
ImpactTracer: Root Cause Localization in
Microservices Based on Fault Propagation Modeling

Ru Xie∗†, Jing Yang∗‡, Jingying Li∗†, Liming Wang∗†
∗Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

†School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
{xieru,yangjing,lijingying,wangliming}@iie.ac.cn

‡Corresponding author

Abstract—Microservice architecture is embraced by a growing
number of enterprises due to the benefits of modularity and
flexibility. However, being composed of numerous interdependent
microservices, it is prone to cascading failures and afflicted by the
arising problem of troubleshooting, which entails arduous efforts
to identify the root cause node and ensure service availability.
Previous works use call graph to characterize causality relation-
ships of microservices but not completely or comprehensively,
leading to an insufficient search of potential root cause nodes
and consequently poor accuracy in culprit localization.

In this paper, we propose ImpactTracer to address the above
problems. ImpactTracer builds impact graph to provide a com-
plete view of fault propagation in microservices and uses a
novel backward tracing algorithm that exhaustively traverses
the impact graph to identify the root cause node accurately.
Extensive experiments on a real-world dataset demonstrate that
ImpactTracer is effective in identifying the root cause node
and outperforms the state-of-the-art methods by at least 72%,
significantly facilitating troubleshooting in microservices.

Index Terms—microservice, cloud-native, dependability, fault
modeling, root cause identification

I. INTRODUCTION

Microservice is gaining popularity as cloud computing
matures increasingly and cloud-native gets embraced by the IT
industry [1] [2]. Compared to monolithic applications, a mi-
croservice application boasts flexibility, scalability and agility
because it dismantles service into a collection of microservices
that can be developed and updated independently but interact
and share data via network to provide service as a whole [3].

However, all of the benefits come at the cost of a surge in the
number of microservices and an explosion of network com-
munications, producing a complex system and a formidable
troubleshooting task [4] [5]. In particular, mass and intricate
interaction of microservices allows a single fault to spread out,
cause cascading failures, and even render the whole service
unavailable, underscoring the urgent need of locating the root
cause node rapidly to ensure service reliability [6].

A number of methods have been proposed to identify the
root cause node in microservices. They use call graph to char-
acterize causality relationships of microservices and traverse
it to trace the root cause node that best explains observed
anomalies [7-11]. Unfortunately, their methods neither extract
complete causalities nor assess them comprehensively, which
further skews estimate of node “culpability”, misleads root
cause tracing, and ultimately results in poor accuracy.

In this paper, we aim to comprehensively evaluate node
contribution to the detected anomalies so as to precisely locate
the root cause node. We name our method as ImpactTracer
and give an overview of it in Fig.1.

ImpactTracer starts with anomaly detection that monitors
business golden indicators of microservices and uses Isolation
Forest [12] to identify outliers. Triggered by detected anoma-
lies, ImpactTracer proceeds to locate the culprit. To begin
with, it constructs impact graph to model fault propagation
in microservices, which is built by analyzing microservice
interaction during the period of fault spread and presents all
probable fault propagation paths. To comprehensively evaluate
the odds of fault propagation from one node to another, Im-
pactTracer incorporates multiple critical factors and produces
a single probability value. After that, starting from anomalous
nodes, ImpactTracer exhaustively traverses the impact graph
along reversed propagation paths to comprehensively evaluate
node culpability. Each node is given a suspicion score that
accumulates during that process. Finally, node with the highest
score is regarded as the culprit of the observed anomalies, or
the root cause node.

We conduct extensive experiments on a real-world dataset
to evaluate the effectiveness of our method. The results
demonstrate that ImpactTracer is superior in locating the
culprit microservice and improves accuracy by at least 72.73%
compared with the start-of-the-out methods.

In summary, we make the following contributions:
• We model fault propagation in microservices by giving

a complete view of possible propagation paths and com-
prehensively assessing the corresponding probabilities.

• We design a backward tracing algorithm that works on
the well-constructed model to accurately evaluate node
culpability and precisely locate the root cause node.

• We extensively evaluate our method and prove its effec-
tiveness and superiority in anomaly detection and root
cause identification.

Organization. The rest of this paper is organized as follows.
Section II introduces the background and our motivation. Sec-
tion III presents our approach of anomaly detection. In Section
IV, we elaborate our method of modeling fault propagation,
followed by a detailed description of the backward tracing
algorithm in Section V. Evaluation of ImpactTracer is shown
in Section VI. Finally, we conclude our paper in Section VII.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Fault Propagation Modeling Using Impact Graph Root Cause Identification based on Fault
Propagation Model

Performance Anomaly
Detection

trigger
Root Cause

Service B

rank 1：B

rank 2：A

rank 3：D

rank 4： F

rank 5： C

rank 6： E

Service Ranking

rank 1：B

rank 2：A

rank 3：D

rank 4： F

rank 5： C

rank 6： E

Service Ranking
Fault Propagation

Path Extraction

A

BC

DE F

A

BC

DE F

Edge Weight
Computation

Impact Weight Computation

feature 1 value
feature 2 value
feature 3 value
feature 4 value

(B,D)

feature 1 value
feature 2 value
feature 3 value
feature 4 value

(B,D)

feature 1 value
feature 2 value
feature 3 value
feature 4 value

(A,B)

feature 1 value
feature 2 value
feature 3 value
feature 4 value

(A,B)

…

feature 1 value
feature 2 value
feature 3 value
feature 4 value

(B,D)

feature 1 value
feature 2 value
feature 3 value
feature 4 value

(A,B)

…

feature 1 value
feature 2 value
feature 3 value
feature 4 value

(B,D)

feature 1 value
feature 2 value
feature 3 value
feature 4 value

(A,B)

…

Edge Feature Extraction

feature 1 value
feature 2 value
feature 3 value
feature 4 value

(B,D)

feature 1 value
feature 2 value
feature 3 value
feature 4 value

(A,B)

…

Edge Feature Extraction

Fault Propagation
Path Extraction

A

BC

DE F

Edge Weight
Computation

Impact Weight Computation

feature 1 value
feature 2 value
feature 3 value
feature 4 value

(B,D)

feature 1 value
feature 2 value
feature 3 value
feature 4 value

(A,B)

…

Edge Feature Extraction

Backward Trace of
Root Cause Node

Fig. 1. Overview of ImpactTracer

Recommendation

Frontend

Checkout

Productcatalog

Payment

Email

Currency

Ad
Cart

Shipping

Load Generator
Internet

Cache

HTTP
HTTP

invoke by gRPC
 HTTP communication

root cause service

anomalous service

fault propagation from upstream to downstream
fault propagation from downstream to upstream

invoke by gRPC
 HTTP communication

root cause service

anomalous service

fault propagation from upstream to downstream
fault propagation from downstream to upstream

Fig. 2. Service architecture of Online Boutique

II. BACKGROUND AND MOTIVATION

In this section, we introduce the microservice architecture
and the root cause localization problem. Previous methods and
their limitations are presented to better clarify our motivation.

A. Microservice Architecture

In a microservice-based application, service is decomposed
of multiple microservices that function independently while
communicating with each other to provide service to external
users. To coordinate all microservices, a central component
frontend is developed to receive user requests and return
response messages. Fig.2 shows architecture of a microservice
application Online Boutique. To handle an online request,
frontend invokes checkout, currency, etc. that further call other
microservices. We dub invoking and invoked microservices as
upstream and downstream microservices, respectively.

B. Root Cause Identification

Due to frequent interaction of microservices, a fault oc-
curring at one microservice can spread out and result in
performance degradation of others. Fig.3 shows mean response
time of a subset of microservices in Online Boutique. At times-
tamp t1, fault 1 occurs at adservice. Shortly, multiple other
microservices observe a prolonged response time. In order
to resume normal operation and ensure service availability,
developers need to locate and restore the culprit microservice
that causes widespread anomalies as soon as possible.

C. Challenges and Proposed Methods

It is nontrivial to conduct fault analysis in a system as large
and dynamic as a microservice application. Moreover, intricate
interaction of microservices makes it formidable to untangle
fault spread and locate the root cause node.

To facilitate root cause localization in microservices, previ-
ous works [7-11] adopt call graph to characterize interaction

Fig. 3. Mean response time of microservices over time

of microservices, in which an edge u → v represents u calls v
and therefore can be affected by v. Then, they traverse the call
graph along reversed edges to trace the culprit of the detected
anomalies. Various traverse algorithms are adopted by different
methods. MonitorRank [7], CloudRanger [8] and AutoMAP
[9] use random walk algorithms [13] in which the transition
probability from node u to v depends on metric correlation
of microservice v with that of anomalous nodes. In other
words, they assume nodes more correlated with anomalies
are more likely to be the culprit. MicroHECL [10] traverses
edges from anomalous nodes in the opposite direction to
search possible root cause nodes, which are further ranked on
metric similarity to the initial anomalous nodes. Microscope
[11] takes a more straightforward strategy that simply ranks
anomalous microservices according to metric similarity.

D. Motivations

Despite mitigating the troubleshooting problem, previous
works obtain poor accuracy due to the following limitations:

Limitation 1: Neglect essential fault propagation paths.
Tracing the root cause node in the “called-call microservice”
direction, previous works assume only downstream microser-
vices can affect upstream ones, overlooking the fact that faults
can also spread from upstream to downstream. In Fig.2, four
anomalous nodes are detected with cart being the root cause.
When a network failure (fault 3) occurs at cart, the upstream
frontend is affected and becomes anomalous. Then, through in-
vocations of frontend → ad and frontend → shipping, ad
and shipping are impacted. If we erase fault propagation paths
from upstream to downstream, we cannot explain anomalies
at ad or shipping, nor can we find the real culprit.

Limitation 2: Not comprehensively assess fault propa-
gation probabilities. When searching for potential culprits,
previous works use metric similarity or correlation to measure
the probability of fault spreading from one node to another.
However, such a method overlooks other factors that contribute

TABLE I
BUSINESS GOLDEN INDICATORS USED IN ANOMALY DETECTION

Indicators Definitions
Response rate Pct. of successfully received responses
Success rate Pct. of successfully handled requests

Mean response time Average time it takes to handle a request
Transaction count Total number of handled requests

and consequently misleads culprit tracing. For example, in
Fig.3, at t2, an anomay is detected at payment, with which
frontend has the most similar metric change pattern. However,
the real culprit is shipping, the least similar node to payment.

The above limitations combine to mislead culprit tracing
and result in poor accuracy in root cause localization. In this
paper, we give a complete view of fault propagation paths
(§IV-A) and comprehensively evaluate their probabilities (§IV-
B), facilitating accurate culprit identification (§V).

III. PERFORMANCE ANOMALY DETECTION

In highly dynamic microservice environments, service per-
formance has peaks and troughs even when no anomaly oc-
curs, making it challenging to distinguish real anomalies from
normal fluctuations. Considering that, we monitor multiple
business golden indicators (BGI) of microservices and adopt
decision tree-based Isolation Forest [12] instead of threshold-
based 3-sigma rule used in previous works to achieve high
accuracy and great adaptability in anomaly detection.

Business golden indicators are an effective way to monitor
health status of a microservice and spot problems. The indica-
tors we use are shown in Table I. Previous works [7] [9] mon-
itor and conduct anomaly detection on frontend alone because
of its role as the communication hub of microservices and a
checkpoint for service operation status. However, our analysis
on a real-world dataset demonstrates that not all anomalies
affect frontend. For instance, in Fig.3, when fault 2 occurs
at t2, frontend performs steadily and no anomaly occurs. In
case of missing any faults, we monitor all microservices and
apply Isolation Forest on collected data of each one.

When a series of outliers are detected in any microservice,
we determine that a performance anomaly has occurred,
caused by a fault somewhere in the service. Furthermore, for
each outlier a, an anomaly score (AS) is calculated as Equation
(1) to measure its deviation from the normal level.

AS(a) = BGIV alue(a)−

∑
t∈T

BGIV alue(dt)

length(T)
(1)

where BGIV alue(dt) represents the normalized value of
business golden indicators of a microservice at timestamp t
while T represents the period of time T before a occurs.

IV. FAULT PROPAGATION MODELING

When a performance anomaly is detected, ImpactTracer
proceeds to locate the culprit microservice where the fault
occurs initially and advances to compromise other nodes.
In this section, we construct an impact graph to provide
a complete view of possible fault propagation paths and a
comprehensive assessment of their probabilities.

Frontend

Checkout

Payment

Ad

Cart

Shipping

fault propagation from
downstream to upstream

fault propagation from
upstream to downstream

fault propagation from
downstream to upstream

fault propagation from
upstream to downstream

Fig. 4. Impact graph of fault 3

A. Extract Fault Propagation Paths

To handle a request, an upstream microservice u calls
downstream v that returns results, during which u and v affect
each other. On the one hand, faults at u, such as network
latency, can reduce the number of requests oriented to v,
causing anomalous transaction count. On the other hand, a
CPU or memory fault at v can result in prolonged response
time and lower success rate of both v and u. This means that
faults can spread from upstream to downstream and vice versa.

To capture all possible fault propagation paths, we collect
and analyze microservice invocations over a period of time
before the anomaly is detected, during which a fault occurs
and spreads across the service. We define this period as the
fault propagation time window (fpw) and adjust it according
to demand. We record the calling and called microservices of
each collected invocation and integrate all of them. Finally,
for each microservice, we obtain the number of calls initiated
and received by it, denoted as numCalling and numCalled
respectively. In addition, for a specific invocation u → v, we
mark the number of times it occurred in fpw as count(u,v).

With all the above information, we build a skeleton of the
impact graph to characterize interaction of microservices and
present all possible fault propagation paths during fpw. In the
impact graph, each microservice is represented as a specific
node and invocation u → v corresponds to both edge (u, v)
and (v, u) that represent the fault propagation paths from u
to v and v to u. Fig.4 shows the impact graph of fault 3
with fpw set to 13.2 s. Compared with Fig.2, Fig.4 does not
contain edges from checkout to cart or vice versa because
the corresponding invocation is not collected during fpw.

B. Compute Fault Propagation Probability

In the impact graph, an edge (u, v) represents impact of u
on v and embodies a fault propagation path from u to v. Of all
the nodes that might have an effect on v, various properties of
nodes produce varied strengths of impacts and consequently
disparate fault propagation probabilities, reflected on distinct
weights of edges in the impact graph. We introduce factors
that contribute to different impact intensities and our method
of calculating fault propagation probabilities.

Feature Extraction. For each edge (u,v), we extract four
features to characterize to what extent u can impact v.
• Node Anomaly Degree. Closely interconnected, v is subject

to performance anomalies at u. Usually, it is resilient and
can adapt to external disturbances, but only if the impact
is within the scope of self-adaptation. Therefore, the more
anomalous u is and the longer its impact persists, the more
likely v is affected. We define ADegree(u) to measure the
anomaly degree of u and calculate it as follows:

ADegree(u) =

max
t∈fpw

AS(dt) ∀t ∈ fpw,AS(dt) > 0

s× max
t∈fpw

AS(dt) ∃t ∈ fpw,AS(dt) = 0

(2)
where s is adjustable and ranges from 0 to 1. Nodes exhibit
abnormalities throughout fpw are highlighted because this
demonstrates an intense fault with profound impact.

• Node Activity Degree. An active node interacts frequently
with others, acting as a bridge in information transmission
and an agent in fault propagation, which makes it more
likely to impact others. We measure activity of node u with
the probability that node u appears in the shortest paths
between any other two nodes, as shown as Equation(3).

Activity(u) =
∑

p̸=u̸=q

σ(u)

σpq
(3)

σ(pq) and σ(u) represent the total number of all-pair
shortest paths and that of those passing through node u,
respectively.

• Intimacy. Intuitively, the more frequently u and v communi-
cate, the more likely u will affect v. We define Intimacy(u,v)
as follows to measure the closeness between u and v:

Intimacy(u, v) =
count(u, v)

numCalled(v)
(4)

It represents the proportion of invocation u → v in commu-
nications of v, measuring the importance of u to v.

• Similarity. According to previous works [7] [9] [11], if
the performance metrics of two microservices have similar
change pattern, it is probable that they affect each other. We
follow this philosophy and define Similarity(u, v) as:

Similarity(u, v) =
cov(BGI(u), BGI(v))

σBGI(u)σBGI(v)

(5)

It is derived from Pearson Correlation Coefficient [14] and
measures correlation between business golden indicators of
u and v. Similarity(u, v) ranges between -1 and 1, with a
greater absolute value indicating higher similarity.
Probability Computation. For edge (u,v), the above four

factors combine to determine impact of u on v and the
probability that the fault spreads from u to v. To incorporate
all the features to compute the final probability, we resort to
Principal Component Analysis (PCA) [15] which is widely
used in dimensionality reduction [16].

PCA “compresses” edge attributes contained in four feature
values nearly losslessly to a single weight value w(u,v) that
represents the probability of fault propagation from u to v. A
large w(u,v) indicates a high probability.

V. BACKWARD TRACE OF ROOT CAUSE NODE

Impact graph characterizes interaction of microservices,
modeling fault propagation throughout the service. Reverse
edges in the impact graph, we obtain a reversed impact graph
(RIG) in which an edge (u,v) with weight w(u,v) represents
that u is impacted by v, and specifically that anomaly at u is
propagated from v with probability of w(u,v).

Intuitively, for an anomalous node, if we recursively search
for nodes that might cause anomaly at it along edges of RIG,

we can locate the culprit of it. Our backward tracing algorithm
starts from anomalous nodes and exhaustively traverses RIG to
trace the root cause node that is most likely to be responsible
for the detected anomalies.

Suspicion Score. The basic idea of our approach is to give
each node a suspicion score (SS) that accumulates through the
traverse of RIG to estimate the probability of being the root
cause node. A large SS means high probability.

The key insights are that for node v: 1) the more links
v receives in RIG, the more likely it is to contribute to the
detected anomalies, therefore, the more likely v is the root
cause node. 2) links from nodes with high SS to v in RIG add
up suspicion of v because it might disseminate fault to those
nodes. 3) weight of an edge linking to v also matters because
it represents the likelihood that v is to blame. Therefore,
suspicion score of v can be calculated as Equation(6).

SS(v) =
∑

(u,v)∈RIG.edges

SS(u)× w∗
(u,v) (6)

where

w∗
(u,v) =

w(u,v)∑
(u,p)∈RIG.edges

w(u,p)

(7)

Note that we normalize edge weights to ensure that, for each
node, the sum of weights of its outgoing edge equals 1.

Comprehensive assessment of node suspicion. A fault
occurs at a node and spreads in the service through fault
propagation paths represented as edges of an impact graph,
finally leading to detected anomalous nodes. To trace the root
cause node, we simulate the reversed process of fault propaga-
tion by exhaustively traversing RIG and iteratively calculating
Equation(6) for each node to comprehensively evaluate node
suspicion. Matrix is used to accelerate computation.

For an application consisting of n microservices, the corre-
sponding RIG contains n nodes. Let M be the transition matrix
of n by n elements, each of which Mvu denotes the probability
that v causes an anomaly at u and can be calculated by:

Mvu =

{
w∗

(u,v) (u, v) ∈ RIG.edges

0 (u, v) ̸∈ RIG.edges
(8)

We use vector SSV = [ss0, ss1, · · · , ssn−1] to demonstrate
suspicious scores of n nodes. Furthermore, since our backward
trace starts from the detected anomalous nodes, we define a
seed vector Seed = [s0, s1, · · · , sn−1] where si = 1 for i ∈
[0, n) if the corresponding node is anomalous.

Then, the qth iteration of computing suspicion scores of n
nodes is defined as:

SSV (q) =

{
Seed ·M q = 1

SSV (q−1)M q > 1
(9)

Root cause node Identification. We iteratively calculate
Equation(9) until it reaches convergence to obtain the final
suspicion scores of all nodes. Finally, all the nodes are ranked
in descending order according to suspicion scores, with the
one top of the list determined as the root cause node. Alg.1
illustrates the backward tracing process. It takes a reversed
impact graph and a set of detected anomalous nodes as input
and returns a list of candidate culprits.

Algorithm 1 Backward Tracing Root Cause Node
Input: Reverse Impact Graph G, anomalous nodes V b, threshold δ;
Output: list of k candidate root cause nodes sorted by suspicion

score in descending order
1: n = count(G.nodes)
2: M = On×n, SSV = SSVt = Seed = O1×n

3: for (i,j) ∈ G.edges do
4: Mji = w∗

(i,j)

5: SSV = Seed ·M
6: while sum(|SSV − SSVt|) > δ do
7: SSVt = SSV
8: SSV = SSVt ·M
9: DescendingOrder(SSV)

10: return list of i for SSVi in SSV

Fig. 5. Results of Anomaly Detection

VI. EVALUATION

In this section, we conduct extensive experiments to evaluate
the effectiveness of ImpactTracer.

A. Dataset

The data we use comes from a real-world microservice
application based on Hipster-Shop [17], a widely used mi-
croservice benchmark. Different groups of faults are injected
into two identical testbeds and the generated data is collected
respectively (dataset-1 and dataset-2), each of which contains
over 20 million invocations of 10 microservices within 2 days.

B. Evaluation Metrics

To evaluate effectiveness of root cause identification, we use
two metrics already employed in previous works [5] [9] [10].

Top-k Accuracy (A@k) refers to the probability that the root
cause node is included at the top k of the result list. A great
A@k indicates an effective method.

Average Rank(AvgR) refers to the average rank of the root
cause nodes in the result list for all faults. The smaller AvgR
is, the more accurate the method is.

C. Effectiveness of anomaly detection

Fig.5 shows anomaly detection results of ImpactTracer
and the previous threshold-based method (TBM) [7] [9]. It
shows that ImpactTracer can detect faults with a higher fault
detection rate (FDR) of over 97% and fewer false alarms,
significantly improving fault detection accuracy.

Further analysis of the datesets demonstrates that only
48.6% of the injected faults (27 of 64) cause anomalies at
frontend, making TBM miss most of them. Moreover, rapidly
changing microservice environments further undermine effec-
tiveness of the rigid threshold-based method. On the contrary,
ImpactTracer monitors all microservices simultaneously and
uses adaptable Isolation Forest to detect anomalies in business

TABLE II
RESULTS OF ROOT CAUSE NODE IDENTIFICATION

Datasets Method A@1 A@2 A@3 AvgR

Dataset-1

ImpactTracer 67.7% 83.3% 91.7% 1.57
MonitorRank 8.3% 16.7% 25% 5.16
MicroScope 0 8.3% 8.3% 6.25

ImpactTracer(-p) 8.3% 50% 75% 3.33
ImpactTracer(s) 58.3% 66.7% 75% 2.50

Dataset-2

ImpactTracer 55.6% 66.7% 88.9% 2.22
MonitorRank 11.1% 33.3% 55.6% 4.88
MicroScope 0 22.2% 44.4% 5.66

ImpactTracer(-p) 44.4% 55.6% 66.7% 3.11
ImpactTracer(s) 44.4% 55.6% 55.6% 4.33

Fig. 6. A@k of different type of faults

golden indicators that are direct and potent demonstrations of
service health condition, contributing to accurate detection.

D. Effectiveness of root cause microservice identification

We compare ImpactTracer with classic MonitorRank [7]
and Microscope [11] and show the results in Table II.
Furthermore, to assess the contribution of fault propagation
modeling, we revise RIG by removing paths from upstream
to downstream microservices or by solely using similarity to
calculate fault spread probabilities. Results of Alg.1 on the re-
vised RIG are listed as ImpactTracer(-p) and ImpactTracer(s),
respectively.

From Table II we can draw the following conclusions:
Conclusion 1: ImpactTracer can accurately locate the

root cause node with high Top-k Accuracy and small AvgR.
As illustrated in Table II, ImpactTracer achieves A@1 of
67.7%, indicating that it is highly probable that the top of
the returned list is the real culprit. A@3 as high as 91.7% and
88.9% in the respective two datasets declare that we can find
the root cause node just by analyzing the top 3 microservices
of the returned list. Moreover, ImpactTracer achieves AvgR
of 1.57 and 2.22 on two datasets, respectively, meaning that
in the worst case, on average we only need to analyze 2.22
microservices before locating the real root cause node.

Conclusion 2: Fault propagation modeling plays a crit-
ical role in accurate root cause microservice localization.
For a fault, RIG characterizes all possible fault propagation
paths and their probabilities. If we erase edges from upstream
microservices to downstream ones, the corresponding fault
propagation paths are omitted, leading to incomplete search
in the backward tracing algorithm. As we can see from Table
II, compared with ImpactTracer, ImpactTracer(-p) decreases
A@1 by 87.74% and more than doubles AvgR in dataset-1.
In other words, complete modeling of fault propagation paths
increases overall A@1, A@2 and A@3 by 61.55%, 31.25% and
17.65%, respectively, significantly eliminating limitation 1.

Fig. 7. Root cause effectiveness with different fpw
Previous works regard similarity as the only factor that de-

termines fault spread. However, results in Table II underscore
the importance of taking several factors into consideration. As
shown in Table II, when similarity is only used to calculate
fault propagation probabilities (see ImpactTracer(s)), A@1,
A@2 and A@3 decrease by 15.38%, 18.75% and 17.65% on
average, respectively. It highlights the importance of anomaly
degree, activity and intimacy in fault propagation, as well as
effectiveness of our method in mitigating limitation 2.

Conclusion 3: ImpactTracer significantly outperforms
MonitorRank and MicroScope in locating root cause
microservice. In dataset-1, MonitorRank yields A@3 of 25%
and AvgR of 5.16, failing to locate root causes of most faults.
Microscope performs even worse. We attribute their poor
performance to the neglect of critical fault propagation paths
and the overlook of several critical factors that have an impact
on fault spread. Specifically, as we can see from Table II, on
dataset-2, ImpactTracer(s) improves A@1 by 75% compared
with MonitorRank, meaning we can improve the accuracy of
root cause localization by 75% only by working on complete
fault propagation paths. Similarly, results of ImpactTracer(-p)
and Microscope demonstrate the contribution of a comprehen-
sive assessment of fault propagation probabilities. In addition,
Fig.6 shows A@k of the three methods for different types of
faults. ImpactTracer performs equally well on different types
of faults and outperforms the other two methods.

In conclusion, our method combines the benefits of com-
plete modeling of fault propagation paths and an comprehen-
sive evaluation of the corresponding probabilities. It outper-
forms MonitorRank and Microscope by at least 72.73% and
exhibits a great superior in root cause localization.

E. Impact of Fault Propagation Window
When a fault occurs, we collect invocations during fpw and

construct an impact graph to assist in root cause localization.
So we evaluate the impact of fpw on the effectiveness of culprit
identification. As illustrated in Fig.7, A@k(k = 1,2,3) increases
and AvgR gradually decreases until fpw reaches 13.2s, when
ImpactTracer achieves optimal performance.

The observations are reasonable because: 1) longer fpw
means more microservice interaction during fault spread is
captured, making our model of fault propagation closer to the
fact. 2) as time passes, the impact of a fault recedes and fault
propagation peters out, so invocations beyond this time interval
(13.2s in our datasets) make no difference to the final result.

VII. CONCLUSION

In this paper, we propose ImpactTracer to solve the trou-
bleshooting problem in microservices from the perspective

of fault propagation modeling. ImpactTracer applies Isolation
Forest on business golden indicators to detect anomalies,
which is more accurate and adaptable than traditional meth-
ods. To identify the root cause microservice, ImpactTracer
constructs an impact graph to fully model the paths and
probabilities of fault propagation, laying the foundation for
the backward tracing algorithm that exhaustively traverses the
graph to trace the root cause node. Extensive experiments
and the results on real-world data prove the effectiveness
and superiority of ImpactTracer in culprit localization in
microservices.

REFERENCES

[1] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and V. Sekar,
“Gremlin: Systematic resilience testing of microservices,” in 2016
IEEE 36th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2016, pp. 57–66.

[2] P. Di Francesco, I. Malavolta, and P. Lago, “Research on architecting
microservices: Trends, focus, and potential for industrial adoption,” in
2017 IEEE International Conference on Software Architecture (ICSA).
IEEE, 2017, pp. 21–30.

[3] N. Kratzke and P.-C. Quint, “Understanding cloud-native applications
after 10 years of cloud computing-a systematic mapping study,” Journal
of Systems and Software, vol. 126, pp. 1–16, 2017.

[4] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
analysis and debugging of microservice systems: Industrial survey,
benchmark system, and empirical study,” IEEE Transactions on Software
Engineering, vol. 47, no. 2, pp. 243–260, 2018.

[5] G. Yu, P. Chen, H. Chen, Z. Guan, Z. Huang, L. Jing, T. Weng,
X. Sun, and X. Li, “Microrank: End-to-end latency issue localization
with extended spectrum analysis in microservice environments,” in
Proceedings of the Web Conference 2021, 2021, pp. 3087–3098.

[6] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, “Sage: practical
and scalable ml-driven performance debugging in microservices,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
135–151.

[7] M. Kim, R. Sumbaly, and S. Shah, “Root cause detection in a service-
oriented architecture,” ACM SIGMETRICS Performance Evaluation Re-
view, vol. 41, no. 1, pp. 93–104, 2013.

[8] P. Wang, J. Xu, M. Ma, W. Lin, D. Pan, Y. Wang, and P. Chen,
“Cloudranger: Root cause identification for cloud native systems,” in
2018 18th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID). IEEE, 2018, pp. 492–502.

[9] M. Ma, J. Xu, Y. Wang, P. Chen, Z. Zhang, and P. Wang, “Automap:
Diagnose your microservice-based web applications automatically,” in
Proceedings of The Web Conference 2020, 2020, pp. 246–258.

[10] D. Liu, C. He, X. Peng, F. Lin, C. Zhang, S. Gong, Z. Li, J. Ou,
and Z. Wu, “Microhecl: High-efficient root cause localization in large-
scale microservice systems,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 2021, pp. 338–347.

[11] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint performance issues
with causal graphs in micro-service environments,” in International
Conference on Service-OrientedComputing. Springer, 2018, pp. 3–20.

[12] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 eighth
ieee international conference on data mining. IEEE, 2008, pp. 413–422.

[13] G. F. Lawler and V. Limic, Random walk: a modern introduction.
Cambridge University Press, 2010, vol. 123.

[14] H. Abe and S. Tsumoto, “Analyzing behavior of objective rule evaluation
indices based on a correlation coefficient,” in International Conference
on Knowledge-Based and Intelligent Information and Engineering Sys-
tems. Springer, 2008, pp. 758–765.

[15] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Mullers,
“Fisher discriminant analysis with kernels,” in Neural networks for
signal processing IX: Proceedings of the 1999 IEEE signal processing
society workshop (cat. no. 98th8468). Ieee, 1999, pp. 41–48.

[16] J. Shlens, “A tutorial on principal component analysis,” arXiv preprint
arXiv:1404.1100, 2014.

[17] https://github.com/GoogleCloudPlatform/microservices-demo, 2022.

	Select a link below
	Return to Previous View
	Return to Main Menu

