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Abstract—Cell legalization order has a substantial effect on the quality
of modern VLSI designs, which use mixed-height standard cells. In this
paper, we propose a deep reinforcement learning framework to optimize
cell priority in the legalization phase of various designs. We extract the
selected features of movable cells and their surroundings, then embed
them into cell-wise deep neural networks. We then determine cell priority
and legalize them in order using a pixel-wise search algorithm. The
proposed framework uses a policy gradient algorithm and several training
techniques, including grid-cell subepisode, data normalization, reduced-
dimensional state, and network optimization. We aim to resolve the
suboptimality of existing sequential legalization algorithms with respect
to displacement and wirelength. On average, our proposed framework
achieved 34% lower legalization costs in various benchmarks compared
to that of the state-of-the-art legalization algorithm.

Index Terms—deep reinforcement learning, cell-wise neural network,
displacement, wirelength

I. INTRODUCTION
In advanced technology, mixed-height standard cells are commonly

used to derive various design benefits. Using multi-height cells
can efficiently address the occurrence of complex corner cases and
improve pin accessibility and routability, which are critical to chip
performance [1], [2]. However, the design complexity owing to
mixed-height cells leads to difficulty in cell placement [3]. The
placement becomes more complicated and critical to design quality
because the legalization of multi-height cells affects multiple rows
where many other cells can be placed. Moreover, power rail alignment
becomes tricky, especially for even row-height cells. Numerous
design constraints, such as high utilization, hard macro blocks, and
group regions, further increase the complexity of this problem [2],
[4]. As the design complexity increases, the cell placement phase
leads to a dramatic variation in the final design quality.

Since the ICCAD-2017 CAD contest [4], various algorithms for
the mixed-height cell legalization have been proposed to resolve
the increasing constraints, including complex design rules at sub-14
nm, design utilization, irregular placeable regions, edge spacing, and
pin accessibility. Zhu et al. [6] used an iterative cell reassignment
technique and a technology-aware legalization algorithm. Li et al.
[7], [8] proposed a window-based cell insertion method and network
flow-based optimization. Do et al. [9] applied a pixel-wise search
algorithm and a cell swap technique to obtain a fast algorithm.
Chen et al. [10] presented a robust modulus-based matrix splitting
method to solve the linear complementarity problem. Netto et al. [11]
presented a convolutional neural network (CNN)-based algorithm
selection framework to exploit the best among the three mentioned
state-of-the-art algorithms [6]–[9] for each design.

These rule-based sequential algorithms, however, cannot achieve
universally optimal solutions for different circuit designs. The rule
that achieves the best quality of result (QoR) for one design may
not produce satisfactory results for other designs that have different
characteristics. Some recent works [5]–[8] legalized cells based on
cell horizontal locations, while Do et al. [9] legalized them in order
of cell sizes. However, a considerable number of cells have the same
ordering conditions; multiple cells are positioned at the same x-
coordinate or have the same size. Therefore, the cells with the same
condition are legalized in a random order. The presented cell priority

This work was supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea govern-
ment (MSIT). (No.2021-0-00754, Software Systems for AI Semiconductor
Design and No.2022-0-01172, DRAM PIM Design Base Technology Devel-
opment). The authors thank Dr. J. Jung for providing valuable feedback.

rules are reasonable but provide suboptimal results in some designs.
In most designs, the quality of the legalization results fluctuates
depending on the sequence of cell legalization. We describe the
effects of the cell priority on the legalization in Section II-C.

Reinforcement learning (RL) is generally used to resolve the limita-
tions of many sequential algorithms. In electronic design automation
(EDA), an RL is a promising paradigm that can explore the hidden
potential of the sequential EDA algorithms [12]. Lu et al. [13] used
an RL in an iterative gate-sizing problem for timing optimization.
Liao et al. [14] used an RL in the global routing phase to optimize a
sequential A* search algorithm. An RL is applied in detailed routing
to optimize the wirelength, wire congestion, or design rules [15]–
[17]. Recently, deep RL has also been actively used and studied at
the standard cell placement phase. Agnesina et al. [18] optimized
placement parameters in a commercial tool using RL. Kirby et al.
[19] improved a force-based global placement algorithm with RL,
and Mallapaa et al. [20] used RL in the detailed placement for coarse
arrangements of standard cells.

In this paper, we propose a deep RL framework to optimize the cell
priority on legalization considering various features of the cells and
their surroundings. We extract the features of all legalizable cells in a
design and train cell-wise deep neural network (DNN) models with a
policy gradient algorithm. Using a policy network, we prioritize the
cells to get the largest expected reward from the extracted features.
We use the pixel-wise search algorithm to legalize cells by searching
for multiple legal locations and selecting the best one. A value
network estimates the reward from the updated features and boosts
training convergence. The main contributions are as follows:

• We propose a deep RL framework to optimize the priority of the
mixed-height cells to be legalized. We empirically demonstrate
that the cell priority highly affects the QoRs of designs. In our
framework, we consider various properties of cells and their
surroundings to optimize cell priority and achieve high design
quality for various designs.

• We develop a deep RL-based mixed-height cell legalizer (RL-
Legalizer) with considering various design constraints and com-
plex design rules, including maximum displacement, target uti-
lization, edge spacing, and fence regions.

• We partition the designs into multiple grid-cells (Gcells) and
train each Gcell as a subepisode in the RL training algorithm. A
Gcell partitioning makes our framework robust for much larger
designs and improves training performance.

• Our framework can be applied to any sequential legalization
algorithms. Using RL with the pixel-wise search legalization
algorithm, we achieve less cell movement from the global
placement results and less wirelength than the cell size-ordered
state-of-the-art legalizer.

The remainder of this paper is organized as follows. Section II
describes the background of mixed-height cell legalization, our legal-
ization algorithm, and verification experiments. Section III presents
our RL framework, DNN models, training algorithms, and RL
techniques. Section IV reports the experimental setup and the results
on the several benchmarks. We conclude the paper in Section V.

II. PRELIMINARIES
A. Cell Legalization

Mixed-height standard cell legalization is a part of the detailed
placement phase. Cells of different heights should be placed in legal
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(a) usb phy

(b) pci bridge32 b md3

Fig. 1. Distribution of cell size in two example benchmarks and the distribution of resulting metrics, including the average displacement, maximum displacement,
and HPWL, of the random-ordered cell legalization. The two example benchmarks are (a) usb phy implemented with 75% utilization and aspect ratio 1.0 in
45 nm Nangate technology [31] and (b) pci bridge32 b md3 in the contest benchmarks [4]. We performed the random-ordered legalization 1,000 times. The
red dashed lines represent the result of cell legalization sorted by size, and the blue regions represent improvement potentials from the size-ordered results.
µ and σ represent the mean value and standard deviation of each distributed QoR, respectively.

locations, aligning the cells with placement sites and power rails,
and adhering to design rules. In general, in legalization problem,
we assume that the result of the preceding global placement is well-
optimized with respect to timing or wirelength. The main objective of
cell legalization is to minimize cell movement (displacement) with
respect to the global placement result. Furthermore, the maximum
displacement and estimated wirelength should be considered, because
a large displacement can cause critical paths, and wirelength is
a crucial design cost. Therefore, our objective is to minimize the
legalization cost, including the average displacement, the maximum
displacement, and the half-perimeter wirelength (HPWL). In the
problem, we address various constraints that include maximum dis-
placement, target utilization, edge spacing, fence regions, and other
design rules [4].

B. Pixel-wise Search Algorithm
We use a pixel-wise search algorithm to legalize the mixed-height

cells (Fig. 2). First, the entire design is divided into pixels of
minimum width and height, i.e., in the unit of placement site and
spacing of power rails. Then, we explore available pixel locations for
each target cell using a diamond searching method within a search
space. The search boundary is determined to be proportional to the
maximum displacement constraint and cell size. Finally, the location
with the minimum displacement is designated to legalize the cell.

Because the pixel-wise search algorithm is considerably fast and
efficient, it is suitable for the time-consuming process of RL training.
This algorithm is also used in one of the state-of-the-art open-sourced
academic legalization tools [9], [26]. It determines the legalization or-
der by sorting the cells in descending order of cell size. However, the
size-ordered cell priority produces suboptimal legalization results. To
compensate for the suboptimality, it uses various heuristic methods,
such as rearrangement, corner-weight movement, and cell swapping.
In this work, we aim to find the optimal cell priority by using the
RL technique. We will compare the legalization quality between the
size-ordered method with the heuristic methods and our RL-ordering
method without any heuristic methods.

C. Effect of Cell Priority
We analyzed the effect of the cell sequence on mixed-height cell

legalization. Do et al. [9] sorted movable cells in descending order
according to cell size. Because cells with large widths or heights are
more likely to affect adjacent cells or multiple rows, the cell size-
ordered legalization seems reasonable. However, legalizing the large
cells in the early stages often leads to significant displacements of
adjacent cells, because a large area is occupied. In addition, in most

Fig. 2. The pixel-wise search legalization algorithm explores the available
pixels (blue regions) within a search space, then elects the best pixel with
respect to displacement (a red region).

design benchmarks, more than 30% cells have the same size based
on the largest portion (Fig. 1). This large proportion indicates that a
significant number of cells are likely to be legalized in random order.

To demonstrate the effect of cell sequence on the quality of legal-
ization, we performed a simple simulation. We iterated the academic
legalizer [26] 1,000 times with a random sequence and presented
the distribution of the QoRs, including the average displacement,
maximum displacement, and HPWL, and compared with the size-
sorted results (Fig. 1). For the two sample benchmarks, the QoRs
distribute over a wide range as the order of the cells changes. In
addition, the QoRs can be significantly improved from the size-sorted
results. Therefore, optimizing the cell priority by considering more
features of cells and surroundings can improve the design quality.

III. RL-LEGALIZER FRAMEWORK

In this section, we present our cell priority optimization problem in
the Markov decision process (MDP) and define the state, action, and
reward function. We then introduce our overall deep RL framework
and legalization flow. Our policy gradient training algorithm, cell-
wise neural network models, and strategies for efficient training are
described in detail.

A. Markov Decision Process

A cell priority optimization problem is a sequential decision of the
cell (action) in a given environment (state) to obtain the maximum
design quality (reward). This problem can be represented as an MDP,
and our deep RL setup is as follows.
• State s: A state is an N×F array of features for given movable

cells and 1bins, where N represents the number of movable cells,
and F is 13, the number of features for each cell (Table I). For
each cell, 13 features consist of three categories: (i) cell features,

1Designs are divided into Gcells, and each Gcell is divided into multiple
bins to extract features of cell surroundings. ∼20 cells are placed in a bin.

 



Fig. 3. (a) Our deep reinforcement learning framework to optimize cell priority in the mixed-height standard cell legalization. (b) The data processing phase
consists of Gcell tiling, extraction of features of cells and surroundings (bin), and feature-wise normalization. (c) In the A3C model phase, features are
embedded in cell-wise DNN models. The index of the target cell and the expected reward are obtained through policy and value networks, respectively.

(ii) bin features, and (iii) others. The first seven features are the
cell features, which indicate the coordinates, size, net count of the
cell, the number of overlapped cells, and the average Manhattan
distance of the two nearest obstacles or design boundaries from
the cell. The next four features are the bin features, which indicate
the total cell area, placeable area, excluding macros or legalized
cells, the total number of overlapped cells, and bin density error
(Equation 1) [21] of the bin region, where the cell is placed. Bin
density error is a squared error between the cell area in the bin Bi

(CABi ) and the average cell area of bins in the design (CAB,avg).

DEBi
= (CABi

− CAB,avg)
2 (1)

The remaining two features indicate the number of movable cells
in the Gcell where the cell is placed after global placement and
the number of legalized cells in the Gcell.

• Action a: An N×1 vector is constructed through the policy
network πθ(s). Each element of the vector indicates the legalization
priority of each cell. We select the target cell by categorical
sampling, where one of the cells with high priorities is selected
from the vector. The target cell is then legalized using the pixel-
wise search algorithm.

• Reward r(s, a): We define a reward function as the sum of the
reciprocal of the displacement and the reciprocal of ∆HPWL
caused by target cell legalization, which can be formulated as

r(s, a) =

k1 · disp−1
ci + k2 ·∆hpwl−1, if dispci > k1

1 + k2 ·∆hpwl−1, if dispci ≤ k1
−5, if fail,

(2)

where 2k1 is a threshold of the inevitable displacement, and 2k2
normalizes the unit of ∆HPWL. If the displacement is less than
the threshold, the reward is simplified to normalize the reward and
prevent divergence of the value. If the legalizer fails to search pixels
for the target cell, a penalty, −5, is imposed on the reward, and the
corresponding episode is terminated, followed by the next episode.
The failure penalty is empirically determined by considering the
reward scale in various designs. As our RL algorithm updates the
neural networks to maximize the cumulative reward, our reward
function can minimize the displacement and HPWL.

B. Overall Framework
Our proposed deep RL framework consists of a legalizer envi-

ronment and an asynchronous advantage actor-critic (A3C) agent
(Fig. 3). We aim to minimize the displacement and HPWL from the

2We set k1 as the minimum width of the placement site. The placement
sites of the contest technology [4] and 45 nm Nangate technology [31] are
200 and 190 nm, respectively. We set k2 so that the k2 · ∆hpwl−1 term
becomes between 0 and 1. If ∆hpwl is zero, the term becomes 1.

TABLE I
FEATURES OF EACH CELL AND SPECIFICATIONS

Feature Specification
Xci X-coordinate of the i-th cell (ci)
Yci Y-coordinate of ci
Wci Width of ci
Hci Height of ci
Nci Number of nets connected to ci
OVci Number of overlapped cells to ci
ODci Avg. distance of the 2 nearest obstacles from ci
CABi

Total cell area in the bin region of ci (Bi)
ABi

Area of placeable region in Bi
OVBi

Number of overlapped cells in Bi
DEBi

Bin density error of Bi
NCGi

Number of cells in the Gcell of ci (Gi)
NLCGi

Number of legalized cells in Gi
Gi and Bi represent the Gcell and bin, respectively, where ci is placed.

global placement result by optimizing the cell priority in the legal-
ization problem. In overall flow (Fig. 3a), given a global placement
result (LEF/DEF) and design constraints, our legalizer first parses
and initializes the geometric data. We then divide the design into
multiple Gcells and consider each Gcell a subepisode in the training
stage. In an episode, we proceed with the subepisodes for all Gcells,
and the subepisodes are performed in the order of the number of
cells in each Gcell to prevent legalization failure. In each subepisode,
we train the neural network model to optimize the priority of cells
in the corresponding Gcell. We extract and normalize state features
of bins and cells (Fig. 3b). To normalize the features with various
units, we leverage feature-wise normalization. The state features are
embedded in a cell-wise DNN model, where 13 features of each cell
are embedded in each model with the same parameters in parallel
(Fig. 3c). The policy network constructs a cell priority vector to
select the target cell by categorical sampling, and the value network
provides an expected reward. The target cell is legalized using the
pixel-wise search algorithm, and the features of affected cells and
reward are updated. The state-action iteration is repeated until all
movable cells in the subepisode are legalized. Therefore, we optimize
the cell priority of various designs using the trained models.

C. Training Flow
1) Training algorithm: Our framework leverages an A3C al-

gorithm [22] which asynchronously optimizes the neural network
gradient with multiple actor-critic agents. The asynchronous update
decreases the correlation between data in the training process and
achieves faster training convergence by using the latest policy func-
tion. We also use a mini-batch training technique [23] with batch
size B and construct loss functions for efficient training. Algorithm 1
presents the training method of policy and value networks. In a single
A3C agent, we construct a local network initialized with the global
network parameters (Line 1). The training algorithm repeated 1,000

 



Algorithm 1: Training policy and value network

Inputs: Maximum episode (Emax),
set of Gcells (G), batch size (B),
global network parameters (θ, ϕ)

1 Initialize local network parameters θ′, ϕ′ ← θ, ϕ
2 while ep < Emax do
3 for all epsub ∈ G do
4 t← 1
5 while not epsub.done do
6 st ← GetState()
7 at ← GetAction(st)
8 rt ← GetReward(st, at)
9 st+1 ← GetState()

10 if t mod B == 0 then
11 Loss← GetLoss(st:t+B , at:t+B−1)
12 ∆θ, ∆ϕ← Backpropagation(Loss/B)
13 θ, π ← θ′+∆θ, ϕ+∆ϕ

14 t← t + 1

episodes (Line 2), and all subepisodes are repeated in an episode
(Line 3). Each subepisode is performed by repeating steps until all
movable cells in the corresponding Gcell are legalized (Line 5). In
step t, the state features st of the movable cells are extracted, action
at is performed through the legalizer, reward rt is computed, and the
next state features st+1 are updated (Lines 6-9). At every B steps,
the loss functions are constructed from the state-action trajectories,
and the global network parameters are updated by backpropagation
(Lines 10-13).

2) Loss function: We construct the loss function including (i)
policy loss, (ii) value loss, and (iii) entropy loss as follows:

Loss = Lpolicy + β · Lvalue + η · Lentropy , (3)

where β and η are loss coefficients.

Lpolicy =
∑B

t=1 −logπθ(at|st) ·Adv(st, at) (4)

(i) The policy loss (Equation 4) updates the policy network with a
type of cross-entropy loss which implies dissimilarity between the
ideal and expected probabilities. Because the ground truth is absent
in RL, the advantage function [22] is multiplied, which evaluates how
the selected action is advantageous compared to the expected reward.
The advantage function is computed as follows:

Adv(st, at) = Qπθ (st, at)− Vϕ(st), (5)

where the first term is the action value function with θ-parameterized
policy function πθ , and the second term is the ϕ-parameterized state
value function. The action value function represents the γ-discounted
expected reward (Equation 6), and the state value function represents
the expected future reward.

Qπθ (st, at) = Eπθ

[∑B−1
k=0 γk · rt+k|st, at

]
(6)

Lvalue =
∑B

t=1 SmoothL1(Qπθ (st, at), Vϕ(st)) (7)

(ii) The value loss (Equation 7) updates the value network from the
error between the expected and discounted rewards. We leverage
a smooth-L1 loss function, and unlike the L1 loss function, it is
differentiable at all points and more robust to outliers than the mean
squared error (MSE) function. The value loss is critical for training
convergence because the stable reward estimation can assess the
network models precisely.

Lentropy =
∑B

t=1

∑
i πθ(i|st) · logπθ(i|st) (8)

(iii) The entropy loss (Equation 8) causes exploration and prevents
convergence to the local optimum.

D. Cell-wise Network
We construct a cell-wise network structure to handle various

designs with a different number of cells using DNNs (Fig. 4).
However, the cell-wise DNNs may lack information on correlation
with other cells [14], [15]. To alleviate this latent limitation, we
supplement features for the surrounding environment (bin features)

Fig. 4. Cell-wise neural network architecture of the policy and value networks,
where N represents the number of movable cells. The dimension of the tensors
is presented. The policy network constructs an N×1 cell priority vector, and
the value network provides a scalar value of the expected reward.

using a feature ablation technique [24]. Also, we implement a feature-
wise L2 normalization, because this relative normalization can lead
to a relative priority of cells. Our network architecture consists of
cell-wise hidden layers, a policy network, and a value network. Each
hidden layer has the same network parameters, which represents that
the features of each cell are processed in parallel. Each cell-wise
hidden layer comprises two sequential pairs of a 256-dimensional
fully-connected (FC) layer and a ReLU activation layer. The policy
network comprises an FC layer and a SoftMax activation layer,
which constructs a cell priority vector. Meanwhile, the value network
includes an FC layer and an average function, which provide a scalar
value of the expected reward.

E. Our RL Strategies
In this subsection, we present some challenges faced by our RL

framework and strategies to resolve them.
1) Gcell subepisode: RL training, in general, deteriorates when the

number of steps in an episode is large. For example, estimating future
rewards becomes challenging for the value network, which impedes
training convergence. Limiting the number of steps in a single episode
stabilizes the training convergence. Therefore, we divide the designs
into multiple Gcells with a limited number of cells, i.e., we partition
an episode into multiple subepisodes. Gcell partitioning also enables
our RL framework to be applied to advanced designs that are larger
and have more cells. To minimize the impact of the order between
Gcells on the order of cell legalization, we partition the designs
into sufficiently large 3Gcells. For example, the maximum number
of Gcells is set to be 5×5 in benchmarks we used (Tables II–III).

2) Reduced-dimensional state: In our framework, all given cells in
a subepisode should be sampled only once. Once a cell is legalized, it
should not be selected again in later steps of the subepisode. Masking
techniques are commonly used to resolve the problem, where the
masking layer consists of Boolean elements; False in the indices of
the legalized cells and True in the others (Fig. 5a). The output vector
of the policy network is multiplied by a masking layer before the
next action sampling based on the priority vector. In this method,
the SoftMax layer is not used to prevent all cell priority elements
from being zero in the later steps of the subepisode. However, the
features of the legalized cells remain in the state, leading to unclear
cell priority and, therefore, poor training convergence. We improve
the quality of training by removing the legalized cells from the state at
each step. The cell priority is determined based on only non-legalized
cell features, excluding redundant features. To gather trajectories of
the state, action, and reward from the reduced-dimensional state, we
construct tractable loss tensors and concatenate them at each step. We
compare the training convergence of our technique and the masking
technique, which shows that our proposed method achieves a much
faster convergence (Fig. 5b).

3) Network optimization: We use Bayesian optimization [27] to
optimize the dimension and hyperparameters of our network for high
training performance. The legalization cost is minimized by explo-
ration and exploitation of the parameter configuration and objective
function. We first optimize the network dimension of hidden layers in

3We empirically set Gcell size to 200K×200K. Tables II–III verify that
the impact of the partitioning is negligible, comparing [26] and [26]+G.

 



(a) Technique comparison (b) Training convergence

Fig. 5. (a) Comparison between our reduced-dimensional state technique
(upper, red) and masking technique (lower, blue) to deal with the legalized
cell Ci in step t. (b) Comparison of training convergence of the legalization
cost, where x-axis represents the number of episodes, and the y-axis represents
the legalization cost. A data smoothing method is used, and the light colors
represent the variation of four A3C agents.

the range of 64 and 512, which is determined to be 256 as mentioned
above. We then optimize hyperparameters, including learning rate α,
discount factor γ, batch size B, value loss coefficient β, and entropy
loss coefficient η. We limited the iterations of Bayesian optimization
to 50 times and adopted the best hyperparameter configurations. As
a result, we set α to 0.0003, γ to 0.98, B to 25, β to 0.9, and η to
0.002. Furthermore, we exploited the gradient clipping technique for
stable training, by setting the maximum norm of the gradient to 0.1.
An Adam optimizer [23] was used for the gradient descent algorithm.

4) Training and test: Circuit designs have considerably different
characteristics in terms of cells, macro blocks, density, design area,
and irregular fence regions. To ensure that our framework achieves
outstanding legalization results, we divided the designs into multiple
Gcells and extracted various geometric features. However, construct-
ing Gcell subepisodes and extracting bin features are very time-
consuming. For example, if a cell is legalized from bin Bi to bin
Bj , the features of all cells in both Bi and Bj should be updated.
Cell overlap check and bin density calculation are also expensive.

Using the trained models, our RL framework can achieve optimal
solutions by continuously repeating episodes and updating the models
for every design. However, this scheme leads to time-consuming
legalization, which does not seem pragmatic. Therefore, we train
RL models from some designs and test the performance of our
RL-Legalizer on the other designs using the trained models without
updating the networks. In the training process, initial state features are
extracted and embedded into the trained model, and all movable cells
in the design are legalized in order of the constructed cell priority.
We limited the total training time to 72 hours. In the test process, a
few seconds of time overhead is added for Gcell partitioning, initial
feature extraction, and network processing.

IV. EXPERIMENTS
A. Experimental Setup

1) Workstation and implementation: Our experiments are con-
ducted on a CentOS Linux 7.9 with an AMD EPYC-Rome CPU
with 20 cores at 2.8 GHz and 200 GB RAM. We trained our deep
RL models with an Nvidia Titan RTX GPU. We implemented the
legalizer in C++ based on [26], and our RL agents in PyTorch.
Geometric features were extracted using the boost library [28] for
R-tree [25] in the legalizer. We embedded the C++ legalizer into
the PyTorch agent by using ctypes [29], which is a foreign function
library for Python. Our A3C agents and network models can be
checked in [30]. We employed four A3C agents to asynchronously
update the neural networks using multi-processing.

2) Benchmarks: We trained and tested RL-Legalizer on open-
sourced academic benchmarks, including the ICCAD-2017 contest
benchmarks [4] and the OpenCores benchmarks [32]. The OpenCores
benchmarks are implemented with 75% utilization and 1.0 aspect

Fig. 6. Training convergence of legalization costs in the training process for
four contest benchmarks. All designs except des perf 1 reach convergence
with the minimum cost before 200 episodes.

ratio in 45 nm Nangate technology [31], where 10% of cells in the cell
library (LEF) are modified to be multi-heights while maintaining the
cell area. First five columns in Table II–III present the characteristics
of design benchmarks. The benchmarks have different numbers of
cells (from 3K to 131K) and design areas (from 95K×95K to
900K×900K). We used 80% of benchmarks for training process
and the other 20% for testing our trained model; des perf a md2,
fft a md2, pci bridge32 b md1, keccak, and point scalar mult are
designated for the test, which have various design characteristics.

B. Experimental Results
We evaluated the performance of the proposed RL-Legalizer with

respect to the training convergence and the QoRs of cell legalization.
We plotted learning curves of legalization costs based on [4] in
some training benchmarks whose cost scales are similar (Fig. 6).
The legalization costs of the four different designs decrease and
converge as the episodes proceed. All designs except des perf 1
reach the convergence with the minimum cost before 200 episodes.
The solution quality achieved, on average, 58% decreased legalization
cost compared to the initial legalization costs, where the initial
network model randomly initializes weight parameters.

We also evaluated the improved QoRs achieved by RL-Legalizer
with respect to the average displacement, maximum displacement,
and HPWL (Tables II–III). We first checked the legality of our
legalization results and ensured that no design rule violations occurs
for all benchmarks; the design rules include placement overlap, edge
spacing, power alignment, placement sites, and region constraints.
For training benchmarks, we reported the best results after training
converged, and for test benchmarks, we reported the QoRs of the
first testing results using the trained models. We then compared our
legalization results with the results of the size-ordered legalization
[26] to present the improvement of QoRs by our RL-based cell
priority optimization. Besides, to show that the QoR overheads
because of Gcell partitioning are negligible, we also reported the
QoRs of [26]+G, where designs are partitioned into Gcells and the
size-ordered cell legalization is executed.

Our RL-Legalizer outperformed the size-ordered methods on the
overall QoR elements. In addition, we obtained the legal result
from des perf 1, whereas [26] failed to legalize all cells using
the same search algorithm. [26]+G also obtained the legal result,
albeit with poor QoRs, because the Gcell partitioning varied the cell
priority in the entire design. This represents that the unoptimized cell
priority results in legalization failure and bad QoRs for high-density
designs. Compared to [26], RL-Legalizer achieved, on average, 15%
reduced average displacement, 57% reduced maximum displacement,
and 5% reduced HPWL for the training benchmarks, excluding the
failed design. Compared to [26]+G, with similar QoRs but including
des perf 1, we achieved 17%, 79%, and 6% lower legalization
cost in average displacement, maximum displacement, and HPWL,
respectively. For the five test benchmarks, we achieved 10%, 21%,
and 1% better QoRs, respectively, compared to the QoRs of [26].
Our RL-Legalizer achieved up to 20,920 nm less HPWL than [26] in

 



TABLE II
COMPARISON OF THE QORS BETWEEN OUR RL-Legalizer AND THE SIZE-ORDERED LEGALIZER [26] FOR THE TRAINING BENCHMARKS

Benchmark # of Area Density # of Avg. disp. (nm) Max. disp. (nm) HPWL (e+5)
cells (e+11) Gcells [26] [26]+G Ours [26] [26]+G Ours [26] [26]+G Ours

des perf 1 112,644 1.98 0.91 3×3 - 3,741 2,121 - 241,396 16,896 - 17.11 13.40
des perf a md1 108,292 8.10 0.55 5×5 1,813 1,813 1,376 209,368 209,368 121,460 23.06 23.05 22.42
des perf b md1 112,644 3.60 0.55 3×3 1,313 1,290 1,187 65,173 64,247 64,643 21.93 21.88 21.70
des perf b md2 112,644 3.60 0.65 3×3 1,281 1,284 1,200 38,720 38,720 38,720 21.95 21.95 21.86
edit dist 1 md1 130,661 5.21 0.67 4×4 1,304 1,303 1,218 127,218 25,018 13,770 40.75 40.75 40.67
edit dist a md2 127,419 6.40 0.59 4×4 1,313 1,312 1,217 87,003 87,003 32,800 51.77 51.77 51.60
edit dist a md3 127,419 6.40 0.57 4×4 2,178 2,258 1,768 100,003 101,772 80,136 54.99 55.18 54.66

fft 2 md2 32,281 1.17 0.83 2×2 1,806 1,799 1,747 20,170 14,851 22,729 4.96 4.95 4.94
fft a md3 30,631 6.40 0.31 4×4 1,014 1,016 953 21,476 21,476 20,518 9.63 9.63 9.60

pci bridge32 a md2 29,521 1.60 0.58 2×2 2,639 2,692 2,396 102,385 103,405 76,163 6.37 6.39 6.27
pci bridge32 b md1 28,920 6.40 0.26 4×4 1,489 1,500 1,393 68,004 68,004 67,804 6.85 6.85 6.81
pci bridge32 b md2 28,920 6.40 0.18 4×4 1,362 1,363 1,277 85,808 85,808 85,808 5.98 5.97 5.93
pci bridge32 b md3 28,920 6.40 0.22 4×4 1,688 1,689 1,537 107,536 107,536 79,715 6.18 6.17 6.11

aes cipher top 10,006 0.16 0.75 1×1 1,756 1,742 1,548 8,965 8,828 8,765 0.85 0.85 0.84
des3 42,788 1.02 0.74 2×2 2,660 2,676 2,292 36,852 62,695 40,695 2.63 2.64 2.61

eth top 41,871 1.09 0.74 2×2 1,719 1,713 1,478 7,434 6,745 6,675 3.35 3.35 3.31
jpeg encoder 35,688 0.83 0.75 2×2 1,841 1,803 1,632 28,643 24,054 24,054 1.40 1.39 1.38

mc top 4,576 0.12 0.74 1×1 1,612 1,547 1,511 8,743 7,782 7,329 0.38 0.38 0.37
nova 136,961 3.46 0.71 4×4 1,671 1,656 1,493 8,998 7,749 7,890 10.37 10.35 10.20

sasc top 442 0.01 0.75 1×1 3,269 3,243 2,137 7,464 6,546 5,823 0.03 0.03 0.02
spi top 1,486 0.04 0.75 1×1 1,963 1,958 1,586 5,933 6,089 5,160 0.12 0.12 0.11
usb phy 321 0.01 0.75 1×1 2,336 2,308 1,798 5,454 5,044 5,031 0.02 0.02 0.02

wb conmax top 18,961 0.43 0.57 2×2 1,460 1,452 1,334 5,183 4,999 4,823 4.62 4.62 4.58
Norm avg. - 1.15 1.17 1.00 1.57 1.79 1.00 1.05 1.06 1.00

*The contest benchmarks [4] are in white regions, and the OpenCores benchmarks [32] are in gray regions in Tables II–III.
*Note that the normalized average of the QoRs of [26] are computed excluding the failed design.
*The best results are highlighted in bold in Tables II–III.

TABLE III
COMPARISON OF THE QORS BETWEEN OUR RL-Legalizer AND THE SIZE-ORDERED LEGALIZER [26] FOR THE TEST BENCHMARKS

Benchmark # of Area Density # of Avg. disp. (nm) Max. disp. (nm) HPWL (e+5) Runtime (s)
cells (e+11) Gcells [26] [26]+G Ours [26] [26]+G Ours [26] [26]+G Ours [26] [26]+G Ours

des perf a md2 108,292 8.10 0.56 5×5 1,704 1,703 1,534 132,798 132,798 102,119 23.08 23.08 22.87 3.93 4.17 19.44
fft a md2 30,631 6.40 0.32 4×4 1,081 1,080 1,013 66,699 66,699 68,699 11.06 11.06 11.04 0.98 1.06 6.15

pci bridge32 a md1 29,521 1.60 0.50 2×2 1,494 1,488 1,408 85,143 85,143 85,143 4.78 4.79 4.74 0.87 0.90 3.68
keccak 24,902 0.52 0.75 2×2 1,144 1,141 1,073 5,879 5,703 5,700 3.82 3.81 3.81 0.43 0.48 5.42

point scalar mult 51,294 1.14 0.75 2×2 1,860 1,823 1,513 37,814 34,835 21,864 4.06 4.04 3.96 1.09 1.21 10.39
Norm avg. - 1.10 1.10 1.00 1.21 1.17 1.00 1.01 1.01 1.00 0.16 0.18 1.00

the test benchmarks, although the improvement rate appears low due
to the large unit scale. Moreover, only a few additional seconds are
needed for the testing process with the trained model, with about 80%
of the time spent on the feature extraction phase. The comparison
results represent that our RL-Legalizer optimizes cell priority well
for various designs with different characteristics, which is crucial for
better QoRs in mixed-height cell legalization.

V. CONCLUSION
We proposed an RL-based legalizer that optimizes the cell priority

in mixed-height standard cell legalization. We used an A3C algorithm
and implemented several RL techniques to improve the performance
of the training and the quality of cell legalization. Compared to the
size-ordered cell legalization, our proposed framework improved the
QoRs in terms of the average displacement, maximum displacement,
and wirelength by 17%, 79%, and 6%, respectively. Moreover, our RL
framework can be adapted to other sequential legalization algorithms.
In our future work, we are pursuing to obtain improved legalization
results in a short time by improving the legalization algorithm
and utilizing various RL algorithms. In addition, we are going to
consider more design constraints, such as multi-threshold voltage and
minimum implant areas.
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