
Smart Knowledge Transfer-based Runtime Power Management
Lin Chen1, Xiao Li1, Fan Jiang1, Chengeng Li1, Jiang Xu2,1,†

1Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology
2Microelectronics Thrust, The Hong Kong University of Science and Technology(GZ)

†Corresponding author: jiang.xu@ust.hk

Abstract—As Moore’s law slows down, computing systems must
pivot towards higher energy efficiency to continue scaling perfor-
mance. Reinforcement learning (RL) performs more adaptively
than conventional methods in runtime power management under
varied hardware configurations and varying software workloads.
However, prior works on either model-free or model-based RL
approaches face a non-negligible challenge: relearning the policies
to adapt to the new environment is unacceptably time-consuming,
especially when encountering significant variances in workloads
or hardware configurations. Moreover, existing research on ac-
celerating learning has focused on the speedup while largely
ignoring the efficiency degradation of the results. In this paper, we
present a smart transfer-enabled Q-learning (STQL) approach to
boost the learning process and guarantee the learning efficiency
through a contradiction checking mechanism, which wisely evicts
inappropriate transferred knowledge. Experiments on realistic
applications show that the proposed method can speed up the
learning process to up to 2.3x and achieve a 6.2% energy-delay
product (EDP) reduction compared to the state-of-the-art design.

Index Terms—power management, reinforcement learning, on-
line learning, transfer learning, multicore system

I. INTRODUCTION

Power wall has become one of the primary challenges that
modern computing systems are hitting. This is especially true
on mobile devices, where the problem is further aggravated
by the constrained power supply. In response, the system-wide
power management has gained much attention from both the
industry and academia for harvesting the potential improvement
in energy efficiency. Additionally, cores are reported to be the
primary energy consumers compared to all other components
in the system according to the power analysis in [1]; thus,
improving the energy efficiency of the cores is critical to
defeating the power wall challenge.

Dynamic voltage and frequency scaling (DVFS) is one of
the most widely used techniques for improving the energy
efficiency of cores. It allows software or hardware to dynam-
ically monitor the runtime status of cores and control the
Voltage/Frequency (V/F) levels. Existing heuristic methods [2],
[3] based on power profiling and short-term prediction are
observed to be inefficient in adapting to stochastic variances
from environments and workloads, leading to considerable
energy efficiency optimization space. To fill the inadaptability
gap, reinforcement learning (RL)-based approaches with self-
calibration mechanisms [4]–[10] have been proposed and show
significant energy efficiency improvement over heuristic meth-
ods. However, the notoriously long training time of RL has
greatly limited its application. An optimal policy can only be
achieved after an extensive exploration of the whole state-action
space, which is highly time-consuming [11] and results in a
large computational overhead. Worse yet, the ever-increasing

complexity of both hardware and software exacerbates the
implementation of sufficient exploration.

In our runtime power management for multicore processors,
efficient learning is greatly challenging and time-consuming
since the state-action space of RL grows exponentially as
the number of cores increases. Moreover, the learning time
is further extended by the dynamic variances of workloads.
During the online management process, both intra- and inter-
workload variances induce burdensome exploration to relearn
and evict the unsuitable decisions, causing the system to be
trapped in a suboptimal or even wrong policy for a lasting time.
In the worst case, the slow learning speed may eliminate the
overall energy efficiency profits brought by the sophisticated
RL, which essentially restricts the commercial adoption of RL-
based power management. Unfortunately, most previous works
ignore the inherent dilemma [4]–[8].

To accelerate the learning process with workload variances,
we introduce transfer learning (TL) to reuse knowledge from
past and similar tasks. Knowledge transfer in [11]–[13] is repre-
sented as a special exploration strategy by adopting knowledge
from previous experiences. The learning agent in [14] transfers
the knowledge in similar states between the source task and the
target task, and the agent in [10] transfers from its neighbors.
Despite the learning acceleration, knowledge from previous
tasks can generate policy contradiction and suboptimality at
a high probability. Reusing inappropriate information can lead
to suboptimal or even failed decisions, which severely degrades
the learning efficiency. However, the existing TL-based works
[10]–[14] only focus on similarity function construction and
prior knowledge selection for acceleration while ignoring the
appropriateness of the transferred knowledge, which is as
important as acceleration.

In this paper, we propose a smart transfer-enabled Q-
learning-based (STQL) approach to conduct runtime power
management for multicore systems. A Q-learning (QL) agent
periodically monitors multiple runtime information about cores
and updates its policy. When a significant change happens,
transfer learning (TL) is enabled to help the QL agent adapt
to the new environment at a fast speed. Additionally, in
order to eliminate the learning suboptimality induced by past
knowledge, a novel and automatic contradiction checking (CC)
mechanism is proposed in our STQL. We compare our STQL
with the state-of-the-art TL-based methods, and the results
show that our STQL can not only speed up the learning process
but also guarantee learning efficiency similar to learning from
scratch. The main contributions of our work are as follows:

• We propose a smart transfer-enabled Q-learning-based
(STQL) approach to reduce the energy-delay product

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

(EDP) of multicore systems with the ability to tackle
significant changes during the online process.

• We propose a novel contradicting checking (CC) mecha-
nism to smartly reuse the knowledge from past tasks and
minimize the impact of suboptimality.

• We comprehensively analyze the intra- and inter-workload
variances and illustrate the necessity of our smart transfer
learning.

• We quantitatively evaluate the effectiveness of our pro-
posed methods compared with state-of-the-art methods.

II. REINFORCEMENT LEARNING-BASED POWER
MANAGEMENT

A. Reinforcement Learning Basics

The dynamic and adaptive advantages of reinforcement
learning (RL) make this machine learning method widely used
in automatic industry control, game decision-making, trading
and finance, etc. We use Q-learning, one of the most popular
RL algorithms, to conduct DVFS control. The QL agent keeps
a Q-value for every state-action pair to evaluate the pair’s
performance according to the current and the future rewards.
At each learning epoch t, the Q-value is updated as

Q(st, at)← (1−α)Q(st, at)+α[rt+γmax
a′

Q(st+1, a
′)]. (1)

In Eq. (1), Q(st, at) is updated after the QL agent experi-
ences (st, at), transits to state st+1, and receives related reward
rt. α denotes learning rate, and γ denotes the discount factor
that represents how much the future reward counts.

B. Exploration Strategy

A well-known ϵ-greedy exploration rule is adopted in our
proposed QL-based power management. The exploration and
exploitation rotation mechanism is shown as follows:

π(s) =

{
random action in A p < ϵ(s) (exploration),

argmax
a∈A

Q(s, a) otherwise (exploitation),

(2)
where p is a random variable ranging in [0, 1]. When p < ϵ(s),
we randomly choose one action from action space A; otherwise,
we select the action with the maximum Q-value.

In most existing works, the exploration probability is de-
graded by visited times (V T) to promote the convergence pro-
cess. However, we find V T can lead to inadequate exploration
due to some extremely visited states. As a result, we first
introduce explored degree (ED) to guarantee the exploration
quality. The exploration threshold ϵ(s) in Eq. (2) is defined as

ϵ(s) = 1/(ED(s) + 1)θ, (3)

where ED(s) denotes the explored degree of state s ranging
in [0, |A| − 1], |A| equals the total number of actions, and
θ is a degradation factor. For each state s, when action a is
selected and the corresponding Q(s, a) is updated, ED(s) is
incremented by 1. ED(s) reflects the expertness level of the
current agent to the state s, where large ED(s) value means
high expertness and confidence level.

Fig. 1. Overview of the QL-based power management.

TABLE I
STATE SPACE OF THE QL AGENT.

State Space

CUR CPU Occupation Rate CURt = T t
CPU/Tepoch

CPL Cumulative performance loss CPLt =
CPLt−1∗(Tcum−Tepoch)+PLt∗Tepoch

Tcum

LV F V/F setting in the last epoch LV F ∈ |A|

C. QL-based Power Management Formulation

1) Overview and Objective: We first illustrate how to for-
mulate the basic part of our power management for a multicore
processor, as shown in Fig. 1. Per-core DVFS is achieved by
one shared QL agent to leverage the working divergence among
cores. At each learning epoch t, a feature monitor observes
the runtime features of cores to compute state st and reward
rt−1. After Q-values are updated, the agent selects action at
following ϵ-greedy strategy. The learned policy is represented
in a tabular format (Q-table), where Q-values for each state-
action pair are stored.

The objective of our QL agent is to reduce the energy-delay
product (EDP) of the multicore processor while satisfying user-
defined performance requirements, e.g., 5% or 10% limitation
of performance loss. After the primary objective is achieved, we
further introduce transfer learning to deal with the significant
variances of workloads during the online control process, which
will be discussed later in Section III.

2) State Space: In this paper, we extract three features of
cores to construct the state space S. Definitions and calculation
functions are shown in Table I. CUR uses CPU time to reflect
the core utilization degree in epoch t. CPLt represents the
current performance loss in a cumulative way, where Tcum is
the execution time accumulated since the start of learning. PLt

denotes the discounted instruction counts (∆IC) when cores
work at a low V/F level with respect to the highest V/F level.

We monitor multiple state features periodically to allow the
learning agent to obtain comprehensive information about the
cores, which improves the efficiency and robustness of the QL-
based method. After three features are calculated, an integer
state ID is assigned through a discrete partition.

3) Reward Function: We divide our objective into two parts
to formulate the reward function: energy minimization renrgt

and performance target satisfaction rperft .

!

!

Fig. 2. CPU occupation ratio (CUR) variances.

Energy reward renrgt represents the power saving under the
current V/F level with respect to the highest V/F level at epoch
t, which is define as

renrgt = 1− Pft

Pfmax
(1− PLt)

, (4)

where Pft is the power of the core working at frequency ft.
Since the low frequency causes the performance loss at epoch t,
we multiples Pfmax

with (1−PLt) to keep identical executed
IC when computing the power loss under different V/F levels.

Performance reward rperft uses CPLt to evaluate the per-
formance satisfaction degree at epoch t, which is defined as

rperft =

{
−PF ∗ PLt for CPLt > TPL,

0 otherwise.
(5)

When CPLt is larger than the target performance loss TPL
indicating the required performance is not satisfied, we assign
rperft a large negative value by multiplying PLt with a penalty
factor PF , guiding the learning agent away from the undesired
cases in the near future. Otherwise, rperft equals 0. As a result,
reward rt is calculated as

rt = renrgt + rperft . (6)

III. SMART TRANSFER LEARNING-BASED
REINFORCEMENT LEARNING FOR RUNTIME POWER

MANAGEMENT

A. Motivation of Transfer Learning

During our online power control process, the learning agent
will encounter different levels of workload variances. Fig. 2
shows the CPU occupation ratio (CUR) variances of 5 ap-
plications under periodical monitoring windows. In an overall
view, the execution patterns vary obviously among different
applications, which is reflected in divergent CUR levels and
changing frequencies. For intra-application variances, most of
them are light-weighted and regular, which can be handled by
QL agents with automatic state monitoring and policy revis-
ing. Whereas for inter-application variances, execution patterns
such as feature levels diverge significantly when application
switching happens. If we directly reuse the policy learned by
previous applications neglecting the application variances, the
learning efficiency is degraded by 9.4% averagely compared
to the self-learned policy, as shown in Fig. 3. Here, the self-
learned policy denotes learning the policy from scratch without
adopting previous experiences. The suboptimality induced by
inter-application variances calls for relearning process to evict
the inappropriate knowledge, which is highly time-consuming.
Therefore, most existing works introduce transfer learning to

Fig. 3. Efficiency of self-learned policy and cholesky-learned policy.

Fig. 4. State space occupation heatmap.

accelerate or remove the relearning process. However, the sub-
optimality is actually not eliminated and is even compromised
for acceleration. Considering the unsolved gap, we propose
a variance-aware and efficiency-guaranteed transfer learning-
based approach for runtime power management.

To quantitatively analyze the factors that influence the suc-
cess of transfer learning, we evaluate the inter-application
discrepancy using the degree of overlap in the state space. We
display the state space occupation map in Fig. 4, where the
color values denote the visited times of corresponding state-
action pairs. We observe the two applications, cholesky and
fmm, occupy distinct state locations in most instances with a
small quantity of overlapped cases. When application switching
happens, the existence of the non-overlapping state space means
the learning agent visits new states that are not experienced
while executing the previous applications. This discrepancy
requires new exploration, and ignoring the issue is bound to
cause suboptimal learned results. As for the overlapping state
space, there exist contradictory and suboptimal cases due to
different execution and transition patterns of the applications.
In more detail, for an identical state s, the policy learned from
the previous application selects ap as the best action, while
the new application expects an to achieve larger rewards. We
define a case as contradictory when the difference between ap
and an under the same state s exceeds |A|/2; otherwise, the
case is recorded as a suboptimal case.

We count the ratio of the three cases between cholesky and
other applications. There are 49.52% overlapping states on av-
erage. Among these overlapping states, the suboptimal ratio and
contradictory ratio are 58.98% and 14.48%, respectively, which
explains the suboptimal results shown in Fig. 3. In summary,
around 50% overlapping ratio indicates a substantial reusing
space for knowledge transfer to accelerate the learning process.
Nevertheless, around 15% contradictory ratio emphasizes the
necessity of wise transfer to guarantee the learning efficiency.
Therefore, we propose a novel and smart transfer approach with
satisfying abilities to deal with the above two issues.

B. Overview

Fig. 5 shows the overview of our proposed STQL-based
power management. The QL agent illustrated in Section II-C
is reserved as the basic QL part. Moreover, an expert policy is

!

!

Fig. 5. Overview of the STQL-based power management.

introduced to enable knowledge transfer. In the expert policy,
best action BA, visited time V T , and explored degree ED
are recorded for each state, where BA denotes the action with
maximum Q-value, V T is a counter recording the accumulated
time that the learning agent visits the state, and ED reflects
the exploration expertness. The policy contention detection
mechanism distinguishes the contradiction between the current
Q-table and the expert policy and updates the expert policy
when a contradictory case happens. The action selector makes
decisions based on the Q-table and transferred knowledge.

In our approach, past knowledge is formulated as an ex-
pert policy. Compared with the state-of-the-art transfer-based
methods, where a complete Q-table is reserved for transfer, our
proposed method largely saves memory overhead in a concise
representation way along with extra guidance (V T and ED)
for wise reuse.

C. Policy Updating and Contradicting Checking

The local and expert policies updating mechanism is illus-
trated in Algorithm 1. At a learning epoch t, the basic QL
part computes the current state ID st and the reward rt−1.
Then the Q-value Q(st−1, at−1) is updated according to Eq. (1)
(Line 2-4). If the learning agent is informed that an application
exchange happens, the expert policy extracts knowledge from
the latest Q-table and resets the Q-table afterward (Line 5-
7). Otherwise, we check the contradiction between the local
and expert policies to decide whether to evict the outdated
knowledge of the expert policy (Line 9-12). Two contradiction-
checking conditions are defined: 1) the best action of the
expert policy differs from that of the local policy (expert
policy[st−1].BA ! = abest); 2) the explored degree of the expert
policy is less than or equals that of the local policy (expert
policy[st−1].ED <= ED(st−1)). Either of the two conditions
will trigger an update of the expert policy.

D. Transfer-based Action Selecting

We follow the strategy illustrated in Section II-B to decide
whether to explore or exploit. If the transfer enabled flag is true,
we can exploit both the expert policy and the local policy to
select actions. Since the direct reuse of the previous policy can
lead to severe suboptimality, as shown in Fig. 3, we define two
boundaries to limit the adoption ratio of the expert policy: 1)
expert policy[st].ED > ED(st); 2) V T (st) < |A|. In this way,

Algorithm 1 Policy Updating Algorithm
Input: last state st−1, last action at−1, current state st,

reward rt−1, Q-table, expert policy.
Output: Q-table, expert policy.

1: while at learning epoch t do
2: st = compute stateID()
3: rt−1 = compute reward()
4: Q(st−1, at−1) = (1 − α)Q(st−1, at−1) + α[rt−1 +

γmax
a′

Q(st, a
′)]

5: if transfer enabled then
6: expert policy = extract policy()
7: reset Qtable()
8: else
9: abest = argmaxaQ(st−1)

10: ED(st−1) = get explored degree(st−1)
11: if expert policy[st−1].BA ! = abest or

expert policy[st−1].ED <= ED(st−1) then
12: update expert policy(st−1)
13: end if
14: end if
15: end while

we tend to reuse the expert policy that has a higher expertness
level at the early time after application switching occurs. As the
learning progresses, the local QL agent accumulates knowledge
and checks the contradiction with the expert policy. Gradually,
the local policy is forced to take the lead in choosing actions.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

We evaluate our proposed methods in JADE simulator [15]
with power model based on McPAT [16]. We assume that
each processor has multiple ARM-v8 cores with three levels
of caches. The L1 and L2 caches are private, and the L3 cache
is shared. The L1 instruction and data caches are both 64 KB
and 4-way associated, and the L2 cache is 256 KB and 8-
way associated. The L3 cache is 16-way associated with a 2
MB capacity. The main memory is 8 GB. There are five V/F
levels available in the system: 0.86V/2.8GHz, 0.78V/2.4GHz,
0.7V/2GHz, 0.64V/1.4GHz, 0.54V/1.2GHz. The assumed V/F
levels follow the linear relationship in [17]. The simulator uses
realistic applications from the COSMIC benchmark suit [18].

B. Baseline Methods

1) Direct Transfer (DT): DT is a simple transfer method that
uses the learned policy from the source task as the initial policy
of the target task. In transfer-based QL, the Q-table learned by
the previous application is directly reused as the initial policy
when a new application comes.

2) Similar Transfer (ST): Similar transfer (ST) is a conser-
vative and pervasive way to reuse knowledge from similar states
in past tasks [12], [14], [19]. One of the primary challenges in
ST is to design a similarity function sim func() and transform
the knowledge from the past tasks to the target task. After

!

!

sim func() is constructed, we select actions according to the
following mechanism:

a =

{∏
past(s) sim func(s) ∈ Spast,

ϵ− greedy(
∏

new(s)) otherwise,
(7)

where Spast denotes the state space of past tasks. In our
evaluation, we define sim func() as s = sim func(s), which
is adopted in [14].

3) Intra-Task Learning Transfer (ITLT): ITLT is a state-of-
the-art method for runtime power management using transfer
learning [10]. In ITLT, transferred knowledge is gathered from
adjacent states. When task changes happen, the learning agent
follows three steps to conduct ITLT: 1) find explored states
from neighbors; 2) compute weights according to the distance;
3) add the weighted Q-values of the explored states to the Q-
value of the current state.

C. Learning parameters

The values of learning parameters of our proposed STQL-
based method are listed as follows:

• learning rate: α = 0.9;
• discount factor: γ = 0.1;
• penalty factor in reward: PF = 20;
• initial exploration rate: ϵ0 = 1.0;
• state feature partition factors:

– CUR partition: 0.2, 0.5, 0.8
– CPL partition: -0.02, -0.01, -0.005, 0.005, 0.01, 0.02

• state count: |S| = 140
• action count: |A| = 5
• control period: Tepoch = 1ms
• target performance loss: TPL = 10%

D. Efficiency of QL-based Power Management

We compare our proposed QL-based method with a
prediction-based method (LVP), a previous QL-based method
(QMapper) [20], and an offline-based method (OL) to show the
advantage of our QL in runtime power management. Last value
prediction (LVP) predicts the core’s CPU time (T t+1

cpu) in the
next epoch equals the CPU time (T t

cpu) in the current epoch,
and the target PL (TPL) is expected to be reached in the next
epoch. Based on the prediction, we compute the frequency to
be selected at the next epoch (ft+1). QMapper only uses CUR
to construct the state space. OL trains a well-learned policy
using abundant applications offline, which is usually treated
as Oracle in imitation learning or reinforcement learning [21].
Here, to evaluate the efficiency of an offline-learned policy for
an unknown application, we train the policy using our proposed
QL-based method, excluding the unknown application.

As shown in Fig. 6, our QL can achieve around 29.7% and
38.3% EDP reduction on 4-core and 8-core systems, respec-
tively, which is 7.3% and 8.8% higher than QMapper. The
improved results indicate the advantage of combining multiple
state features as state space. QL also outperforms OL by 3.7%
and 5.8%, which further corroborates our motivations to adopt
transfer learning (TL) for unpredictable variances. If Oracle
itself cannot achieve optimal results, the methods supervised by

(a) 4-core

(b) 8-core

Fig. 6. Normalized EDP of the 4-core and 8-core systems.

Oracle with the objective to approximate Oracle are bounded to
be suboptimal. LVP achieves minimal EDP improvement due
to its worst capability to adapt to dynamic workload variances.

E. Efficiency of STQL-based Power Management

In this subsection, we compare our proposed STQL-based
method with the baseline methods: scratch, DT, ST, and ITLT.
When an application change happens, the scratch-based method
resets the learning parameters and initializes the policy.

1) Early stage of TL: We evaluate the EDP improvement
at the early stage when transfer learning is enabled to present
the acceleration profits brought by different TL-based methods.
When application switching happens, TL is desired to reuse
the accumulated knowledge from the past task and achieve an
appreciable EDP reduction at a fast speed.

Fig. 7(a) shows the averaged EDP results of the first iteration.
X-barnes denotes that application barnes is executed after
application X is executed for several iterations. On average,
all the transfer-based methods achieve higher EDP reduction at
the early stage compared with scratch. DT accepts the largest
portion of policy learned by the previous application. Hence,
DT can reduce EDP at a fast speed when the overlapping state
ratio is high, such as fft-barnes and fmm-barnes. However,
due to the existence of suboptimal and contradictory cases,
directly adopting the knowledge from these cases can restrict
the reducing pace instead, such as lu-barnes. ST only transfers
the policy of overlapping states between the two applications.
Since new exploration only happens in non-overlapping states,
the ST agent is trapped in wrong decisions which are made
by the previous policy. Hence, ST suffers largely from con-
tradictory cases, as shown in fft-barnes and lu-barnes. As for
ITLT, transferred knowledge is from adjacent states, which is
more aggressive than ST, resulting in a higher reuse ratio for
acceleration. Nevertheless, the harmful effect brought by the
contradictory case is exacerbated as well, such as lu-barnes and
water-spatial-barnes. Unlike the speedup-intended methods, our
proposed STQL reserves the property of ST for acceleration and
boosts the ability to distinguish different kinds of state cases
for efficiency guarantee. Although our STQL compromises

!

!

(a) Early stage when TL is enabled (Acceleration). (b) Later stage when TL is enabled (Learning efficiency). (c) Effective Speedup of TL-based methods.

Fig. 7. Efficiency of STQL-based power management.

acceleration profits for efficiency enhancement, it still achieves
appreciable EDP improvement over scratch, 8.6% on average.

2) Later stage of TL: Despite the learning speed, the sub-
optimality of the learned policy after transferring is also a
significant concern. Therefore, we evaluate the EDP improve-
ment in the later stage to display the learning efficiency of the
measured TL-based methods, expecting the extra introduction
of TL not to harm the learned results. Fig. 7(b) shows the
average EDP from iteration 5 to 10. Since DT, ST, and ITLT
cannot deal with the suboptimal and contradictory cases, their
EDP reduction is worse than scratch in some applications,
no matter how fast they reduce the EDP at the early stage.
The contradiction-checking mechanism in our method takes
effect after several learning epochs when the local policy has
accumulated some knowledge. On average, STQL achieves
39.5% EDP reduction in the later stage, 9% and 6.2% higher
than ST, ITLT, respectively.

3) Effective Speedup: To quantitatively measure the degree
of acceleration, we calculate the iteration number when the
EDP is reduced under a threshold. The converged threshold is
defined as a standard EDP level achieved by scratch plus 1% of
the standard level. Then, we define the effective speedup as the
inverse of the converged iteration number, as shown in Fig. 7(c).
Among various kinds of applications, STQL can achieve around
1.5x speedup on average, while in fmm, the speedup can reach
up to 2.1x, which is 2.3x of ITLT. The speedup of ST and
ITLT is less than 1, indicating the methods can not reach
the scratch level and cause suboptimality in learned policies.
Since our effective speedup is measured in iteration number, the
saving time equals speedup multiplied by the execution time for
one iteration, whose value is very considerable, especially for
complex applications.

F. Overhead Analysis

In this subsection, we analyze the overhead of our proposed
method. The power and performance impact of the basic QL is
minimal since the overhead is mainly caused by calculating the
state, reward, and Q-value. We execute our STQL-based DVFS
control on one core. The energy consumption for updating
Q-values and selecting actions is around 0.05% to 0.11% of
the total energy consumption for finishing the task, including
the application execution and STQL-based control, while the
execution time only occupies around 0.19% to 0.32% of the
total execution time. The major overhead is from memory
occupation. Around 5.5KB of memory is required to store a Q-
table with a size of 140x5. An expert policy in STQL introduces
an extra 1.6KB memory overhead, where we only store int

values in the expert policy to save the memory cost. Compared
with ITLT, our method saves around 3.9KB cost.

V. CONCLUSION

In this paper, we propose a STQL-based approach for
runtime power management. Transfer learning with contradic-
tion checking is enabled when significant workload variances
happen in the systems. Compared to state-of-the-art TL-based
methods, our proposed approach can accelerate the learning
process while guaranteeing learning efficiency at the same time.

ACKNOWLEDGEMENT

This work is partially supported by HKUST(GZ) and AC-
CESS.

REFERENCES

[1] H.-Y. Cheng, J. Zhan, J. Zhao, Y. Xie, J. Sampson, and M. J. Irwin, “Core
vs. uncore: The heart of darkness,” in 52nd DAC. IEEE, 2015.

[2] T. Kolpe et al., “Enabling improved power management in multicore
processors through clustered DVFS,” in DATE. IEEE, 2011.

[3] V. Pallipadi et al., “The ondemand governor,” in Linux Symposium, 2006.
[4] Y. Tan et al., “Adaptive power management using reinforcement learning,”

in IEEE/ACM ICCAD-Digest of Technical Papers, 2009.
[5] H. Shen et al., “Achieving autonomous power management using rein-

forcement learning,” ACM TODAES, 2013.
[6] R. A. Shafik et al., “Learning transfer-based adaptive energy minimization

in embedded systems,” IEEE TCAD, 2015.
[7] F. M. M. ul Islam et al., “Task aware hybrid DVFS for multi-core real-

time systems using machine learning,” Information Sciences, 2018.
[8] R. Ye et al., “Learning-based power management for multicore processors

via idle period manipulation,” IEEE TCAD, 2014.
[9] Z. Tian et al., “Collaborative power management through knowledge

sharing among multiple devices,” IEEE TCAD, 2018.
[10] D. Jenkus et al., “Runtime energy minimization of distributed many-core

systems using transfer learning,” in DATE. IEEE, 2022.
[11] L. A. Celiberto Jr et al., “Using transfer learning to speed-up reinforce-

ment learning: a cased-based approach,” in 2010 Latin American Robotics
Symposium and Intelligent Robotics Meeting. IEEE, 2010.

[12] J. L. Carroll et al., “Fixed vs. dynamic sub-transfer in reinforcement
learning.” in ICMLA, 2002.

[13] F. Fernández et al., “Probabilistic policy reuse in a reinforcement learning
agent,” in AAMAS, 2006.

[14] M. E. Taylor et al., “Behavior transfer for value-function-based reinforce-
ment learning,” in AAMAS, 2005.

[15] R. K. V. Maeda et al., “JADE: A heterogeneous multiprocessor system
simulation platform using recorded and statistical application models,” in
AISTECS, 2016.

[16] S. Li et al., “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO, 2009.

[17] J. Henkel et al., “New trends in dark silicon,” in Proc. DAC, 2015.
[18] Z. Wang et al., “A case study on the communication and computation

behaviors of real applications in NoC-Based MPSoCs,” in ISVLSI, 2014.
[19] M. G. Madden et al., “Transfer of experience between reinforcement

learning environments with progressive difficulty,” Artificial Intelligence
Review, 2004.

[20] A. Monteiro et al., “Qmapper: Dynamic power and performance manage-
ment in virtualized web servers clusters,” in IEEE Eighth LADC, 2018.

[21] U. Gupta et al., “A deep q-learning approach for dynamic management of
heterogeneous processors,” IEEE Computer Architecture Letters, 2019.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

