 Pre-layout Waveform 82.1 -
al

Trained for 20 epochs

IV. CONCLUSION

This study built a two-stream neural network model for post-
layout waveform prediction. The CNN model accurately ana-
lyzed the time series of patterns, and the MLP model accurately
calculated the amount of noise. The model is advantageous in
that post-layout waveforms can be computed in a short time
without previous knowledge, although they are computation-
intensive and time-consuming. Based on several examples,
the predicted results provided waveforms that were close to
the actual waveforms. The accurate prediction can guarantee
signal quality. Further, the deep learning algorithm increased
the value of the model, adapting to increasingly complex noise
calculations with continuous learning. Therefore, this study is
elaborate and will evidently contribute to the automation of
layout designs in the future.
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