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Abstract—Integrated circuit designs are evaluated at various
corners defined by choices of the design and process parameters.
Considering the large number of corners and the simulation cost
of covering all the corners of a large design, it is desirable
to identify a subset of the corners that can potentially expose
corner case bugs. In an integrated analog coverage management
framework, this choice may be influenced by those corners that
take one or more component analog IPs close to their individual
specification boundaries. Since the admissible state space of an
analog IP is multi-dimensional, the same corner may not reach
the extreme behaviors for each attribute of the specification, and
one needs to identify a subset that covers the extremality. This
paper shows that the underlying problem is NP-hard and presents
an automated methodology for selecting the corners. A formal
analog coverage specification is leveraged by our algorithm, which
uses a Satisfiability Modulo Theory (SMT) solver to identify the
appropriate corners from the output of multiple Monte Carlo
(MC) simulations. The efficacy of the proposed approach is
demonstrated over industrial test cases.

I. INTRODUCTION

The design and verification of Analog and Mixed-signal
(AMS) IPs and their integration into System-on-Chip (SoC)
designs follow a bottom-up approach. The basic IP components
are designed, verified, and then hierarchically integrated into
bigger components, all the way up to the SoC level [1]–[3].
Today, we seek the reuse of design IPs in multiple designs,
facilitated by the seamless integration of IPs in new SoCs with
incremental verification needs.

The feasibility of covering all IP-level simulation coverpoints
decreases as one goes up the design hierarchy. When IP-level
corners are not exercised post IP integration, corner-case bugs
are missed in pre-silicon validation and show up during post-
silicon validation, where it is significantly more expensive to
fix. Moreover, a bug caught in later stages may invalidate
a portion of verification results that have been collected so
far, and consequently, many verification steps may have to be
repeated before the final sign-off of the design. Researchers
have demonstrated methodologies to find a set of design
parameter values that may lead to a faulty operation of the
design. For example, the approach presented in [4], [5] uses
Bayesian optimization for searching for such points of failure.

Several researchers have targeted the challenges faced during
IP integration phase. An XML-based language format, Analog
Specification Description in XML (ASDeX), was proposed
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in [6] to describe the specification of analog circuits along
with functional behaviours, testbenches, and simulation settings
for enabling automatic validation of IPs. IEEE 1685 IP-XACT
standard [7] has been proposed to facilitate such IP integration.
It offers the scope of describing meta-data of the IPs and their
interconnections in a structured fashion in an XML format.
The newer versions of the standard have been extended to
include AMS IPs, power management statistics in the form
of Common Power Format (CPF) and Unified Power Format
(UPF), descriptions of area for physical design planning, etc.
[8] elaborates on how IP-XACT can be used during the
integration phase of industrial designs, while [9] fixes issues
of parameter referencing that may arise towards re-usability of
IPs.

Designers and verification engineers rely on random (or
constraint-random) simulation environments that carry out mul-
tiple simulations by randomly choosing input parameters from a
given state space. One such widely practised technique is Monte
Carlo simulation [10]. A drawback of this technique is that less
probable corners are missed, and out of the randomly chosen
input vectors, many may not cause extremal output responses
of the circuit.

We believe that recent work on analog coverage manage-
ment [11]–[13] can be utilised effectively in this context to
judiciously choose the coverage targets post IP integration.
This paper proposes an approach that utilises the coverage
data available from simulations at a lower level of the design
hierarchy for shaping the coverage plan at higher levels of the
design hierarchy. The main contributions of this paper are as
follows:

1) We address the problem of leveraging the tests driving a
design IP to its extremal behaviours to choose the com-
binations of simulation and process parameters that are
necessary at the higher levels of the design hierarchy. The
Monte Carlo process parameter values are extracted from
the simulations selected on the basis of covering extremal
behaviours, and these values are used to run targeted sim-
ulations after IP integration to exercise the same cover
points. The proposed approach provides the formal basis
for choosing the right combination of parameter values for
exercising the coverage goals at the higher levels based on
the coverage information at the IP level.

2) We show that the underlying problem of choosing the
minimum set of tests that cover all the extremities is NP-
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hard. We provide a Satisfiability Modulo Theory (SMT)
formulation for finding the optimal solutions to the problem.

3) In some cases the number of corners needed to cover all
the extremities can be prohibitive, and hence one needs to
arrive at a tradeoff. We present a methodology where we
put an upper bound on the number of simulations (say k)
that can be run at the higher level of the design hierarchy.
If no solution to the SMT exists with a subset of k runs,
then the coverage targets are progressively relaxed until a
solution is found.

The rest of the paper is organised as follows. Section II
gives a formal description of the problem statement. Section III
proves the NP-hardness of the problem. Section IV presents our
methodology. Section V presents the results and Section VI
concludes the paper.

II. PROBLEM FORMULATION

We are given:

• X = {x1, x2, · · · , xp}: set of p Monte Carlo parameters
• S = {s1, s2, · · · , sn}: set of n Monte Carlo simulations

where each sj has end-time Tj .
• Γ : (X × S)→ R is a mapping, where Γ(xi, sj) denotes

the value of Monte Carlo parameter, xi, used in simulation,
sj .

• Xj =
{

Γ(x1, sj),Γ(x2, sj), · · · ,Γ(xp, sj)
}

: values of all
Monte Carlo parameters in simulation sj .

• ∆ =
{
Xj | ∀j ∈ [1, n]

}
• C = {C1, C2, · · · , Cm}: set of m coverpoints that are

monitored across the n simulations
• gi: goal condition for coverpoint Ci

A coverpoint captures a functional verification intent of the
design. The notion of coverpoints has recently been intro-
duced in the analog context [13], and it includes artefacts
like range, level, frequency, delay, etc. Since circuit behaviour
changes with different values of the Monte Carlo parameters, a
coverpoint may reach different values in different simulations
depending on the value of X , even if the stimulus is the same.

Definition 1. [Value of a Coverpoint w.r.t. a Simulation]:
The value function V for a coverpoint at an intermediate time
point of a simulation can be defined as a mapping, V : (C ×
∆ × R+) → R. For a specific simulation, sj , at time t, the
value of coverpoint Ci is given by V (Ci, X

j , t). The set of
values that Ci accumulates in sj over time is denoted as Cj

i =
{V (Ci, X

j , t) | ∀t ∈ [0 : Tj ]} �

Definition 2. [Coverpoint Extremality]: We define min(Cj
i )

and max(Cj
i ) as the extremal values for coverpoint Ci in

simulation sj . We further define Cmin
i and Cmax

i as the
minimal and maximal values respectively for coverpoint Ci,
across all simulations in S. �

Example 1. Fig. 1 shows the intervals [min(Cj
i ) : max(Cj

i )]
for three coverpoints, i ∈ [1 : 3], monitored over 10 simulation
runs, j ∈ [1 : 10]. For example, the coverpoint, C1, represents
the range of output voltage of an LDO. Fig. 1 shows the range
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Fig. 1: A pictorial description of the selection problem

IP
Step 1: Do MonteCarlo simulations
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Fig. 2: A step-wise representation of the process

of C1 in each simulation in red. Due to varying choice of X
in the 10 simulations, different values of Cj

1 are reported.

Definition 3. [Coverpoint Goal]: The goal of a coverpoint, Ci,
specifies the extremality of interest for that coverpoint, namely
min, max, or both. Simulation sj satisfies the coverpoint goal,
gi, if:
• gi is min and we have min(Cj

i ) = Cmin
i , or

• gi is max and we have max(Cj
i ) = Cmax

i , or
• gi is both, min(Cj

i ) = Cmin
i , and max(Cj

i ) = Cmax
i .
�

Our aim is to identify the smallest subset S′ ⊂ S that
collectively meets all coverpoint goals, gi ∀i ∈ [1 : m]. The
necessity of finding such a subset for a given design IP is
as follows. The combination of parameters used in the runs
of S′ represent the corners at which the IP exhibits extremal
behaviours with respect to the coverpoints of interest. When the
IP is integrated in a design, we wish to exercise these corners to
ensure that the IP does not exhibit any behaviour beyond these
extremities. It is not practical to run Monte Carlo simulations
at the higher levels of the design hierarchy due to the large
number of corners and the enormous cost of running analog
simulations. Therefore it is necessary to choose those corners
that exercise the extremal behaviours of the component IPs. If
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this can be enabled bottom-up, then the verification is focused
on the relevant corners. Fig. 2 shows the steps in the verification
flow.

In general, no single simulation will reach all the coverpoint
goals, and therefore we need a cover, as illustrated by the
following example.

Example 2. In Fig. 1, if the coverpoint goal is min for each
of C1, C2, and C3, then the minimum cover is {s1, s8}. If the
coverpoint goal for C1 and C2 is min and that for C3 is max,
then the minimum cover is {s1, s10}. If the coverpoint goals are
min for C1, max for C2, and both for C3, then the minimum
cover is {s1, s6, s8, s10}. �

III. COMPLEXITY OF FINDING A COVER

We define the SIMCOV problem as follows. We are given
a set, S = {s1, s2, . . . , sn}, of n simulations, and a set,
C = {C1, C2, . . . , Cm}, of m coverpoints monitored in those
runs. Let Iij = [aij , bij ] denote the range of values for Ci

covered in simulation, sj . We are also given the coverpoint
goal, gi ∈ {min,max, both}, for each Ci. The objective is to
find a minimum subset of S which covers all the coverpoint
goals. The following theorem establishes that this problem is
NP-hard.

Theorem 1. SIMCOV is NP-hard.
Proof: We establish a polynomial time reduction from the
set cover problem, SETCOV. Given a set of subsets, S =
{S1, S2, S3, · · · , Sn}, of a set, U , a minimum cover is a
minimum subset of S whose union is U .

For a given instance of the set cover problem, we create
an instance of the SIMCOV problem in polynomial time, as
follows. We define U as a set of coverpoint goals, that is,
each element of U represents a coverpoint goal. Each subset,
Si ∈ S, represents the set of coverpoint goals reached in
simulation si. Seeking a minimum cover of S is therefore the
problem of seeking a minimum set of simulations that reach
all coverpoint goals. Therefore SETCOV 4P SIMCOV, and since
SETCOV is known to be NP-hard, so is SIMCOV. �

IV. PROPOSED APPROACH

In this section we present an approach based on Satisfiabil-
ity Modulo Theory (SMT) and discuss progressive relaxation
approaches for finding a cover of acceptable size.

A. The basic SMT formulation
We prepare the SMT formulation of SIMCOV with n Boolean

variables, s1, s2, . . . , sn, where n is the number of simulations.
The truth of variable si represents the choice of si in the cover,
that is, si = 1 iff simulation Si is part of the cover, else si = 0.
Following are the basic SMT clauses.
• Condition 1: All goals must be satisfied

For each coverpoint goal, gp, we define a clause:

C(gp) :
∨
{si | simulation Si reaches gp}

Since all coverpoint goals must be reached collectively, we
add the following:

C1 :
∧

C(gp), ∀p ∈ [1 : m]

Algorithm 1: Solving with SMT
Input: Set of values of coverpoints across all simulations,

C = {Cq
p | ∀p ∈ [1 : n], ∀q ∈ [1 : m]},

set of goal conditions for all m coverpoints,
G = {g1, g2, g3, · · · , gm},
set of weights for all goal conditions W = {w1, w2, · · · , wm},
size of the optimal set k (< n)
Output: Subset of simulation run of size k

1 verdict = unsat
2 while verdict == unsat do

// Creating the SMT instance
3 SIMCOV = generate smt instance(n, m, k, C, G ,W )

// Solving the SMT instance
4 verdict = SIMCOV.solve()
5 if verdict == unsat then

// Find the unsat core
6 Uc = SIMCOV.unsat core()

// Find goal conditions in unsat core
7 GU = {gi|gi ∈ Uc, ∀i ∈ [1,m]}

// Relax the goal conditions
8 G = relax goal conditions(G,GU )

// Return the solution of SMT solver
9 return SIMCOV.solution

• Condition 2: Choosing a set of at most k(< n) simulations
In order to ensure that at most k simulations are chosen, we
add the following constraint:

C2 :
n∑

i=1

si ≤ k

In order to find the minimum cover, we iterate over k. There
are various ways to search the domain of k, including binary
search.

B. Relaxation Approaches

In a large design, the minimum cover may be prohibitively
large and simulating all the corners indicated by the cover may
not be feasible. In such cases, we need to relax the constraints
defining the cover, so that a smaller and acceptable cover is
obtained. Suppose we choose a feasible value of k and use the
SMT formulation with that value of k to discover that no cover
of size k or less exists. This section explains our approach in
such cases.

Modern SMT solvers are equipped with the ability to find a
minimal unsatisfiable core of an unsatisfiable SMT formulation.
Each unsatisfiable core consists of a minimal subset of clauses
that cannot be satisfied together. Resolving the unsatisfiable
cores is the key to relaxation. Suppose clause C(gi) belongs
to an unsatisfiable core, and without loss of generality suppose
the coverpoint goal, gi, is max. This means, C(gi) is a dis-
junction of simulation vectors that reach the maximum value
for coverpoint, gi. If we relax this, for example, to include
simulation, sk, that reaches at least 90% of the maximum value
for coverpoint, gi, then C(gi) gets enlarged to C(gi) ∨ sk.
Adding literals into clauses participating in an unsatisfiable
cores makes it eventually satisfiable. We propose the following
approaches:
• Choosing goal conditions to relax. We relax the goal con-

ditions present in the unsatisfiable core and continue the
search for a solution. If the core contains clauses for multiple
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unsat. core:

{g1, g2, g3}

unsat. core:

{g2}

sat

solution:{s4}

unsat. core:

{g1, g2, g3}

sat
solution: {s4}

unsat. core:

{g3}
unsat. core:

{g2, g3}

sat
solution: {s4}

sat
solution: {s2}

sat
solution: {s4}

relax g1 relax g3
relax g2

relax g2 relax g3relax g3

standard relaxation randomised relaxation

Goals: {g1, · · · , g4}
Sims.: {s1, · · · , s5}

Goals: {g1, · · · , g4}
Sims.: {s1, · · · , s5}

Fig. 3: Standard and randomised choice of relaxing goal
conditions (n = 5,m = 4, k = 1)

coverpoints, we may relax the goal conditions for all the
coverpoints, referred to as standard relaxation, or randomly
choose a coverpoint whose goal condition is to be relaxed,
randomised relaxation. In the latter option, we may also
explore multiple alternatives, leading to multiple solutions
that define a pareto-optimal front.

• Percentage and Absolute relaxation. The goal relaxation
criteria may be of two types, namely, percentage and ab-
solute relaxation. For example, consider a case where the set
{1, 0.98, 0.93, 0.89, 0.83, 0.78} represents the ordered set
of values of a coverpoint as seen across all n simulations.
The goal condition is to find all simulations that have hit the
maximum value. A percentage relaxation, say 10%, to this
goal condition translates to finding all simulations where the
value of coverpoint is ≥ 0.9. In absolute relaxation, the next
best value is considered. If absolute relaxation is used for the
same example, the goal condition will be modified to find all
simulations where the value of coverpoint is ≥ 0.98.

• Attaching weights to goals: Modern SMT solvers support
the assignment of weights to each clause [14]. Depending
on the criticality of the value of a coverpoint during the
integration phase, weights may be attached to the respective
goal conditions of these coverpoints.
Algorithm 1 contains the pseudo-code of the operations. Line

2-8 represents one epoch of the SMT instance. If unsatisfi-
able, the goal condition(s) present in the unsat core is(are)
relaxed. Another instance of SMT is created with the modified
goal conditions. Such epochs continue until a satisfiable SMT
instance is found. Fig. 3 shows the two scenarios; standard
relaxation where all goal conditions in the unsat core are
relaxed at once, and randomised relaxation where a randomly
selected goal condition of the unsat core is relaxed. Each arrow
represents one epoch with the SMT solver. While standard
relaxation follows a deterministic path and churns a single
solution, s4, randomised relaxation explores the search space
non-deterministically and offers a set of solutions, {s2, s4}.

V. EXPERIMENTAL RESULTS

We used Monte Carlo simulations on an industrial LDO
circuit from Texas Instruments to find a suitable cover following

the approach of Section IV-A. We have used Z3 solver [15]
as our SMT solver. The Monte Carlo simulations resulted in
n = 1300 simulation runs.

A total of m = 6 coverpoints were declared for computing
the steady-state values of some critical nets, namely,
ldo_1v8, ldo_3v0, supp_5v0, vbg, vref_0p6,
and vref_1p0. The coverage results from the 1300
simulations were collected.

At first, we aimed to find a cover with a single simulation,
that is, k = 1, where all coverpoint goals are max, and another
cover where all coverpoint goals are min. Solving the basic
SMT formulation, we found that none of these covers exist.
Therefore we need to use relaxation.
1) Table I shows the results from our approach when searching

for the corner with coverpoint goals as max. Each row
corresponds to a different configuration, as indicated in
Section IV-A.
• In Case #1 all the goal conditions present in the unsat

core were relaxed at once, that is, absolute relaxation
was followed, and all coverpoints carried equal weightage.
After multiple epochs of relaxation, the solver reported
sim-id 977 as the solution with k = 1. In a similar
way, the solutions for k = 2 and k = 3 were found
to be respectively the set of sim-id’s {283, 971} and
{162, 282, 971}.

• Case #2 is similar to Case #1 except that we associate
weights with coverpoints, thereby associating a preference
on relaxing coverpoint goals. Since the nets ldo_1v8
and ldo_3v0 were comparatively more critical than the
others in our application, higher weights were assigned
to the coverpoints associated with these nets. With this
modified preference, the solutions for k = 2 and k = 3
were found to be respectively the set of sim-id’s {374},
sim-id’s {283, 966}, and sim-id’s {283, 595, 974}.

• For cases where the goal conditions were selected ran-
domly from the unsat core, the solver reported different
solutions in each iteration. With a 5% relaxation, six
solutions were reported for k = 1 (Case #3) with the
weighted goal condition. Similarly, three and two covers
were reported for k = 2, and k = 3 respectively.

2) Table II reports the number of epochs, the time taken, and
the relaxation on each goal for arriving at the solutions of
Table I. For cases where standard relaxation was followed,
the relaxation values are integers representing the rank of
the value of the coverpoint at the last epoch. For example,
a relaxation by 3 for vref_0p6 in the first row signifies
that the coverpoint goal was relaxed 3 times and thus the
goal value at the last epoch is the 4th highest value of the
coverpoint among all 1300 simulations.

3) Table IV shows the maximum values of each coverpoint
across 1300 simulations. It also reports the maximum values
of the coverpoints in the simulations identified in Table I.
According to our requirements, we selected one solution
from Case#5, sim-id 972, as our simulation corner for
getting maximum values for all coverages. For the corner
with minimum coverage values, sim-id 417 was chosen with
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Configuration Result
(sim-id’s)

Case # type of
relaxation

relaxation
criteria

weights on
goal condition k = 1 k = 2 k = 3

1 standard absolute no weights attached 977 {283, 965} {162, 282, 971}

2 ” ” increased weight for
ldo 1v8, ldo 3v0 374 {283, 1242} {283, 595, 972}

3 randomised percentage,
5% ” 361, 363, 537,

792, 1224, 1245
{361, 622}, {363,
971}, {621, 971}

{361, 623, 971},
{360, 595, 971}

4 ” percentage,
0.05% equal weights 101, 1245 {283, 972}, {283,

974}, {283, 968}
{282, 595, 971},
{283, 595, 971},

5 ” ” increased weight for
ldo 1v8, ldo 3v0 972, 1224 {283, 974}, {283,

966}, {283, 965}
{283, 597, 972},
{164, 282, 971}

TABLE I: Results on LDO coverage results (n = 1300, m = 6)

Case Cover No. of
epochs Relaxation Time

Taken(s)

1
977 38 {28, 28, 0, 29, 3, 10} 156.6
{283, 965} 9 {5, 8, 0, 6, 2, 5} 17.6
{162, 282, 971} 4 {3, 3, 0, 3, 1, 3} 6.8

2
374 42 {41, 27, 0, 19, 3, 9} 164.3
{283,1242} 10 {7, 8, 0, 8, 3, 8} 29.2
{283, 595, 972} 4 {3, 3, 0, 3, 1, 3} 11.8

3

361 4 {0.05, 0.05, 0, 0.05, 0, 0} 463.2
363 4 {0.05, 0.05, 0, 0.05, 0, 0} 363.2
537 10 {0.05, 0.25, 0, 0.05, 0.05, 0.05} 1017.2
792 5 {0.05, 0.05, 0, 0.05, 0, 0.05} 436.4
1224 7 {0.05, 0.1, 0., 0.05, 0.05, 0.05} 959.1
1245 8 {0.05, 0.15, 0, 0.05, 0.05, 0.05} 1002.1
{361, 622} 3 {0.05, 0.05, 0, 0, 0, 0} 185.5
{363, 971} 3 {0, 0.05, 0, 0.05, 0, 0} 487.6
{621, 971} 4 {0, 0.05, 0, 0, 0.05, 0.05} 515.8
{361, 623, 971} 2 {0, 0.05, 0, 0, 0, 0} 488.7
{360, 595, 971} 2 {0, 0, 0, 0.05, 0, 0} 364.7

4

101 131 {0.0155, 0.0195, 0, 0.0185, 0.004, 0.0085} 273.2
1245 128 {0.015, 0.018, 0, 0.018, 0.0035, 0.009} 222.6
{283, 972} 70 {0.0065, 0.0065, 0, 0.01, 0.005, 0.0065} 83.1
{283, 974} 48 {0.003, 0.0065, 0, 0.007, 0.0025, 0.0045} 72.2
{283, 968} 49 {0.003, 0.0065, 0, 0.0075, 0.0035, 0.0035} 74.4
{282, 595, 971} 37 {0.006, 0.0035, 0, 0.0035, 0.002, 0.003} 53.1
{283, 595, 971} 22 {0.0005, 0.0025, 0, 0.0025, 0.002, 0.003} 26.3

5

972 111 {0.0155, 0.014 , 0, 0.0175, 0.0035, 0.006} 166.0
1224 111 {0.0175, 0.0125, 0, 0.0165, 0.0035, 0.006} 169.5
{283, 974} 50 {0.004, 0.0065, 0, 0.007, 0.0035, 0.0075} 80.5
{283, 966} 54 {0.0045, 0.0065, 0, 0.0055, 0.0035, 0.0065} 79.4
{283, 965} 65 {0.005, 0.0065, 0, 0.011, 0.0035, 0.006} 117.8
{283, 597, 972} 27 {0.0025, 0.002 , 0, 0.0035, 0.002, 0.003} 35.2
{164, 282, 971} 50 {0.009, 0.005, 0, 0.0045, 0.002, 0.004} 114.2

TABLE II: Time taken and goal relaxation incurred in reaching each solution. Relaxation values for goals given in the order of
{ldo_1v8,ldo_3v0,supp_5v0,vbg,vref_0p6,vref_1p0}.

Category signal min. value
(V)

max. value
(V)

IP level simulation
ldo 1v8 1.7205 1.8715IP level Monte Carlo of 1300 simulations ldo 3v0 2.3985 3.0625

Module level simulation
ldo 1v8 1.79 1.81Module level corners simulation (Base line)

Nominal, weak, strong, skewn, skewp process ldo 3v0 2.4 3.001
ldo 1v8 1.73 1.86Module level corner simulation with LDO block level

MC parameters from sim: 417 and 972 ldo 3v0 2.4 3.016

TABLE III: Hierarchical coverage analysis of LDO circuit
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net ldo 1v8 ldo 3v0 supp 5v0 vbg vref 0p6 vref 1p0

max. values
in 1300 sims. 1.8715 3.0625 5.4995 1.2435 0.6045 1.0105

sim-id 101 1.8435 3.0095 5.4995 1.2265 0.6035 1.0065
sim-id 162 1.7855 3.0485 5.4995 1.2085 0.5995 1.0015
sim-id 164 1.7855 3.0485 5.4995 1.2075 0.5995 1.0015
sim-id 282 1.7935 2.3985 2.4005 1.2495 0.6025 1.0085
sim-id 283 1.7935 3.0435 5.4995 1.2495 0.6025 1.0085
sim-id 360 1.8055 2.3985 2.4005 1.2155 0.6045 1.0105
sim-id 361 1.8065 2.9965 5.4995 1.2155 0.6045 1.0105
sim-id 363 1.8035 2.9955 5.4995 1.2155 0.6045 1.0105
sim-id 374 1.8105 3.0315 5.4995 1.2405 0.6015 1.0045
sim-id 537 1.8085 2.9835 5.4995 1.2195 0.6015 1.0015
sim-id 595 1.8365 3.0625 5.4995 1.1565 0.6015 1.0045
sim-id 597 1.8345 3.0595 5.4995 1.1555 0.6015 1.0045
sim-id 621 1.7985 3.0035 5.4995 1.2495 0.6015 1.0005
sim-id 622 1.7975 2.3985 2.4005 1.2495 0.6015 0.9995
sim-id 623 1.7975 3.0025 5.4995 1.2495 0.6015 0.9995
sim-id 792 1.7895 3.0255 5.4995 1.1955 0.6045 1.0045
sim-id 965 1.8625 2.3995 2.4005 1.1855 0.5995 0.9965
sim-id 966 1.8635 3.0015 5.4995 1.1855 0.5995 0.9965
sim-id 968 1.8665 3.0075 5.4995 1.1885 0.6015 0.9995
sim-id 971 1.8715 2.3985 2.4005 1.1935 0.6035 1.0045
sim-id 972 1.8705 3.0205 5.4995 1.1935 0.6035 1.0045
sim-id 974 1.8705 3.0195 5.4995 1.1925 0.6035 1.0045
sim-id 977 1.8295 3.0225 5.4995 1.2275 0.6015 1.0025
sim-id 1224 1.8395 3.0245 5.4995 1.2095 0.5995 1.0015
sim-id 1242 1.8555 2.3985 2.4005 1.2255 0.6005 0.9985
sim-id 1245 1.8545 3.0175 5.4995 1.2295 0.6025 1.0015

TABLE IV: Maximum values of coverages across different
simulation runs of the LDO as identified in Table I

a similar configuration and in a similar fashion.
Tables I and IV reveal the trade-off between the size of the
cover and the degree of relaxation on the coverage extremalities
to obtain a cover of that size. A comparison of the solutions
of Case-1 in Table I shows that restricting the value of k
(maximum number of simulations present in the solution cover)
to 1 limits the coverage of the extremalities. With k = 2, the
solver is able to find simulation ids containing better coverage
of the coverpoints. As compared to sim-id 977, better values for
ldo_3v0, vbg, and vref_1p0 were reported in sim-id 283,
while sim-id 965 improved the coverage values for ldo_1v8.
Similar conclusions can be drawn from the other cases. In
practice, the ability to find such pareto-optimal alternatives
is essential for balancing verification time with verification
coverage.

Table III illustrates another utility of our approach. The
second row shows the ranges of ldo_1v8 and ldo_3v0
at IP level. Once the LDO IP gets integrated with other IPs,
the module-level simulations across the process corners report
range of [1.79 : 1.81] for ldo_1v8. This reveals coverage
gaps of [1.7205 : 1.79] and [1.81 : 1.8715]. On carrying out two
module-level simulations with the LDO containing Monte Carlo
parameters from sim-id 417 and 972, the range gets enhanced to
[1.73 : 1.86], closing the coverage gap to some extent. Similar
outcomes can also be noticed for ldo_3v0.

VI. CONCLUSION

The task of choosing the simulation parameters for cov-
ering extremal behaviors of AMS design components is a
complex one when dealing with a design having multiple

analog components. We provide a formal basis for choosing the
parameter combinations by leveraging the coverage information
from component level Monte Carlo simulations, extracting the
parameter combinations with which extremal behaviors were
experienced, and then finding the minimum set of combinations
that cover all the extremalities. We believe that this is a useful
information in practice and our experiments show that this helps
in narrowing the coverage gap between IP-level simulations
in isolation, and in context when the IP is integrated in a
design. The proposed approach enables a hierarchical analytical
framework for coverage driven selection of simulation corners
in AMS designs.
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