
SAT-MapIt:
A SAT-based Modulo Scheduling Mapper

for Coarse Grain Reconfigurable Architectures
Cristian Tirelli

SYS Institute
Università della Svizzera italiana

Lugano, Switzerland
cristian.tirelli@usi.ch

Lorenzo Ferretti
Computer Science

University of California, Los Angeles
Los Angeles, United States

ferrelo@cs.ucla.edu

Laura Pozzi
SYS Institute

Università della Svizzera italiana
Lugano, Switzerland

laura.pozzi@usi.ch

Abstract—Coarse-Grain Reconfigurable Arrays (CGRAs)
are emerging low-power architectures aimed at accelerating
compute-intensive application loops. The acceleration that a
CGRA can ultimately provide, however, heavily depends on the
quality of the mapping, i.e. on how effectively the loop is compiled
onto the given platform. State of the Art compilation techniques
achieve mapping through modulo scheduling, a strategy which
attempts to minimize the II (Iteration Interval) needed to execute
a loop, and they do so usually through well known graph
algorithms, such as Max-Clique Enumeration.

We address the mapping problem through a SAT formulation,
instead, and thus explore the solution space more effectively than
current SoA tools. To formulate the SAT problem, we introduce
an ad-hoc schedule called the kernel mobility schedule (KMS),
which we use in conjunction with the data-flow graph and the
architectural information of the CGRA in order to create a set of
boolean statements that describe all constraints to be obeyed by
the mapping for a given II. We then let the SAT solver efficiently
navigate this complex space. As in other SoA techniques, the
process is iterative: if a valid mapping does not exist for the given
II, the II is increased and a new KMS and set of constraints is
generated and solved.

Our experimental results show that SAT-MapIt obtains better
results compared to SoA alternatives in 47.72% of the bench-
marks explored: sometimes finding a lower II, and others even
finding a valid mapping when none could previously be found.

Index Terms—CGRA, Mapping, SAT

I. INTRODUCTION

The constant growth of computational requirements in
everyday applications has increased the demand for high-
performance and low-power architectures, able to perform
compute-intensive tasks efficiently while at the same time
dealing with tight power/resource constraints.

While Application Specific Integrated Circuits (ASICs) ac-
celerators have been largely adopted in these scenarios due to
their efficiency, they are limited by fixed functionality. due to
their fine-grained structure.

Coarse-Grain Reconfigurable Arrays (CGRAs), which are
programmable architectures able to achieve high efficiency

This work was supported by the Swiss National Science Foundation under
Grants 200020-182009 and 200020-188613, and in part by the National
Science Foundation under Grants P2TIP2 199735.

D
at

a
M

em
or

y

PE PE PE

PE

PE PE

PE

PE

PE

Instruction Memory

Fig. 1: Example 3× 3 CGRA. Processing elements are
connected in a 2D mesh with near-neighbour topology.

with low power requirements [1] [2], provide a meet-in-the-
middle approach given their coarse-grain reconfigurability,
and hence have become popular in various domains such
as streaming and multimedia applications [1]–[6], as well as
medical ones [7]. A CGRA is a mesh of Processing Elements
(PE) organized in a two-dimensional grid; each PE contains
an ALU (Arithmetic-Logic Unit) and a number of internal
registers, and is connected to neighbors PEs according to its
mesh topology, and to main memory through memory lines.
Figure 1 shows the generic CGRA architecture targeted by our
methodology.

One of the fundamental challenges of CGRA exploitation
is the compilation process, i.e. the translation of high level
source code onto CGRA code, while taking advantage of the
parallelism offered by the architecture. To do so, a technique
called modulo scheduling is traditionally employed, which
constructs a DFG from an application loop body, and then
maps DFG nodes onto architecture PEs in an interleaved
manner so that nodes from different iterations coexist in the
same cycle, minimising the overall latency of each iteration.

Existing techniques for modulo scheduling, described in
Section II, rely mainly on heuristics to schedule, place and then
route instructions and data on the PEs. Herein, we propose to
address the mapping problem using SAT-MapIt, a SAT-based
formulation where data dependency, architectural constraints,

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

and schedule are expressed as Boolean constraints. A valid
mapping is then identified by determining if an assignment of
the variables exists to satisfy the constructed boolean formula.
We show that this technique is able to efficiently explore the
space of possible mappings better than SoA techniques, hence
producing high-performance schedules.

II. RELATED WORK

Existing methodologies for the CGRA mapping problem
can be divided in two main categories: the first using heuris-
tics, the second using exact solutions. Early works in the
first category include the method proposed by Mei et al. [8],
which formulates scheduling, placement, and routing problems
altogether, and proposes to solve it using simulated annealing.
Alternatively, in [9] an edge-centric approach to modulo-
scheduling was presented, where a schedule is generated by
first routing each edge in the dataflow graph, and placement
is addressed as a by-product of routing. In [10], EPImap
proposed to use both routing and re-computation to find a valid
mapping, by adopting an epimorphic (time-extended) graph
formulation.

Epimap’s performance was later improved by GraphMinor
[11] and REGIMap [12], by reducing the mapping problem to
the graph minor and max clique problem. In turn, [13] RAMP
authors have further refined REGIMap by explicitly modeling
and exploring various routing strategies and choosing the best
one for each given loop kernel. CRIMSON [14] then proposed
a randomized iterative modulo scheduling algorithm that ex-
plored the scheduling space more efficiently, and PathSeeker
[15] improved on [14] by analyzing mapping failures and
performing local adjustments to the schedule to obtain a lower
compilation time and a better quality of the solution.

In our experiments we compare our results to those obtained
by both RAMP [13] and PathSeeker [15]. These two works
had shown superior performance with respect to the earlier
methodologies mentioned above, and therefore represent the
current SoA of the modulo scheduling mapping problem. We
quantitatively compare our work to them, and show that SAT-
MapIt can better explore the scheduling space and get smaller
II (Iteration Interval) by using custom scheduling tables with
a SAT formulation.

A second category of approaches addresses the mapping
problem with Integer Linear Programming (ILP) or Boolean
Satisfiability formulations. In [16] the authors propose an ILP
formulation approach and prove the feasibility of mapping in
the given number of cycles. Similarly, [17] propose to use
a SAT solver instead of an ILP solver to identify a valid
solution. The work proposed in [17] represents a first effort
towards exact formulations using a SAT solver; however, it
is not capable of achieving a modulo scheduled solution. Our
SAT formulation is, to the best of our knowledge, the first to
propose an exact solution to the Modulo Scheduling problem,
and yet scale to Data Flow Graph sizes that were previously
only tackled via heuristics.

1

10

11

2

9

3

7 5

4

6

8

a)

1 3

4 5 10

6 7 11

2 8

9

1 3

4 5 10

6 7 11

2 8

9

Prolog
E
pilog

K
ernel

0

1

2

3

4

5

6

7

C = 0

C = 1

C = 2

Time

b)

2

8

1

3

9

4

10

56

11

7

C = 1 C = 2C = 0

c)

Fig. 2: a) Example Data Flow graph of a loop. b) Modulo
scheduling of the DFG on the left, highlighting the division

among Prolog, Kernel, and Epilog. The loop is unrolled
once; the first iteration is in blue, and the second, shifted by

II , is in green. c) Mapping example on a 2× 2 CGRA

III. BACKGROUND

In this section we provide the background needed to present
our methodology, and we illustrate it wherever appropriate
through a running example.

A. Compilation

In order to accelerate an application onto a CGRA, a
compute-intensive loop is identified in the application; the
identification can either be performed automatically via tech-
niques such as for example [18], or manually by the pro-
grammer via pragma-annotations, as done in this work. Then,
the loop needs to be compiled, in order to be translated onto
CGRA instructions.

The first step in this process is to generate a semantically-
equivalent version in Intermediate Representation (LLVM IR
in our case) and from there to Data Flow Graph (DFG)
depicted in Figure 2a. DFGs are directed graphs in which
nodes represent instructions, edges represent dependency rela-
tions between instructions, and back-edges correspond to loop-
carried dependencies.

In a second phase, the generated DFG is mapped onto the
CGRA, by assigning each of its nodes to a given PE at a given
cycle. In order to perform such mapping, a technique called
modulo scheduling is employed.

B. Modulo Scheduling

Modulo Scheduling (MS) is a compilation technique that
enables efficient execution of a loop body, by executing mul-

II ++

DFG
Generation

Constraints
Generation
and SAT
solving

Register
Allocation

yes

no

?

II ++

?
yes

no

Final
mapping

Fig. 3: SAT-MapIt searches for mappings for a given II ,
iteratively increasing II in case the SAT solver returns
UNSAT, or register allocation fails to colour the model

returned by the solver.
tiple iterations of it in an interleaved manner. As exemplified
in Figure 2b, a modulo-scheduled loop is divided into three
stages: prologue, kernel, and epilogue. Prologue and epilogue
are one-time executed stages: the former is used to prepare the
data to feed the pipeline, the latter to reorganize them at the
end. The kernel is instead repeated multiple times and includes
the instructions to be parallelized through pipelining. Goal
of MS is to pipeline as effectively as possible the execution
of kernel instructions, and this corresponds to minimizing
the Iteration Interval (II), i.e. the length of the kernel stage,
which is 3 cycles in our example. The mapping problem
hence consists in finding a legal Modulo Schedule for a loop,
performing the placement and routing of instructions in a
constrained 3D space represented by the PE dimensions and
by time. An example of legal mapping for the DFG in the
running example is shown in Figure 2c.

IV. METHODOLOGY

A. Overview

Our methodology addresses mapping by solving a SAT
problem where data dependency, schedule and CGRA archi-
tecture are expressed as Boolean constraints in a conjunctive
normal form (CNF). Our toolchain, depicted in Figure 3, takes
as input the C code of the application, converts it into LLVM
IR, extracts the designated loop structures and, through a
custom LLVM pass, generates its DFG.

The information retrieved from the LLVM pass is then used
to build a set of schedules, in turn translated into a set of
constraints, which get finally fed to a SAT solver. If the answer
of the solver is SAT, the next step is to verify that there are
enough registers available in the PEs to store the generated
data for the whole liveness duration, and this is determined via
Register Allocation. If this step succeeds, then a valid mapping
has been identified. Otherwise, the current Initiation Interval
is increased and the process is iteratively repeated.

Herein, we detail the various steps of our methodology:
schedule creation, SAT formulation, and register allocation.

B. Schedule creation

We first create As-Soon-As-Possible (ASAP) and As-Late-
As-Possible (ALAP) schedules, for the input DFG. This cor-

responds to detecting how early and how late each node can
be scheduled. We then generate the Mobility Schedule (MS),
which expresses the mobility of each node from its ASAP to
its ALAP time position. Figure 4 shows these schedules for
our running example.

ASAP ALAP MS
Time Nodes

0 1 2 3 4 3 1 2 3 4
1 5 7 10 4 5 1 2 4 5 7 10
2 6 11 1 6 7 1 2 6 7 10 11
3 8 2 8 10 2 8 10 11
4 9 9 11 9 11

Fig. 4: ASAP, ALAP, and Mobility Schedule

At this point we create the Kernel Mobility Schedule
(KMS): a custom structure which SAT-MapIt uses to then
formulate the mapping problem. The KMS can be seen as a
superset of all possible kernels, and is the product of iteratively
folding MS by an amount equal to II: every time MS is folded
by II into KMS, each node receives a label that refers to the
iteration number it belongs to. The more folding we have, the
more iterations our kernel will execute at the steady-state. This
process is depicted in Figure 5, again for our running example.
Given an II of 3, the MS is folded twice (⌈5/3⌉ = 2) and
hence the KMS contains two iterations. The first is depicted
in blue, and the second in green.

Together, DFG and KMS are used to generate all the
statements of the CNF formulation of the mapping problem,
which is the subject of the next subsection.

Time

MS

2 8 10 11

1 2 6 7 10 11

1 2 4 5 7 10

9 11

1 2 3 4

3

2

1

4

0

Nodes Time

1

0

2

Nodes

KMS

10 20 60 70 100 110

20 80 100 110

90 110

11 21 31 41

11 21 41 51 61 101

Fig. 5: Kernel Mobility Schedule creation.
In blue iteration 0, in green iteration 1

C. SAT formulation

We create a CNF formula using literals in the form: xn,p,c,it

, where n denotes the node identifier in the DFG, p denotes
a PE on the CGRA, c represents at which cycle a node is
scheduled, and it to which iteration the node refers to.

Our problem formulation can be described at a high level
by partitioning all statements into three main sets of clauses
that assure the following:

• C1: Every node is associated with a set of literals, and
for each one of those sets, one and only one literal must
be set to True.

• C2: At most one node should be assigned to a PE at a
given cycle, since two or more nodes cannot be scheduled
simultaneously on the same PE.

• C3: Each node’s predecessor and/or successor must be
assigned to a neighbor or on the same PE.

To provide a formal description of the above constraints, we
introduce additional definitions. Let L be the set of all literals,
then L(n) is the set of all literals associated to node n.

To make the notation more compact and easy to read, we
also associate each literal in the form xn,p,c,it to a literal
written as vi. For example L(n3) would be written as:

L(n3) = {v0, v1, v2, v3}

where v0 = x3,0,1,1, v1 = x3,1,1,1, v2 = x3,2,1,1 and v3 =
x3,3,1,1. This represents the fact that node 3 appears only at
time 1 and only at iteration 1 in the KMS, as shown in Figure
5, and that it can be mapped onto any PE: 0,1,2,3. Now we
can start the description of the three sets of constraints. The
first set, C1, ensures that all nodes are mapped on the CGRA,
and can be encoded formally with:

ϕ(n) =
∨

vi∈L(n)

vi

ξ(n) =
∧

(vi,vj)∈M(n)

¬(vi ∧ vj)

ζ(n) = ϕ(n) ∧ ξ(n)

(1)

where n is one of the nodes id in the DFG and M(n) is
defined as follows:

M(n) = {(vi, vj) : vi ≺ vj , (vi, vj) ∈ L(n)× L(n)}

where vi = xn,p1,c1,it1 and vj = xn,p2,c2,it2 with p1 ̸= p2,
c1 ̸= c2 and it1 ̸= it2. Furthermore the symbol ≺ represents
the lexicographically smaller-than relation between two lit-
erals. For example x3,0,1,0 is lexicographically smaller than
x3,1,0,0, while x3,1,0,1 is not.

Equation 1 will be used on each node of the DFG and each
ζ generated will be added to the SAT formulation.

The second set of constraints, C2, forbids the mapping of
more than a single node on the same PE at the same time, and
is encoded through:

M(n,m) =
∧

(vi,wj)∈V(n,m)

¬(vi ∧ wj)

ζ =

N−1∧
n

N∧
m=n+1

M(n,m)

(2)

with V(n,m) defined as:

V(n,m) = {(vi, wj) : vi ≺ wj , vi ∈ L(n), wj ∈ L(m)}

The last set of constraints, C3, handles the dependencies in
the DFG, and assures that 1) each data dependency is mapped
on neighbors PE on the CGRA and that 2) data produced by
a node in a given cycle is consumed before being overwritten
by another node on a subsequent cycle. For each dependency,
we consider literals that are at most one iteration apart in the
KMS, that are on a neighbour PE and that respect one of the
relations:

cd ≤ cs if its ̸= itd or cd > cs if its = itd (3)

where cd is the cycle at which the destination node is
scheduled, and cs is the cycle at which the source node
is scheduled. This constraint ensures that a node consumes
the value produced by the predecessor in the proper order,
avoiding overlapping of the same dependencies among kernel
and prologue/epilogue stages.

The CNF in this case is composed of two main terms; one
that handles the case in which the output of the source node
is delivered to the destination node through the registers on
the PE, and the other in which the data created by the source
node is written in the output register of the PE, instead, and
hence it must not be overwritten in subsequent cycles.

Dependencies that use internal registers can be encoded
through a set of CNF of this form:

ζ1 = vi ∧ wj (4)

where vi = xns,p1,c1,it1 and wj = xnd,p2,c2,it2 and p1 is
neighbour of p2. On the other hand dependencies that do
not use internal registers need to be encoded with a slightly
different formulation. In particular we expand Equation 4 by
appending another term. The CNF in this case become:

ζ2 = vi ∧ wj ∧ ¬
(∨

zk

)
(5)

where zk = xnl,p1,cl,itl iterate over all literals in all subse-
quent cycles, with the same PE as source node. This assures
that the data is properly consumed by the destination node
without being overwritten. Equation 4 and 5 are repeated for
each dependency in the KMS and every CNF generated is
added to the formulation after an or operation among all the
terms, so that the solver is free to choose the option that makes
the mapping problem satisfiable.

D. Register allocation

Once the solver returns a satisfying mapping, a last phase is
needed in order to validate such mapping in terms of register
usage: Register Allocation – implemented in SAT-MapIt as
a separate phase subsequent to SAT solving. It is solved
optimally by exploiting the SSA format of the input code [19].
For each PE in the CGRA, we generate an interference graph
that we proceed to color. If the coloring succeeds, no further
action is needed, and the coloring hence generated concludes
the mapping, by adding information on which register should
hold the output of each PE at each cycle. If it fails, however,
we split the overlapping intervals that make the interference
graph uncolorable with the given number of colors, by adding
load and stores, and hence additional cycles.

V. EXPERIMENTAL RESULTS

Experimental Setup. We evaluate the effectiveness of SAT-
MapIt on a set of loop kernels from MiBench and Rodinia
benchmark suites. We compare the obtained II , and the time
to find it, with respect to two techniques of the SoA: RAMP
[13] and PathSeeker [15]. For these two SoA techniques we
use the original code publicly released by the authors. In the
target CGRA architecture that we consider in our experiments,
each PE is connected to the four nearest neighbors, as in Figure

0
2
4
6
8

10
12
14

sh
a

gs
m

pa
tri
cia

bit
co
un
t

ba
ck
pr
op nw

sra
nd

ho
tsp
ot

sh
a2

ba
sic
ma
th

str
ing
se
arc
h

II

2 2 CGRA

RAMP [13]/PathSeeker [15] SAT-MapIt

0
2
4
6
8

10
12
14

sh
a

gs
m

pa
tri
cia

bit
co
un
t

ba
ck
pr
op nw

sra
nd

ho
tsp
ot

sh
a2

ba
sic
ma
th

str
ing
se
arc
h

II

3 3 CGRA

0
2
4
6
8

10
12
14

sh
a

gs
m

pa
tri
cia

bit
co
un
t

ba
ck
pr
op nw

sra
nd

ho
tsp
ot

sh
a2

ba
sic
ma
th

str
ing
se
arc
h

II

4 4 CGRA

0
2
4
6
8

10
12
14

sh
a

gs
m

pa
tri
cia

bit
co
un
t

ba
ck
pr
op nw

sra
nd

ho
tsp
ot

sh
a2

ba
sic
ma
th

str
ing
se
arc
h

II

5 5 CGRA

× ×

× ×

Fig. 6: Experimental results of the chosen benchmarks for different architecture sizes We compare the II found by
SAT-MapIt with respect to the best results obtained by RAMP and PathSeeker – lower is better. A red mark means that the
process did not terminate before a timeout of 4000 seconds. A black mark means that the process was terminated when it

reached a current II of 50 but still found no feasible solution.

Benchmarks [13]/[15] SAT-MapIt ∆
sha 41.01 3.22 -37.79
gsm 2.81 1.25 -1.56
patricia 1351.15 5.39 -1345.76
bitcount 2.63 1.68 -0.95
backprop 1262.69 3.39 -1259.3
nw 0.01 0.56 0.55
srand 0.32 1.15 0.83
hotspot 4000 4000 0
sha2 4000 2.21 -3997.79
basicmath 0.01 0.62 0.61
stringsearch 0.19 1.02 0.83

TABLE I: Mapping time (seconds) on a 2× 2 CGRA

Benchmarks [13]/[15] SAT-MapIt ∆
sha 0.23 2.86 2.63
gsm 4.14 4.35 0.21
patricia 48.98 16.31 -32.67
bitcount 5.86 7.84 1.98
backprop 44.62 12.27 -32.35
nw 0.03 1.56 1.53
srand 0.09 3.9 3.81
hotspot 13.19 28.43 15.24
sha2 61.7 3.13 -58.57
basicmath 0.07 1.9 1.83
stringsearch 3.27 3.55 0.28

TABLE II: Mapping time (seconds) on a 3× 3 CGRA
Benchmarks [13]/[15] SAT-MapIt ∆
sha 32.04 7.23 -24.81
gsm 32.04 10.46 -21.58
patricia 421.05 39.28 -381.77
bitcount 0.44 21.55 21.11
backprop 57.17 25.1 -32.07
nw 0.08 3.63 3.55
srand 0.25 8.79 8.54
hotspot 3556.62 3734.77 178.15
sha2 696.6 7.19 -689.41
basicmath 0.22 4.11 3.89
stringsearch 0.02 7.62 7.6

TABLE III: Mapping time (seconds) on a 4× 4 CGRA

Benchmarks [13]/[15] SAT-MapIt ∆
sha 6.25 28.93 22.68
gsm 0.29 21.4 21.11
patricia 4000 75.16 -3924.84
bitcount 0.01 47.62 47.61
backprop 981.73 52.43 -929.3
nw 0.02 7.75 7.73
srand 0.02 21.64 21.62
hotspot 4000 108.02 -3891.98
sha2 675.12 16.88 -658.24
basicmath 0.5 8.7 8.2
stringsearch 0.02 15.3 15.28

TABLE IV: Mapping time (seconds) on a 5× 5 CGRA

1, and each PE contains four local registers. We vary the size
of the mesh from 2× 2 up to 5× 5. The Z3 solver is used to
solve our SAT formulation. All experiments are performed on
a machine with 2.6 GHz 6-Core Intel Core i7. For PathSeeker,
each experiment was repeated 10 times given its randomized
nature.

SAT-MapIt achieves better IIs. The performance of a
mapping is first and foremost measured by the II achieved,
because this, in turn, is a measure of the level of parallelism
obtained. In our experiments we compare the II of SAT-
MapIt with those of SoA, for each benchmark explored. This
is depicted in Figure 6 which shows the performance obtained
by all techniques for different CGRA configurations. For SoA,
we report the best result among the two algorithms. Our tool
is able to systematically find the best mapping solution.

SAT-MapIt uses tight resources better. By focusing on
the 2×2 size CGRA, we can see that SAT-MapIt always finds
the best solution, and twice (patricia and backprop) it
is even able to find a valid mapping where the SoA could not.
This showcases the effectiveness of our methodology particu-
larly when the mapping problem becomes more challenging.

SAT-MapIt is faster when runtimes are high. Given that
the II found are better than SoA, we now analyse the time
needed to find such solutions, and report it in Tables I, II, III
and IV. It can be noticed that our tool running time is longer
than SoA in 26 out of 44 experiments, and that in these 26
cases the average time difference is only 15.28 seconds, with
a standard deviation of 34.97. On the other hand, in the 18
cases in which our tool is faster, the average time difference
is 962.24 seconds, with a standard deviation of 1438.78. This
shows that SAT-MapIt is significantly faster when it matters,
i.e. when computation times are high.

Limitations of SAT-MapIt Currently, our tool does not
apply any routing strategy. This limitation manifests in the
sha kernel of a 5× 5 CGRA, where we achieve an II of 3,
while SoA can find an II of 2 by adding a routing node. This
is the only case, out of the 44 experiments shown, where the
effect of this limitation can be noticed.

VI. CONCLUSION

In this paper we present a tool, called SAT-MapIt, for
modulo-scheduling loops onto CGRAs. We find that previous
techniques, mainly based on classic graph algorithms such as
Max-Clique enumeration, do not always explore the schedul-
ing space effectively. We propose a new SAT formulation of
the modulo scheduling problem on CGRA that fully explores
the scheduling space and finds the lowest II possible for
a given DFG. To define the mapping problem through a
SAT formulation, we introduce a new custom schedule called
Kernel Mobility Schedule, which is used with the data-flow
graph of the loop to be mapped, and with the architectural
information of the CGRA, to generate all the constraints that
the SAT solver needs to obey. Overall, SAT-MapIt finds better
solutions than the SoA alternatives [13] [15], achieving better
results in 47.72% of the cases, and even identifying valid
mappings where other tools could not find a valid solution.

REFERENCES

[1] Z. Li, D. Wijerathne, X. Chen, A. Pathania, and T. Mitra, “ChordMap:
Automated Mapping of Streaming Applications onto CGRA,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, pp. 306–319, 2021.

[2] M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh, “HyCUBE:
A CGRA with reconfigurable single-cycle multi-hop interconnect,” in
Proceedings of the 54th Design Automation Conference, 2017, pp. 1–6.

[3] O. Akbari, M. Kamal, A. Afzali-Kusha, M. Pedram, and M. Shafique,
“PX-CGRA: Polymorphic Approximate Coarse-Grained Reconfigurable
Architecture,” in Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition. IEEE, 2018, pp. 413–418.

[4] T. Oh, B. Egger, H. Park, and S. Mahlke, “Recurrence cycle aware
modulo scheduling for coarse-grained reconfigurable architectures,” in
Proceedings of the 2009 Conference on Languages, Compilers, and
Tools for Embedded Systems, 2009, pp. 21–30.

[5] H. Lee, D. Nguyen, and J. Lee, “Optimizing stream program perfor-
mance on CGRA-based systems,” in Proceedings of the 52th Design
Automation Conference, 2015, pp. 1–6.

[6] D. Wijerathne, Z. Li, M. Karunarathne, A. Pathania, and T. Mitra,
“CASCADE: High Throughput Data Streaming via Decoupled Access-
Execute CGRA,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 18, no. 5s, pp. 1–26, 2019.

[7] L. Duch, S. Basu, R. Braojos, G. Ansaloni, L. Pozzi, and D. Atienza,
“HEAL-WEAR: An Ultra-Low Power Heterogeneous System for Bio-
Signal Analysis,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 64, no. 9, pp. 2448–2461, 2017.

[8] B. Mei, M. Berekovic, and J. Mignolet, “ADRES & DRESC: Archi-
tecture and Compiler for Coarse-Grain Reconfigurable Processors,” in
Fine and Coarse-Grain Reconfigurable Computing. Springer, 2007, pp.
255–297.

[9] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim, “Edge-
centric modulo scheduling for coarse-grained reconfigurable architec-
tures,” in Proceedings of the 17th International Conference on Parallel
Architecture and Compilation Techniques, 2008, pp. 166–176.

[10] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “EPIMap: Using Epi-
morphism to map applications on CGRAs,” in Proceedings of the 49th
Design Automation Conference, 2012, pp. 1284–1291.

[11] L. Chen and T. Mitra, “Graph minor approach for application mapping
on CGRAs,” ACM Transactions on Reconfigurable Technology and
Systems (TRETS), vol. 7, no. 3, pp. 1–25, 2014.

[12] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “REGIMap: Register-
aware application mapping on coarse-grained reconfigurable architec-
tures (CGRAs),” in Proceedings of the 50th Design Automation Confer-
ence, 2013, pp. 1–10.

[13] S. Dave, M. Balasubramanian, and A. Shrivastava, “RAMP: Resource-
Aware Mapping for CGRAs,” in Proceedings of the 55th Design
Automation Conference, 2018, pp. 1–6.

[14] M. Balasubramanian and A. Shrivastava, “CRIMSON: Compute-
Intensive Loop Acceleration by Randomized Iterative Modulo Schedul-
ing and Optimized Mapping on CGRAs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 11, pp. 3300–3310, 2020.

[15] ——, “PathSeeker: A Fast Mapping Algorithm for CGRAs,” Proceed-
ings of the Design, Automation and Test in Europe Conference and
Exhibition, pp. 268–273, 2022.

[16] S. A. Chin and J. H. Anderson, “An Architecture-Agnostic Integer Linear
Programming Approach to CGRA Mapping,” in Proceedings of the 55th
Design Automation Conference, 2018, pp. 1–6.

[17] Y. Miyasaka, M. Fujita, A. Mishchenko, and J. Wawrzynek, “SAT-Based
Mapping of Data-Flow Graphs onto Coarse-Grained Reconfigurable
Arrays,” in International Conference on Very Large Scale Integration-
System on a Chip. Springer, 2020, pp. 113–131.

[18] G. Zacharopoulos, L. Ferretti, E. Giaquinta, G. Ansaloni, and L. Pozzi,
“RegionSeeker: Automatically identifying and selecting accelerators
from application source code,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 38, no. 4, pp. 741–754,
2018.

[19] S. Hack, D. Grund, and G. Goos, “Register allocation for programs
in SSA-form,” in International Conference on Compiler Construction.
Springer, 2006, pp. 247–262.

	Select a link below
	Return to Previous View
	Return to Main Menu

