
ObfusLock: An Efficient Obfuscated Locking Framework for
Circuit IP Protection†

You Li∗, Guannan Zhao∗, Yunqi He, and Hai Zhou
Northwestern University, Evanston, USA

{you.li, gnzhao, yunqi.he}@u.northwestern.edu, haizhou@northwestern.edu

Abstract—With the rapid evolution of the IC supply chain, circuit IP
protection has become a critical realistic issue for the semiconductor
industry. One promising technique to resolve the issue is logic locking.
It adds key inputs to the original circuit such that only authorized users
can get the correct function, and it modifies the circuit to obfuscate it
against structural analysis. However, there is a trilemma among locking,
obfuscation, and efficiency within all existing logic locking methods that
at most two of the objectives can be achieved. In this work, we propose
ObfusLock, the first logic locking method that simultaneously achieves
all three objectives: locking security, obfuscation safety, and locking
efficiency. ObfusLock is based on solid mathematical proofs, incurs small
overheads (<5% on average), and has passed experimental tests of
various existing attacks.

Index Terms—IP piracy, logic locking, SAT attack, hardware obfusca-
tion, logic synthesis

I. INTRODUCTION

The IC supply chain is susceptible to security and privacy chal-
lenges, including IP piracy, counterfeiting, reverse engineering, and
the insertion of hardware Trojans. Various countermeasures such as
hardware metering [1], split manufacturing [2], IC camouflaging [3],
watermarking [4], and logic locking are developed to tackle these
challenges. Among those, logic locking can defend from both reverse
engineering and unauthorized activities within the supply chain.
Logic locking techniques embed protection logic controlled by key
bits to the gate-level netlist of the original circuit. The resulting circuit
can operate adequately only in the presence of a correct key.

Early logic locking techniques [5], [6] insert additional key-
controlled gates to the original circuit. They are susceptible to I/O
attacks, such as the sensitization attack [7] and the SAT attack [8],
[9]. In specific, the SAT attack incrementally prunes out incorrect
keys and automatically solve for a correct key. In each iteration, it
calls a SAT solver to find a distinguishing input pattern (DIP). The
algorithm then queries an oracle circuit for the correct output pattern
and adds the correct input/output pair as a constraint. It terminates
when no more DIPs can be found.

To thwart I/O attacks, various single-flip defences [10], [11] were
proposed. They add a dedicated logic to flip the primary outputs
when an incorrect key is inserted. Single-flip defences defeat SAT
attacks by ensuring that every DIP can prune out only a small
set of incorrect keys, thus requiring an exponential number of
SAT calls to find a correct key. Nevertheless, the existence of a
unique flip node makes single-flip defences vulnerable to structural
analysis on the encrypted netlist. Among others, the signal probability
skewness (SPS) attack [12] locates the flip node by computing the
skewness values for all nodes. Once identified, the flip node can be
removed [13] or bypassed [14].

Double-flip defences are proposed subsequently. They aim at
resisting both the SAT attacks and structural attacks. The original
circuit is first flipped by the corrupt unit. It is then flipped by the

∗
Equal contribution.†
This work is partially supported by the National Science Foundation

under grants 2113704 and 2148177.

key-protected restoring unit, whose functionality is identical to the
corrupt unit when a correct key is applied. The original circuit is
obfuscated with the corrupt unit, and the resultant circuit is referred
to as the functionality stripped circuit. Launching a structural attack
on the restoring unit alone does not fully recover the functionality of
the original circuit. Due to obfuscation, identifying the critical node
driven by the corrupt unit is non-trivial. Double-flip defences achieve
resilience to SAT attacks in a similar way as single-flip defences.

Early double-flip defences corrupt the original circuit by inserting
hard-coded structures [15], [16]. SFLLhd [14] flips the output for any
input patterns with a certain Hamming Distance from the key pattern.
SFLLflex [14] corrupts a set of user-specified input patterns, and the
key bits consist of a lookup table that restores the circuit’s function-
ality. SFLLfault [17] and SFLLrem [18] construct the functionality
stripped circuit by injecting faults or removing nodes from the
original circuit. Afterward, they utilize ATPG tools and equivalence
checking tools to find all input cubes whose corresponding outputs
deviate from the correct ones. These input cubes are referred to as
protected input cubes. This way, they can build a lookup table to
restore outputs for the protected input cubes.

A. Common Limitations in Existing Double-flip defences
• Several defences, including TTLock [15], SFLLhd [14] and
MCAS [19], have very specific designs. Knowing the details of
the defences, attackers can devise dedicated algorithms to defeat
them [9], [20]–[22]. Other defences are still vulnerable to machine
learning attacks. GNNUnlock [23], OMLA [24] and SAIL [25]
extract local structural characteristics of a node as learning features.
They can discover critical nodes if the defence method exhibits
deterministic structural patterns statistically.
• Attackers can still exploit structural vulnerabilities to defeat those
defences that add additional logic as the corrupt unit [20], [26]. Re-
synthesis is not effective on those defences even after correlations
are added in between the corrupt unit and the original circuit. It is
due to the fact that the behaviours of the two parts are fundamentally
distinct. Furthermore, although re-synthesis techniques can usually
mix up the flip nodes with the original circuit, equivalent nodes
usually still exist. As long as the critical nodes exist, attackers can
figure out a way to discover them. For instance, Valkyrie [27] disables
two nodes simultaneously and checks if the resulting circuit has an
equivalent behaviour to the oracle.
• The authors of [28] pointed out that almost all structural stripping
techniques proposed so far can be easily discovered and recovered.
Because a synthesized netlist is highly optimized and free of re-
dundancy, injecting constant-0 or constant-1 faults to a node in the
netlist or modifying a few cubes with a point function can always be
observed with EDA tools.
• Fault-based defences, including SFLLfault and SFLLrem, remove
logic instead. While they are more robust to structural attacks, they
have to find all affected input patterns of the injected faults to
achieve a full restoration. The restoration process relies on testing and
formal equivalence checking, and that takes several hours for circuit

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Y

N
Σ Skewness < θ?

Apply Input Permutation
Encryption

& Randomization to C

Skewness
Estimation on

circuit C

Construct Skewed
Locking Circuit L

Construct Double-flip
Encryption Scheme

Obfuscate C⊕L
through Rewriting

Apply Input Permutation
Encryption

& Randomization to L

Encrypted Netlist

Fig. 1: An overview of ObfusLock.

benchmarks with a few thousand logic gates [17]. Moreover, these
defences lack key efficiency: the length of the key is proportional to
the number of protected input cubes. As a result, they can protect
only one or a limited number of input cubes due to the cost of the
tamper-proof memory.

B. Novelties and Contributions

All the discussions above suggest the necessity of a new logic
encryption scheme satisfying these requirements: i) has an exponen-
tial complexity against I/O attacks in key size; ii) produces fully
randomized locking patterns; iii) eliminates critical nodes; iv) allows
high flexibility in constructing the locking circuit to counter synthesis-
based attacks; v) incurs minimum power, performance and area (PPA)
overheads; and vi) is efficient in key size and runtime. As far as we are
aware, none of the existing works can fulfill all these requirements.

ObfusLock addresses all the challenges in a comprehensive frame-
work. It adopts input permutation encryption on skewed locking
circuits to guarantee robustness against I/O attacks. The process
of constructing a locking circuit is inherently randomized. It is
also highly flexible so that a defender can first choose behaviour
for the locking circuit and then implement that behaviour within
the framework. ObfusLock utilizes structural rewriting to split and
eliminate critical nodes. Because of logic sharing, PPA overheads
incurred by logic locking are minimized. The overall workflow is
systematic and it is efficient in execution time.

The workflow of ObfusLock is illustrated in Fig. 1. It starts by
assessing the skewness of the original circuit C. If the skewness
is within the desired range, ObfusLock applies input permutation
encryption directly. Otherwise, ObfusLock incrementally constructs
a highly skewed locking circuit L using the nodes in the original
circuit as building components. The same locking circuit constitutes
both the corrupt unit and the restoring unit in a double-flip scheme.
Particularly, L is obfuscated and merged with C through a sequence
of automatic rewriting processes, while C as the restoring unit is
encrypted by key-controlled input permutation and randomization.
ObfusLock has strong security guarantees against any known attacks
on logic locking.

The contributions of this work are summarized as follows:
• We formally establish the security of input permutation encryption
on skewed circuits.
• We develop a general scheme, ObfusLock, to lock any given netlist.
In specific, we propose a method to construct a highly skewed locking
circuit from the nodes in the original circuit. Such a locking circuit
can be adapted into the double-flip locking framework.
• We present the rewriting rules and procedures to obfuscate the
locking circuit with the original circuit with assurance.
• We conduct detailed analyses for ObfusLock to evaluate its security
and overhead.

obfuscated(C⊕L)

...

L#

x

k

out

...

C#

x0
k0
x1
k1

xn-1
kn-1

y

(a) (b)
Fig. 2: (a) the input permutation encryption; (b) the architecture of
double-flip ObfusLock.

II. THREAT MODEL

Our threat model is consistent with the previous works in logic
encryption. The attacker is either an untrustworthy foundry or a
reverse engineering house and thus has access to the encrypted netlist
Cenc. Apart from that, the attacker can purchase a working chip from
the open market as the oracle Co. It can query the oracle by applying a
specific input pattern and observing the corresponding output pattern.
Nevertheless, the attacker cannot read the secret key as it is stored
in a tamper-proof memory [29]. The objective of the attacker is to
determine the secret key and thereby defeat logic locking.

III. IDEAL LOGIC LOCKING FOR SKEWED CIRCUITS

A. Preliminaries

We denote as C the netlist of a combinational circuit or the
combinational part of a sequential circuit. C implements a Boolean
function f(x) : {0, 1}m → {0, 1}n, where m, n are the lengths of
the inputs and the outputs, respectively. The logic encrypted netlist
Cenc(x, k), k ∈ {0, 1}l is the encrypted version of C. A key k∗ is
correct if ∀x ∈ {0, 1}m : Cenc(x, k

∗) = C(x), and it is incorrect
otherwise. The attacker’s objective is to find a correct key and thus
recover the functionality of the encrypted circuit.

The on-set of node p, denoted as f1
p , is the set of all input patterns

for which p evaluates to 1. Let hp denote the smaller one between f1
p

and its complement. The skewness of node p is defined as hp/2
m,

and p is said to be highly skewed if hp ≪ 2m.
The error matrix of an encrypted circuit is given by

E(xi, kj) ≜ Cenc(xi, kj) ̸= C(xi). (1)

Each row in the matrix represents an input pattern from 0 to 2m−1
and each column represents a key pattern from 0 to 2l−1. The error
number of xi is defined as the number of 1s on the ith row. A key
kj is correct if and only if all elements are 0 on the jth column.

An input cube is either a full or a partial assignment to the input
variables. It contains all input patterns satisfying the assignment.

B. Input Permutation Encryption for Skewed Circuits

Ideal logic locking can be achieved by placing key-controlled
XOR gates to all primary inputs if the circuit has only one output
bit and is highly skewed. Bubbles (inverters) are added at random
to the primary inputs of C to randomize the key polarities. Logic
simplifications are then performed to hide those bubbles and yield
C# [30]. The encrypted circuit is thus Cenc(x, k) = C#(x ⊕ k), as
shown in Fig. 2(a). Fundamentally, a key represents a permutation
in the input space, and a correct key restores the effects of all
bubbles. The idea of adding XOR gates to the primary inputs has
been mentioned in [31] but without any in-depth analyses or proofs.
Besides, that work neither discusses how to ensure security when the
original circuit does not satisfy the required conditions, nor does it
provide a solution to control the overhead on industrial benchmarks.
In this section, we formally establish the security of such a scheme.
Section IV describes how this can facilitate the construction of a
provably secure logic locking framework for general circuits.

1) SAT Attack Resilience: Launching an SAT attack on an en-
crypted circuit can be viewed as solving a covering problem on
the error matrix. The objective of the attacker is to find a column
with no errors. For this purpose, an exact attacking algorithm has
to select a subset of rows, covering all columns with at least one
error. An approximate attack [32] may terminate before all columns
with an error have been covered and could return any keys whose
corresponding columns have not yet been covered.

The error matrix of an input permutation encrypted circuit is given
by the following lemma. We omit the proof due to space limit.

Lemma 1. Let f(x) : {0, 1}m → {0, 1} be a Boolean function,
|f1| = M . The error matrix of the encrypted function fenc(x, k) =
f#(x⊕ k) has M rows each containing exactly 2n −M errors, and
2n −M rows each containing exactly M errors.

A row is zero-dominant if most of its elements are 0s or one-
dominant if most of them are 1s. Lemma 1 implies that at most
h = min(M, 2m − M) key patterns could be correct, as stated in
the following lemma.

Lemma 2. The number of correct keys is always equal to or less
than h for the encrypted function fenc(x, k) = f#(x⊕ k).

The following analysis assumes the underlying SAT solver has an
equal chance to return any satisfiable assignments. A row could be
selected if the xi it corresponds to is distinguishing, i.e., there exists
both a 0 element and a 1 element on that row, and any previously
selected rows do not cover the 1 element. The chance for a row to
be selected is proportional to the number of remaining (0, 1) pairs
on that row. Note that an attacker cannot determine if a row is one-
dominant unless it knows f(xi) in advance.

Theorem 3. If |f1| = M and h = min(M, 2m − M) ≪ 2m, the
expected number of I/O queries for a SAT-based attacking algorithm
to decrypt fenc(x, k) = f#(x⊕ k) is at least (1/c) · (2m/h), where
c is a small constant.

Proof. One of the two conditions must be fulfilled before the attacker
succeeds: a) select a one-dominant row; or b) select 2m/h− 1 zero-
dominant rows. From Lemma 1, the probability for the attacker to
select a one-dominant row is always less than 2h/2m before the
number of I/O queries reaches 2m/2h. Using (1− 2h/2m)2

m/2h ≤
1/e, we derive (1/2) · (1 − 1/e) · (2m/h) as a lower bound of the
expected I/O queries required to fulfill condition a).

2) Sensitization Attack Resilience: The sensitization attack [7] is
another I/O attack that aims to decrease the number of effective
key bits. It attempts to find input patterns that sensitize the targeted
key bits to the output while muting the remaining key bits. Input
permutation encryption resists sensitization attacks since all key bits
are sensitized to the output regardless of the input pattern.

3) Approximate Attack Resilience: Several attacking algo-
rithms [14], [32] query the oracle a finite number of times. Then they
choose a key at random from those not yet proved to be incorrect.
The following result can be proved similarly as Theorem 3.

Theorem 4. Let |f1| = M and h = min(M, 2m − M) ≪ 2m.
The probability that a randomly selected key decrypts fenc(x, k) =
f#(x⊕ k) is less than c · r ·h/2m, where r is the number of queries
to the oracle by an I/O attacking algorithm and c is a small constant.

4) Bypass Attack Resilience: The bypass attack [14] adds an
additional bypass unit to circumvent the protected input cubes that
lead to errors. In this way, the circuit can still work properly when an
incorrect key is applied. ObfusLock thwarts the bypass attack since
all input patterns are protected by permutation.

IV. OBFUSLOCK : A UNIVERSAL FRAMEWORK FOR LOGIC

ENCRYPTION

A. Integrating Input Permutation to Logic Locking

As discussed in Section III, input permutation encryption is prov-
ably secure if the original circuit has a single primary output bit which
is highly skewed. For a circuit that has multiple primary outputs, the
sum of h for all outputs should not exceed a secure threshold.

What if the skewness level does not meet the threshold? In this
case, ObfusLock constructs an additional locking circuit L that is
highly skewed and has a single output. The high-level architecture of
ObfusLock is shown in Fig. 2(b). It consists of the obfuscated unit
C ⊕ L and the input permutation encrypted restoring unit L#(x ⊕
k). Similar to SFLL [33], this architecture resists structural attacks
on the restoring unit because removing that unit cannot recover the
functionality of the original circuit.

Consider the encrypted circuit C ⊕L⊕L#(x⊕ k) and the oracle
circuit C⊕L⊕L#(x⊕k∗). Because the obfuscated unit parts in both
circuits are always identical regardless of the keys, only the restoring
unit part needs to be considered in analyzing any oracle-guided I/O
attacks. Therefore, all security guarantees presented in Section III
still hold for double-flip ObfusLock.

In the remainder of this section, we elaborate ObfusLock encryp-
tion procedures. We first discuss methods to estimate skewness values
when they are exponentially small. We then propose a practical way
to construct L incrementally. Finally, we present concrete resynthesis
techniques that make ObfusLock structurally robust.

B. Estimating Skewness Values

How do we estimate the probability a node evaluates to 1, assuming
every primary input has the same opportunity to be 0 or 1? One naive
approach is to transform the netlist to an And-Inverter Graph, sorting
all nodes into a topological order, and then compute skewness gate
by gate. The skewness is the complement of its input for an inverter
and the product of its inputs for an AND gate [12]. This algebraic
computation method can lead to significant error, especially when the
transitive fan-in cones of a gate’s inputs overlap. Another naive way
is to draw random input patterns and simulate the netlist. Because
we desire at least ϵ < h/2m, the required sample size, O(1/ϵ2), is
prohibitively large to achieve a reasonable confidence level.

To overcome the sample size problem, we propose Boolean multi-
level splitting. The key insight is that a rare event could be divided
into a sequence of consecutive common events, and applying random
simulation on those common events separately requires only a mod-
erate number of samples. Our method starts by reshaping the Boolean
network to maximize its logic height. This can be achieved by
reversely applying depth-oriented Boolean optimizations [34]. As a
result, a long critical path B should exist for every primary output. We
distinguish a set of nodes p1, · · · , pn along B, so that the skewness
values of every pair of consecutive p nodes are close. The skewness
value ski of node pi can thus be computed recursively: ski =
Pr(pi = 1|pi−1 = 1) · ski−1 +Pr(pi = 1|pi−1 = 0) · (1− ski−1).
Then we use a SAT witness sampler [35] to accurately estimate the
conditional probabilities in the above equation.

C. Constructing the Locking Circuit

ObfusLock builds a highly skewed locking circuit L with nodes
in the original circuit. Using the same nodes can reduce area and
power overheads and facilitate structural rewriting. It first executes
algebraic skewness computation to find candidate nodes with high
skewness values in the original circuit. Although inaccurate, algebraic
computation is efficient in searching for a large number of nodes. It

then builds L incrementally. In each iteration, a pre-selected operator
with a few nodes drawn from the candidates is tentatively attached
to the front of the current critical path. Boolean multi-level splitting
is initiated to estimate the gain in skewness value. If the gain is
higher than the required level, the attachment is confirmed, and
Boolean multi-level splitting is initiated again with a larger time
budget to compute the new skewness value accurately. Otherwise,
the process starts over with a decayed gain level. The construction
is finished when the skewness value of the current L is below the
secure threshold.

5) Synthesis-based Attack Resilience: Most logic locking tech-
niques alter fixed patterns within the logic representations of the
original circuits. The SPI attack [28] utilizes this fact to launch
a structural attack on the critical node. After logic synthesis and
optimization, the logic terms introduced by logic locking and those
of the original circuit can be separated by a set of rules. The flexibility
of ObfusLock enables the defender to first choose the logic terms that
cannot be detected by the rules, and then construct a skewed locking
circuit implementing those terms. An illustrative example is shown
in Figure 3.

1 1

1

1

1

1

1

00 01 11 10
00

01

11

10

ab
cd

1 1

1

1

1

1

1

00 01 11 10
00

01

11

10

ab
cd

1

(a) (b)
Fig. 3: A demonstration of how ObfusLock thwarts synthesis-based
attacks. (a) The logic representation of the original circuit after logic
optimization. abcd are internal nodes on a cut within the transitive fan-
in cone. (b) The circled element is changed by the defender, after which
none of the original prime implicants are split from either 0 or 1 polarity.
A skewed locking circuit L is then constructed to implement this change.

D. Logic Obfuscation through Structural Transformation

Structural attacks to logic locking aim to identify the critical
nodes in the netlist. Attackers may launch static analysis (e.g., gate-
level analysis) or a combination of static and dynamic analysis
(e.g., signal activity analysis) to find the critical nodes. To protect
sensitive information, logic obfuscation alters the netlist without
changing its behaviour. It seems impossible to exhaust all possible
structural analyses and prove an obfuscation method is definitely
secure. However, an obfuscated netlist is structurally robust if it has
a prohibitively large number of possible selections of critical nodes,
and each selection needs to be validated dynamically. It is even more
robust if no valid selections exist on the encrypted netlist.

For the obfuscated unit C ⊕ L, the critical node is the root node
of C or L. To launch a removal attack or a bypass attack, either
the critical node itself or all nodes on a cut in the transitive fan-
in cone need to be identified by the attacker. ObfusLock conducts
a combination of structural and functional rewriting steps to obtain
structural robustness. The advantages are threefold: a) Decomposi-
tion: the critical node and its activity is decomposed into multiple
nodes; b) Propagation: the decomposed nodes are propagated and
spread in the netlist; c) Elimination: the decomposed nodes are
merged with or substituted by other nodes in the netlist.

The rewriting steps are summarized as follows. i) Extended AIG
Transformation: the original circuit C is transformed to an And-
Inverter Graph (AIG). Similarly, the locking circuit L is transformed
to an extended AIG that contains Majority-of-three (MAJ) and XOR
gates besides AND gates and inverters. ii) Structural Reshaping:

Equations (2) - (4) illustrate the structural rewriting rules exploited
by ObfusLock to decompose and propagate L. In these equations, f
denotes the root node of C. f is XORed with the currently processed
node in L, while a, b and c are the immediate inputs of the current
node. Structural reshaping proceeds iteratively from the root node of
L. Depending on the type of the current node, one equation among
(2) - (4) is selected, and the LHS is replaced by the RHS. Such
an iteration continues on the first term in the RHS. iii) Structural
Elimination: the locking circuit L, as well as its activity, is distributed
to the whole network after structural reshaping. However, there is
a pitfall: node f is unchanged and can possibly be discovered by
an attacker. Thus, we devise rewriting rules to further eliminate f .
One example rule, given as equation (5), is applicable whenever the
transitive fan-in cone of f contains the internal node a¬b where
both a and b are certain nodes in C. We apply (5a)-(5b) repeatedly
to propagate f down the AIG, and (5c) to get it finally eliminated.
Elimination rules as such are made possible because L consists of
nodes in C. iv) Functional Rewriting: it replaces local structures with
equivalent precomputed structures. We use standard AIG functional
rewriting [36] to remove traces produced in rewriting.

f ⊕ ab = (f ⊕ a)⊕ a¬b, (2)

f ⊕ (a⊕ b) = (f ⊕ a)⊕ b, (3)

f ⊕ ⟨abc⟩ = ⟨(f ⊕ a)(f ⊕ b)(f ⊕ c)⟩, (4)

f ⊕ ab =

¬(f0 ⊕ ab), (f = ¬f0) (5a)

(f0 ⊕ ab)f1 ∨ ab¬f1, (f = f0f1) (5b)

a. (f = a¬b) (5c)

The above equations are listed just for illustration purposes.
Defenders can always add customized reshaping and elimination rules
for further diversification. The whole rewriting procedure terminates
when the number of applications of reshaping and elimination rules
both reach user-specified thresholds or the whole L netlist has been
traversed. Because of logic sharing, each application of a rewriting
rule introduces at most a constant number of extra gates.

On large benchmarks, applying double-flip ObfusLock from pri-
mary inputs to primary outputs (as shown in Fig. 2(b)) can incur
significant overhead. In this situation, we apply it only to a sub-
circuit to mitigate this issue. To find a suitable sub-circuit, ObfusLock
traverses backwards from a small set of primary outputs that have
important functionalities. It aims to find a cut, such that i) the cut
size is sufficiently large, and ii) the number of reachable patterns
on the cut is exponential to the cut size. The second condition
is crucial because an attacker may attempt to infer input patterns
corresponding to the reachable patterns on the cut, thereby launching
an SAT attack [37]. We use an approximate model counter [38] to
track the number of reachable patterns on the current cut. Once the
cut is settled down, the transitive fan-out cone of the cut is extracted
as the sub-circuit.

Notice that the attacker can only obtain an oracle for the whole
circuit. Even if the attacker can discover the cut of the sub-circuit, it
needs to infer the corresponding input pattern from a pattern on the
cut in every I/O attack iteration. This process will always introduce
an extra cost. A defender can even encrypt the remaining part of the
circuit to thwart such attempts.

6) Machine Learning Attack Resilience: These attacks [23], [25]
extract local structural information of nodes as learning features. They
discover critical nodes by revealing deterministic patterns caused by
logic locking. However, ObfusLock applies structural transformations
to the obfuscated unit globally. Moreover, it breaks any deterministic
patterns or statistical relations by introducing randomness from four
aspects: i) it enables high flexibility to choose internal nodes and
operators in constructing L; ii) its bubble insertion and pushing

Bench. Skew. #Keys Run. SAT Atk. (s) AppSAT Atk. (s)
(#Nodes) (bits) (s) sub. whole sub. whole

s9234 -11.4 14 1.23 162.9 TO 0.1 4.3

(3677) -21.8 27 1.69 TO TO wrong wrong
-30.6 51 18.09 TO TO wrong wrong

c7552 -12.5 23 0.63 TO TO 238.5 wrong

(4003) -20.4 35 4.35 TO TO wrong wrong
-33.2 55 17.78 TO TO wrong wrong

c6288 -10.6 19 1.77 231.7 406.2 13.8 wrong

(4660) -22.5 31 5.30 TO TO wrong wrong
-32.8 47 9.89 TO TO wrong wrong

max -10.4 16 0.63 TO TO 172.1 wrong

(5907) -20.6 35 3.90 TO TO wrong wrong
-30.0 54 7.19 TO TO wrong wrong

s15850 -12.0 19 0.42 TO TO wrong wrong

(6820) -21.6 33 4.45 TO TO wrong wrong
-32.5 51 2.63 TO TO wrong wrong
-12.0 15 0.38 51.4 TO 245.3 wrong

b14 -24.0 33 2.16 TO TO wrong wrong
(10635) -30.0 38 1.65 TO TO wrong wrong

-54.0 125 33.56 TO TO wrong wrong
-10.0 16 0.82 0.9 TO 0.1 97.0

s38417 -22.3 58 2.44 TO TO wrong wrong
(18781) -34.2 64 10.63 TO TO wrong wrong

-52.4 100 48.16 TO TO wrong wrong
-12.0 20 0.43 0.2 103.8 10.9 175.4

b20 -21.0 21 2.61 TO TO wrong wrong
(24292) -30.0 31 7.94 TO TO wrong wrong

-50.0 99 35.30 TO TO wrong wrong
-10.0 15 1.37 4.1 76.0 12.8 95.0

s38584 -22.9 35 1.51 TO TO wrong wrong
(24296) -32.0 51 17.52 TO TO wrong wrong

-57.4 126 32.70 TO TO wrong wrong
-10.9 26 1.33 50.4 TO 55.5 wrong

square -20.2 37 7.06 TO TO wrong wrong
(39248) -31.5 63 22.98 TO TO wrong wrong

-50.2 148 60.01 TO TO wrong wrong

TABLE I: Evaluation results (key efficiency, runtime, and resilience to
I/O attacks) for ObfusLock at different skewness levels.

process is fully randomized; iii) it allows the defender to add
structural reshaping and elimination rules at will; iv) it enables high
flexibility to choose the sub-circuit to be encrypted.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results to demonstrate the
effectiveness and the robustness of ObfusLock. All experiments are
conducted on a Linux machine with a 3.2GHz CPU and 16GB of
RAM. We evaluated ObfusLock on larger benchmark circuits from
ISCAS’89 [39], ITC’99 [40] and EPFL [41]. Like most studies on
logic locking [42], we assume attackers have scan chain access.

We notice that ObfusLock cannot be effectively applied to those
circuits whose number of inputs is less than the desired skewness
level. For instance, ObfusLock fails to find a locking circuit for b09
(serial to serial converter) and b10 (voting system) in ITC’99, both of
which are deep sequential data pipelines with only a limited number
of inputs. ObfusLock may be effectively applied to such circuits if
unrolling is allowed.

In order to thoroughly evaluate ObfusLock, we extract the transitive
fan-in cones for all outputs of all candidate benchmarks. We filter
out a benchmark if less than 20% of its outputs have at least 30
inputs (<10,000 nodes) or 50 inputs (≥10,000 nodes) within their
transitive fan-in cones. However, as we will demonstrate later, this
requirement is not needed in practice. Among the remaining, we
select 10 benchmark circuits whose numbers of nodes are across
the range of 3,000 to 40,000 to represent circuits of different sizes.
Encryption Cost: Table I shows the experiment results of ObfusLock
encryption cost. Because different benchmark suites are in different
formats (gate-level netlists and LUTs), we map all benchmark circuits

to AIG and count the number of nodes. For every benchmark circuit,
we create 3 locking circuits L with at least 10, 20 and 30 bits of
skewness, respectively (−10.0 bits of skewness means the skewness
value of L is 2−10). For those benchmark circuits which have over
10,000 nodes, we also create a locking circuit with at least 50 bits of
skewness. The execution time of ObfusLock is in the order of tens
of seconds. The majority of the time is spent on estimating the gain
in skewness for each additional operator and corresponding nodes.
Therefore, to construct an L with a lower skewness value demands
more execution time.
Security Analysis (I/O Attacks): We use SAT attack and AppSAT
attack implementations in NEOS [32] to attack ObfusLock encrypted
netlists. We choose NEOS because it integrates BDD sweeping to
compress I/O constraints and is almost always faster than the original
SAT attack implementation [8]. We set the timeout (TO) limit to be
3 hours for all attacks. Besides, we set the upper limit for AppSAT
to be 2,048 iterations, after which it must return a key that is not
proved to be incorrect. This limit is higher than what is used in the
AppSAT paper [32].

We consider two attacking strategies. For the first strategy, an
attacker targets the whole encrypted circuit as normal. For the second
strategy, an attacker distinguishes and only targets the sub-circuit to
reduce the burden on the SAT solver. In our experiments, we assume
an attacker who adopts the second strategy i) always finds reachable
patterns on the cut when launching an I/O attack, and ii) can deduce
the pattern on the inputs from the pattern on the cut in no time.
Because both of the assumptions are not realistically achievable for an
attacker, the reported data in the sub. columns are the lower bounds
of the real-world values.

As shown in Table I, for all the benchmark circuits, encryptions
with 20 bits of skewness cannot be decrypted in the timeframe
regardless of the sizes of the circuits. 30 bits of skewness or more is
recommended to resist attackers who have greater capabilities.
Security Analysis (Structural Attacks): Structural attacks utilize
internal structural and functional information of the encrypted circuit
to recover the functionality of the original circuit. Most structural
attacks aim to distinguish the critical nodes within the encrypted
netlist and then isolate them or inject faults to these locations [12],
[21], [26], [27], [37]. Naively, an attacker can search through the
netlist to identify the critical nodes. Hence we start by running a
combinational equivalence checker to validate whether the critical
nodes, namely the root nodes of C and L, still exist after obfuscation.
Our result verifies that all critical nodes are successfully eliminated
in every encrypted circuit.

We further evaluate the structural robustness of ObfusLock against
the state-of-the-art structural attacking tools, Valkyrie [27] and SPI
attack [28]. When attacking double-flip defences, Valkyrie aims to
find a pair of flipping node in the encrypted circuit, namely perturb
and restore, such that when both nodes are replaced by constant faults,
the encrypted circuit has the same behaviour as the original circuit.
In our cases, perturb and restore are the root nodes of L and L#

respectively. We observe that while Valkyrie always finds the restore
node quickly, which we leave as-is, it either exits without finding the
obfuscated perturb node or exceeds the time limit.

We subsequently launch the SPI attack, which generates prime
implicant tables (PITs) for a set of selected internal nodes given an
encrypted circuit and infers the key therewith. The SPI attack always
returns an incorrect key.

If an attacker cannot distinguish the critical nodes, it may attempt
to distinguish a set of fan-in nodes of the obfuscated C, and then
reconstruct C with these nodes. Common techniques to distinguish
candidate nodes include skewness analysis [12], [37] and sensitization
analysis [21], [26], [27], [37]. Fig. 4 demonstrates how ObfusLock

protects structural and functional traces against these two attacks on
s9234. Fig. 4 (a) and Fig. 4 (b) show the statistics of skewness and
the number of keys within its transitive fan-in cone for all nodes. It
can be seen that the critical node C⊕L (marked in red) is an outlier.
After structural transformation, this critical node no longer exists.
We suppose that the attacker attempts to recover the functionality
of C with nodes in the transitive fan-in cone of C ⊕ L. Fig. 4 (c)
and Fig. 4 (d) show the statistics after structural transformation. The
attacker minimizes the complexity to recover the functionality of C, if
it finds a cut between the inputs and the outputs, such that i) it consists
of nodes that have equivalent counterparts in the original circuit C,
and ii) it is the closest cut to the protected outputs. All nodes along
the cut are marked in yellow. Because of structural transformation,
it is almost unlikely to differentiate these nodes from others.

Fig. 4: Distributions of critical nodes before and after structural trans-
formation.

Overhead Analysis: We use Cadence Genus and Innovus along with
the NanGate 45nm Open Cell Library to measure the area and power
overheads. We choose the typical RC corner and set the target clock
period as 1ns for our analysis. As shown in Fig. 5, ObfusLock
incurs average area overheads of 2.1%, 4.0%, 5.1% and 4.8% for
netlists with 10, 20, 30 and 50 bits of skewness, respectively. The
majority of the area overhead is due to the restoring unit. Facilitated
with the sub-circuit approach, the area overhead is mostly correlated
with the skewness level but almost unrelated to the size of the
original circuit. It means that for a certain security level, the relative
overhead of ObfusLock decreases as the size of the original circuit
grows. ObfusLock records a 4.9% average power overhead for all the
benchmarks. Delay overhead is almost negligible (0.07% on average).

VI. CONCLUSION

In this paper, we propose ObfusLock, a novel logic locking scheme
that simultaneously achieves I/O attack resilience, structural attack
resilience, locking efficiency and protection diversity. ObfusLock
leverages skewness of nodes to construct a locking circuit and uses
a set of rewriting rules to obfuscate it with the original circuit.
Experimental results have confirmed the strong security guarantees
provided by ObfusLock.

REFERENCES

[1] Y. Alkabani and F. Koushanfar, “Active hardware metering for intellectual property protection
and security.” in USENIX security symposium, 2007, pp. 291–306.

[2] F. Imeson et al., “Securing computer hardware using 3d integrated circuit ({IC}) technology
and split manufacturing for obfuscation,” in USENIX Security 13, 2013, pp. 495–510.

Fig. 5: Area and power overheads at different skewness levels (bits).

[3] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security analysis of integrated circuit
camouflaging,” in CCS, 2013, pp. 709–720.

[4] A. B. Kahng et al., “Watermarking techniques for intellectual property protection,” in
Proceedings of the 35th annual Design Automation Conference, 1998, pp. 776–781.

[5] J. A. Roy, F. Koushanfar, and I. L. Markov, “Ending piracy of integrated circuits,” Computer,
vol. 43, no. 10, pp. 30–38, 2010.

[6] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, “On improving the security of logic
locking,” TCAD, vol. 35, no. 9, pp. 1411–1424, 2015.

[7] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of logic obfuscation,” in
Proceedings of the 49th Annual Design Automation Conference, 2012, pp. 83–89.

[8] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic encryption algo-
rithms,” in HOST. IEEE, 2015, pp. 137–143.

[9] Y. Shen and H. Zhou, “Double dip: Re-evaluating security of logic encryption algorithms,” in
Proceedings of the on Great Lakes Symposium on VLSI 2017, 2017, pp. 179–184.

[10] M. Yasin, B. Mazumdar, J. J. Rajendran, and O. Sinanoglu, “Sarlock: Sat attack resistant logic
locking,” in HOST. IEEE, 2016, pp. 236–241.

[11] Y. Xie and A. Srivastava, “Mitigating sat attack on logic locking,” in International conference
on cryptographic hardware and embedded systems. Springer, 2016, pp. 127–146.

[12] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Security analysis of anti-sat,” in
ASP-DAC. IEEE, 2017, pp. 342–347.

[13] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z. Pan, “Provably secure
camouflaging strategy for ic protection,” TCAD, vol. 38, no. 8, pp. 1399–1412, 2017.

[14] X. Xu et al., “Novel bypass attack and bdd-based tradeoff analysis against all known logic
locking attacks,” in CHES. Springer, 2017, pp. 189–210.

[15] M. Yasin, A. Sengupta, B. C. Schafer, Y. Makris, O. Sinanoglu, and J. Rajendran, “What to
lock? functional and parametric locking,” in GLSVLSI, 2017, pp. 351–356.

[16] K. Shamsi, T. Meade, M. Li, D. Z. Pan, and Y. Jin, “On the approximation resiliency of logic
locking and ic camouflaging schemes,” TIFS, vol. 14, no. 2, pp. 347–359, 2018.

[17] A. Sengupta, M. Nabeel, M. Yasin, and O. Sinanoglu, “Atpg-based cost-effective, secure logic
locking,” in 2018 IEEE 36th VLSI Test Symposium (VTS). IEEE, 2018, pp. 1–6.

[18] A. Sengupta, M. Nabeel, N. Limaye, M. Ashraf, and O. Sinanoglu, “Truly stripping function-
ality for logic locking: A fault-based perspective,” TCAD, vol. 39, no. 12, 2020.

[19] B. Shakya et al., “Cas-lock: A security-corruptibility trade-off resilient logic locking scheme,”
IACR Trans. on Cryptographic Hardware and Embedded Systems, pp. 175–202, 2020.

[20] F. Yang, M. Tang, and O. Sinanoglu, “Stripped functionality logic locking with hamming
distance-based restore unit (sfll-hd)–unlocked,” TIFS, vol. 14, no. 10, pp. 2778–2786, 2019.

[21] A. Sengupta, N. Limaye, and O. Sinanoglu, “Breaking cas-lock and its variants by exploiting
structural traces,” Cryptology ePrint Archive, 2021.

[22] H. Zhou, Y. Shen, and A. Rezaei, “Vulnerability and remedy of stripped function logic
locking.” IACR Cryptol. ePrint Arch., vol. 2019, p. 139, 2019.

[23] L. Alrahis et al., “Gnnunlock: Graph neural networks-based oracle-less unlocking scheme for
provably secure logic locking,” in DATE. IEEE, 2021, pp. 780–785.

[24] L. Alrahis, S. Patnaik, M. Shafique, and O. Sinanoglu, “Omla: An oracle-less machine
learning-based attack on logic locking,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 69, no. 3, pp. 1602–1606, 2021.

[25] P. Chakraborty, J. Cruz, and S. Bhunia, “Sail: Machine learning guided structural analysis
attack on hardware obfuscation,” in AsianHOST. IEEE, 2018, pp. 56–61.

[26] D. Sirone and P. Subramanyan, “Functional analysis attacks on logic locking,” IEEE Trans-
actions on Information Forensics and Security, vol. 15, pp. 2514–2527, 2020.

[27] N. Limaye, S. Patnaik, and O. Sinanoglu, “Valkyrie: Vulnerability assessment tool and attack
for provably-secure logic locking techniques,” TIFS, vol. 17, pp. 744–759, 2022.

[28] Z. Han, M. Yasin, and J. J. Rajendran, “Does logic locking work with eda tools?” in USENIX
Security 21), 2021.

[29] R. Anderson, Physical Tamper Resistance. John Wiley & Sons, 2020.
[30] A. Jain and R. E. Bryant, “Inverter minimization in multi-level logic networks,” in ICCAD.

IEEE, 1993, pp. 462–465.
[31] H. Zhou et al., “Resolving the trilemma in logic encryption,” in ICCAD. IEEE, 2019.
[32] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “Appsat: Approximately

deobfuscating integrated circuits,” in HOST. IEEE, 2017, pp. 95–100.
[33] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and O. Sinanoglu, “Provably-

secure logic locking: From theory to practice,” in CCS, 2017, pp. 1601–1618.
[34] J. Cortadella, “Timing-driven logic bi-decomposition,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 22, no. 6, pp. 675–685, 2003.
[35] S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and M. Y. Vardi, “On parallel scalable

uniform sat witness generation,” in TACAS. Springer, 2015, pp. 304–319.
[36] A. Mishchenko, S. Chatterjee, and R. Brayton, “Dag-aware aig rewriting: A fresh look at

combinational logic synthesis,” in DAC. IEEE, 2006, pp. 532–535.
[37] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal attacks on logic locking

and camouflaging techniques,” TETC, vol. 8, no. 2, pp. 517–532, 2017.
[38] M. Soos, S. Gocht, and K. S. Meel, “Tinted, detached, and lazy cnf-xor solving and its

applications to counting and sampling,” in CAV. Springer, 2020, pp. 463–484.
[39] F. Brglez, “A neural netlist of 10 combinational benchmark circuits,” Proc. IEEE ISCAS:

Special Session on ATPG and Fault Simulation, pp. 151–158, 1985.
[40] F. Corno, M. S. Reorda, and G. Squillero, “Rt-level itc’99 benchmarks and first atpg results,”

IEEE Design & Test of computers, vol. 17, no. 3, pp. 44–53, 2000.
[41] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The epfl combinational benchmark suite,” in

IWLS, 2015.
[42] H. M. Kamali, K. Z. Azar, F. Farahmandi, and M. Tehranipoor, “Advances in logic locking:

Past, present, and prospects,” Cryptology ePrint Archive, 2022.

	Select a link below
	Return to Previous View
	Return to Main Menu

