
EASIMASK- Towards Efficient, Automated, and
Secure Implementation of Masking in Hardware

Fabian Buschkowski , Pascal Sasdrich , Tim Güneysu
Ruhr-University Bochum

{fabian.buschkowski, pascal.sasdrich, tim.gueneysu}@rub.de

Abstract—Side-Channel Analysis (SCA) is a major threat to
implementations of mathematically secure cryptographic algo-
rithms. Applying masking countermeasures to hardware-based
implementations is both time-consuming and error-prone due to
side-effects buried deeply in the hardware design process.

As a consequence, we propose our novel framework EASI-
MASK in this work. Our semi-automated framework enables
designers that have little experience with hardware implementa-
tion or physical security and the application of countermeasures
to create a securely masked hardware implementation from an
abstract description of a cryptographic algorithm. Its design-flow
dismisses the developer from many challenges in the masking
process of hardware implementations, while the generated imple-
mentations match the efficiency of hand-optimized designs from
experienced security engineers. The modular approach can be
mapped to arbitrary instantiations using different languages and
transformations. We have verified the functionality, security, and
efficiency of generated designs for several state of the art sym-
metric cryptographic algorithms, such as Advanced Encryption
Standard (AES), Keccak, and PRESENT.

Index Terms—cryptography, hardware, masking

I. INTRODUCTION

The discovery of Side-Channel Analysis (SCA) by Paul
Kocher [1], [2] was a disruptive moment for academia and
industry alike. Through close observation of electronic devices
and their physical characteristics during execution of cryp-
tographic implementations, adversaries could extract secret
internals and information that leak unintentionally [1]–[3].

Consequently, appropriate countermeasures were investi-
gated, under which masking [4] is considered most promising
due to its sound theoretical foundations. Still, correct and
secure implementation of masked cryptographic algorithms is
a mostly manual, laborious, and error-prone task. Especially
in hardware, the security guarantees of masked designs may
be undermined by unintentional physical effects [5]–[7].

As a result, a variety of different hardware masking
schemes [8]–[11] have been presented in the course of time, to
propose optimized solutions with respect to area consumption,
latency increase, and demand of fresh randomness.

Notably, most hardware masking schemes focus on the
correct design and implementation of atomic components,
often considered as gadgets. Unfortunately, composition of
securely masked gadgets is non-trivial and does not neces-
sarily lead to secure constructions. Therefore, most modern
gadgets additionally adhere to secure composability notions
such as Probe-Isolating Non-Interference (PINI) [12]. Still,
secure masking of unprotected circuits remains a manual and
error-prone process. For this purpose, Knichel et al. recently

presented AGEMA [13], a novel post-synthesis masking tool,
allowing automated construction of securely masked gate-level
netlists using selected and pre-synthesized masked gadgets.

Although AGEMA was designed to assist engineers and
practitioners in reducing the required experience in hardware
security, it still demands deep knowledge on the design pro-
cesses and flows. This is especially true as the optimization
of a circuit during synthesis does not necessarily result in an
optimized masked circuit but, in a worst case, reduces the
efficiency by introducing additional overhead.

Contributions: In this work we present a first framework
to semi-automatically generate SCA-protected hardware im-
plementations of round-based symmetric cryptosystems. Our
concept is based on a pre-synthesis step that processes an
abstract description of a cryptographic component. While our
approach is fully generic, wide applicability is achieved by the
integration of pre-optimized protected components through an
associated Intellectual Property (IP)-library. Several different
designs can be created from a single abstract description
through the variation of a number of parameters, including
time-area trade-offs, security order, randomness generation
and, optionally, the cryptographic mode of operation. We
demonstrate the successful generation of protected crypto-
graphic designs with several case-studies, providing the cor-
responding performance figures and side-channel experiments.
Our source code and the IP-library are available on GitHub.

Outline: The remainder of this work is organized as follows:
While we give background information on SCA and masking
in Section II, the concept of our framework and its implemen-
tation with our choices for design representations and transfor-
mations is presented in Section III. In Section IV, we verify
the functionality, security, and efficiency of generated designs
for a wide range of state of the art symmetric cryptographic
algorithms. Finally, we conclude our work in Section V.

II. BACKGROUND

A. Side-Channel Analysis

SCA is a powerful attack vector on cryptographic algo-
rithms as it lowers the problem space of guessing a secret
using a divide-and-conquer approach. Exploiting the power
consumption of a device is the most popular type of SCA,
but many of the attacks and countermeasures work similarly
for other side channels. While the simplest form of SCA
only requires capturing and investigating a single trace, more
powerful attacks, e.g., Differential Power Analysis (DPA) or

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

AES.dsl

Translation to IR

AES.ir

Instantiation with a
Mode of Operation

Masking Transformation

AES masked.ir

Translation to HDL

AES masked.v AES masked.vhd

Front End

Middleware

Back End

Transformation

Optional Transformation

Translation

Fig. 1: Design flow of our framework

Correlation Power Analysis (CPA) require capturing up to
millions of traces and the following analysis using statistical
means such as the correlation coefficient.

B. Boolean Masking

By randomizing intermediate values, masking aims to make
the physical characteristics of a device independent of the
processed secret data. In Boolean masking, a secret value
x ∈ Fn is split into s ≥ 2 shares (x1, ..., xs) ∈ Fn

such that
⊕s

i=1 xi = x, where s depends on the desired
security order and the used masking scheme. This is usually
achieved by sampling xi ←$ Fn for 1 ≤ i ≤ s − 1, and
setting xs = x ⊕

⊕s−1
i=1 xi. While linear functions operate

on each share individually, non-linear functions use multiple
shares while avoiding to unmask the secret value. Non-linear
functions often have additional register stages and need fresh
random bits every clock cycle, whose amount increases with
the security order. Several schemes describing the process
of masking non-linear functions, such as Domain-Oriented
Masking (DOM) [11], have been proposed in recent years.

III. FRAMEWORK DESCRIPTION

In this section, we introduce the conceptual principles and
the specific implementation of our framework. We opted to
follow a classical process structure as depicted in Figure 1.
Given an abstract description of a cryptographic algorithm,
the front end translates the design into the Intermediate Repre-
sentation (IR). IR-to-IR transformations, namely masking and,
optionally, the instantiation with a mode of operation, modify
the design, before it is finally translated to a securely masked
design in a Hardware Description Language (HDL) in the back
end. This approach has two major advantages: (1) Input and
output languages can be changed without having to modify the
transformations, and (2) an arbitrary amount of transformations
can be added into the design flow.

A. Design Representations

In order to appropriately represent the design at different
levels of abstraction and perform necessary translation and
transformation processes, our framework requires multiple
design representations and description languages, as discussed
in the following paragraphs.

Feature DSL HCL HDL

Algorithm Description
Functions/Modules ✓ ✓ ✓

(Un-)Signed Types ✓ ✓ ✓

Logic Functions ✓ ✓ ✓

Arithmetic Functions ✓ ✓ ✓

Arrays (✓)
Table Lookups and Permutations (✓)

Hardware
Registers ✓ ✓

Attributes for synthesis tools ✓ ✓

TABLE I: Basic features required for DSLs, HCLs, and HDLs

1) Domain Specific Language: To dismiss a designer from
the often tedious and error-prone task of implementing a
cryptographic scheme in hardware, our design flow starts with
an abstract, high-level description of the algorithm.

Domain Specific Languages (DSLs) are an ideal choice for
the abstract description as they are tailored for the use in a
specific area. Equipped with dedicated features that support the
use in their respective domain, DSLs generally have a higher
level of abstraction compared to general-purpose languages
such as C or Java, which allows a designer to describe a
cryptographic algorithm with few lines of code.

We decided on several minimal criteria, shown in Table I,
that a DSL has to fulfill to be able to describe a cryptographic
algorithm: The ability to define functions or modules, the
support for (un-)signed data types, and logic and arithmetic
functions. Arrays of data types and the ability to express table
lookups and permutations are optional basic features that can
be useful when describing parts of cryptographic algorithms,
e.g., S-Boxes. We identified three candidates that fulfill these
basic requirements, namely CRYPTOL [14], USUBA [15], and
CAO [16], while other DSLs such as SQL or regular expres-
sions did not meet these requirements. Guiding our decision,
we decided on additional features, shown in Table II, that
improve the usability for the user, such as support for GF
arithmetic (e.g., for Advanced Encryption Standard (AES))
and user-defined types, or aid the translation in the front end,
like existing translations. From the list of existing candidates,
CRYPTOL was identified as most suitable choice since it has
a translation to VHDL and Verilog which we can use for the
translation from CRYPTOL to our IR, and the possibility to
execute code. This allows a user to verify the correctness of
the specification against test values and ensure that it contains
no errors before continuing in the design flow.

2) Intermediate Representation: The IR shares the basic
requirements of the DSL as it also has to be able to describe
cryptographic algorithms. Additionally, as shown in Table I,
the IR has to be able to describe registers, which will play
an important role during masking, and support the addition
of annotations, which are added by the front end to transport
metadata to the transformations in the middleware or synthesis
attributes into the HDL code.

We decided to consider Hardware Construction Languages
(HCLs) for our IR, as these languages allow to express hard-

!

!

Feature CRYPTOL USUBA CAO

Usability
Support for GF Arithmetic ✓ ✗ ✓

Conditional Statements ✓ ✗ ✓

User-defined types ✓ ✗ ✓

Bit Manipulation ✓ ✗ ✓

Code Base
Active Community ✓ ✓ ✗

Extensibility ✓ ✓ ✓

Code Available ✓ ✓ ✗

Translation VHDL, Verilog C C
Code Execution ✓ ✗ ✗

TABLE II: Extended features of DSLs

Feature SPINALHDL CHISEL CLASH

Functionality
Inclusion of IP VHDL, Verilog VHDL ✗

FSM ✓ ✓ ✓

Counter ✓ ✓ ✓

Code Base
Active development ✓ ✓ ✓

Extensibility ✓ ✓ ✓

Translation VHDL, Verilog VHDL, Verilog VHDL, Verilog

TABLE III: Extended features of HCLs

ware constructs just like VHDL or Verilog, but offer additional
functionality features to define Finite State Machines (FSMs)
and counters. We investigated a total of five HCLs, of which
three, namely SPINALHDL [17], CHISEL [18] and CLASH
[19], met the basic requirements, while MYHDL and NMIGEN
were no suitable candidates due to their inability to express
synthesis attributes. Again, we decided on additional features,
shown in Table III, that enhance the functionality of the
language. It turned out that both SPINALHDL and CHISEL
offer all identified features. We decided to use SPINALHDL
since it enables the inclusion of VHDL and Verilog IP, which
is useful for integration of premasked (non-linear) building
blocks in the masking transformation.

3) Hardware Description Language: Our framework out-
puts a representation of the cryptographic algorithm in an
HDL. Apart from the basic features named in Table I, it is
crucial that the output of our framework can be processed
by standard synthesis and place&route tools. Furthermore, the
HDL has to support attributes that prevent the removal of
security critical parts during synthesis.

As the standard HDLs VHDL and Verilog fulfill the afore-
mentioned criteria and a translation from SPINALHDL to these
languages already exists, we decided to target VHDL and
Verilog in our framework.

B. Processes

For the processes, we specifically distinguish between trans-
lations, which translate the design from one representation to
another, and transformations that modify the design on the IR,
e.g., to add new features. Figure 2 shows the necessary user
inputs for the different translations and transformations used
in our framework with default values in bold.

Translation to
SPINALHDL

Implementation style (Round|Unrolled|Pipelined|Serial)

- (Non)-linear modules
- Signals that should be shared

Mode of Operation Mode (ECB|CBC|CFB|CTR)
Direction (Enc|Dec|both)

Masking

Number of Shares (2)
Masked Non-Linear Module
Randomness per Cycle (0)
Randomness Source (Internal|External)
Additional Latency (0)

Fig. 2: Required user inputs (right) for the used translations
and transformations (left) in our framework

1) Front End: In the front end, the abstract description
of the cryptographic algorithm is translated from the DSL to
the IR. Each function is translated into a separate module in
the IR. A keep_hierarchy annotation is added to prevent
the synthesis tool from removing modules, which could harm
the security of the design. The parameters of a function
are translated to input and output ports of its corresponding
module. Local variables of a function are translated to internal
signals in the IR, for which the front end has to decide whether
they should be defined as registers or as simple wires.

This is decided according to a predefined implementation
style chosen by the user. The user can choose between a
round-based, unrolled, pipelined, and serial implementation,
with round-based being the default option. In this case, the
output of the round function and the round counter, and,
if necessary, the result of the key schedule, are stored in a
register and updated after every round, while all other signals
are implemented as simple wires. For an unrolled design, all
signals are defined as wires, resulting in a latency of just one
clock cycle. The pipelined implementation style implements
the state and round key in separate registers for every round.
A serial implementation has the same registers as a round-
based one, but modules, e.g., S-Boxes, are shared and reused
across the design. This results in a higher latency, but lower
area compared to the other implementation styles. All variants
can be processed by the masking transformation.

The user also specifies via JSON which CRYPTOL functions
are linear or non-linear, and whether parameters of the top-
level function need to be shared. Usually, S-Boxes and adders
are the only non-linear operations in a symmetric crypto-
graphic algorithm, and all inputs apart from the control logic
are shared. The key of an encryption algorithm can be unshared
to reduce the initial randomness. The information is added as
an annotation in the SPINALHDL code by the front end.

2) Middleware: In the middleware, the design can be
extended and modified by IR-to-IR transformations. Every
transformation has to output syntactically and semantically
correct code to ensure that eventual following transformations
are able to process the code. A transformation may consist of
several sub-transformations that must be executed in sequence
and in the right order to produce a functionally correct design.

For our framework, the central transformation is masking,
which transforms the original design into a securely masked
design. Three components of the design are addressed in

!

!

separate sub-transformations: Linear and non-linear functions,
and the controlling logic, e.g., the FSM. We discuss the three
sub-transformations in their order of execution.

a) Masking linear operations: The first transformation
masks wires, registers, and linear operations by duplicating
them according to the number of shares, and then connecting
them to each other. The number of shares specified by the
user has to match the number of shares in the non-linear
module that is to be used. Otherwise, the resulting design
will not be functionally correct. Annotations indicate whether
input and output signals have to be shared or not, and our
framework automatically infers the sharing of internal signals
by propagating this information through the design. If multiple
signals are combined and at least one of them is shared, the
result also needs to be shared. A keep annotation is added to
all shares and prevents the removal of signals during synthesis.

b) Masking non-linear operations: While generic ap-
proaches to mask non-linear operations exist, these approaches
use the Algebraic Normal Form (ANF) of a function, which is
unavailable at the pre-synthesis stage. Therefore, we decided
to replace entire non-linear modules (e.g., S-Boxes or adders)
with handcrafted masked solutions that have been used in
literature to create secure implementations. We provide an IP-
library with securely masked modules that users can choose
from. The IP-library includes S-Boxes of different type and se-
curity order from various cryptographic algorithms, including
AES, PRESENT, Prince, Keccak, and others. Further S-Boxes
can be added to the IP-library in the future.

To provide fresh randomness to the non-linear modules,
users can choose between an external source of randomness,
such as a Pseudorandom Number Generator (PRNG) running
on a different device, and a PRNG integrated into the design.
In the first case, an input port for the randomness with the
appropriate size is created and connected to the non-linear
modules. Otherwise, a PRNG from our IP-library, which
includes Keccak, AES, and others, can be chosen. The outputs
of the PRNG are connected to the non-linear modules, and an
additional input port for a seed is added to the main module
and connected to the PRNG. The user can additionally specify
a number of clock cycles that the PRNG should run for before
the cryptographic algorithm is executed to ensure that the
generated randomness is as close to uniform as possible. If
no interval is specified, the execution of the cryptographic
algorithm and the PRNG are started at the same time.

c) Modifying the control logic: In the final masking
transformation, the controlling logic of the design is modified
to account for the additional latency of masked non-linear
modules, which has to be specified by the user. If the specified
latency is zero, this transformation is skipped.

The round counter of the design has to be kept synchro-
nized with the rounds with higher latency. To achieve this, a
second counter is added and incremented every cycle. Once
it reaches the specified additional latency, it is reset and the
round counter is incremented. If a signal is combined with
an output of a non-linear module with higher latency, our
framework automatically inserts additional register stages to

keep it synchronized. The number of additional register stages
is equal to the additional latency, e.g., if the non-linear module
takes one additional clock cycle, one register stage is added.

Users of our framework can write new IR-to-IR transforma-
tions and insert them before or after the masking transforma-
tion to further modify the design. Transformations are written
in Scala and inserted as so-called phases in the SPINALHDL
back end, where they modify the current design. There is no
limit on the number of additional transformations. The outputs
of a transformation added before the masking will be processed
and masked by the masking step. It is therefore important that
the annotations made by the front end are not removed. On the
other hand, a transformation added after the masking step must
not remove or combine shares of signals, duplicated modules
or registers, or modify the non-linear components in any way.

Our framework offers an optional pre-masking transforma-
tion to instantiate a mode of operation around a block cipher.
While it could be implemented by the user in the CRYPTOL
specification, the transformation frees the user of this task and
ensures the correct implementation of the mode of operation.
The supported modes are Electronic Code-Book (ECB), Cipher
Block Chaining (CBC), Cipher Feedback (CFB), and Counter
Mode (CTR). The user specifies the desired mode and whether
the input is to be encrypted or decrypted, or if a combined
architecture is needed. The default setting is the encryption
with the ECB mode. The instantiated mode of operation will
be masked by the subsequent masking transformation. As a
result, the initialization vector for CBC, CFB, and CTR mode
are implemented as shared, and internal XOR operations will
be instantiated multiple times. In the CTR mode, the shared
arithmetic addition necessary for the counter is implemented
using a Kogge-Stone adder that uses DOM AND-gadgets for
its non-linear operations. The addition is performed in parallel
to the processing of the current data block.

3) Back End: In the back end, the design is translated
from the IR to the target HDL. Extended features of the IR
are translated to equivalent HDL code. Annotations intended
for the synthesis tool such as keep are translated to HDL
attributes, while the other annotations in the IR code, e.g., on
the sharing of signals, are ignored.

As the input to the back end is plain SPINALHDL code,
we can use the default translations to VHDL and Verilog
offered by SPINALHDL, which also translate annotations for
the synthesis tool to the target languages.

C. Discussion

Starting with an abstract description in CRYPTOL enables
users unfamiliar with hardware to create an implementation of
a cryptographic algorithm in hardware. While it is necessary
to get used to CRYPTOL and create an algorithm description
in it, this can be easily achieved due to the limited scope and
simple syntax of CRYPTOL.

The masking transformation can be influenced by a variety
of parameters that have a direct impact on the efficiency and
security of the generated designs, allowing users to create

!

!

multiple designs with different properties from a single specifi-
cation. This is further supported by our open-source IP-library
that offers a wide range of masked and optimized non-linear
modules and allows to increase the range of obtainable designs.

With the output of VHDL and Verilog code in the end, we
can integrate our framework into the standard hardware design
tool flow. Annotations added by our framework ensure that the
masking countermeasures are not removed during synthesis.

IV. CASE STUDIES

To show the wide range of applicability of our tool, we
applied it to CRYPTOL specifications of multiple cryptographic
algorithms, and evaluated the functionality and security of the
generated masked hardware implementations. We chose AES
as the most popular and commonly used block cipher, and
PRESENT as a popular lightweight alternative to AES. In
order to also cover the area of hash functions, we additionally
evaluated our tool for an implementation of Keccak.

To verify the security of the designs, we performed ex-
perimental evaluations on a Field-Programmable Gate Array
(FPGA). Our measurements were done on a SAKURA-G [20]
evaluation board which is equipped with a Spartan-6 FPGA.
The power consumption of the device is measured by a digital
sampling oscilloscope at a frequency of 1.25 GS/s, while the
FPGA is driven by a 4 MHz clock. The measured traces
are quantized with a 16-bit resolution. In all experiments, we
followed the well-established Test Vector Leakage Assessment
(TVLA) approach [21] and performed fixed-plaintext versus
random-plaintext t-tests at first and second order using 50 mil-
lion traces. If the t-values always remain within the interval of
±4.5, the device is assumed to have no detectable leakage and
considered secure (with high confidence). The measurements,
displayed in Figure 3, are discussed in the following.

A. PRESENT
For our evaluation of PRESENT-128, we used a round-based

implementation and the first-order secure TI S-Box [22] from
our IP-library, which has an additional latency of one clock
cycle compared to the unmasked S-Box. Figure 3d displays the
results of the measurement. The first-order t-test in Figure 3b
shows no leakage, indicating that the design was securely
masked by our tool, while the second-order t-test in Figure 3c
expectedly detects multiple leakage points.

B. AES
For AES-128, we selected a serial implementation that only

uses one S-Box. To verify that including non-linear modules in
form of VHDL files works correctly, we passed the VHDL files
of the first-order secure DOM S-Box [23] with five stages and
pipelining activated to the masking transformation. A Keccak
instance running on the target FPGA produces the necessary
fresh randomness. The PRNG runs for 10 clock cycles before
starting the AES design to ensure the quality of the generated
randomness. Figure 3h shows the results of the measurements.
As expected, no first-order leakage is detected. We additionally
created a second-order serial and a first-order round-based
implementation and validated their side-channel security.

Algorithm Area Latency Ref.
[LUT] [FF] [kGE] [cycles]

Keccak 11 648 9 634 114.1 49 new
Keccak 11 416 9 610 111.8 48 [25]

AES-128 1st order serial 684 612 7.8 201 new
AES-128 1st order serial 646 584 7.6 200 [11]
AES-128 2nd order serial 1 157 1 024 13.1 201 new
AES-128 2nd order serial 1 080 946 12.8 200 [11]
AES-128 1st order round-based 5 124 3 824 62.6 51 new
AES-128 1st order round-based ≈ 60.8 50 [11]

PRINCE 1 445 1 276 11.9 25 new
PRINCE 11.5 24 [26]

PRESENT-128 1 390 1 173 11.3 63 new
PRESENT-128 ≈ 10.5 62 [22]

TABLE IV: Synthesis results

C. Keccak

In our final case study, we evaluated a first-order secure
implementation of the Keccak hash function. We used a round-
based implementation with the first-order secure DOM Keccak
S-Box from GitHub [24]. Figure 3l displays the results of our
measurement, showing no first-order leakage.

D. Implementation Results

We synthesized all implementations to a Xilinx Spartan-6
FPGA using Xilinx ISE 14.7, or for an Application-Specific
Integrated Circuit (ASIC) using Synopsis Design Compiler and
the UMC 180 standard cell library. The synthesis results can
be seen in Table IV.

To compare our Keccak implementation with the one by
Gross et al. [25], we used their publicly available VHDL
sources [24] and adapted the parameters in the code to
match our implementation. The synthesis reports that our
implementation is less than 2% larger than the handcrafted
design. For AES, we synthesized the DOM implementations
available on GitHub [23]. The synthesis results indicate that
our implementations are marginally larger by less than 3%. For
the round-based designs, we estimated the area requirements
of the reference implementation, which is around 3% smaller
than the design by EASIMASK. Finally, we compare our
implementation of PRESENT with the one by Poschmann
et al. [22]. Using the same approximation as for the AES
implementation, our implementation is around 8% larger.

The synthesis results show that the designs created by
EASIMASK come close to handmade designs for the area and
latency, barring an overhead of 3% or less in terms of area.
This overhead is mainly introduced in the front end, since the
hardware architecture is created in a generic, unoptimized way.

V. CONCLUSION

In this work, we introduced our open-source framework
EASIMASK, enabling users to create a securely masked hard-
ware implementation of a cryptographic algorithm from an
abstract high-level specification. Our framework requires little
experience in the fields of hardware design and physical
security from a user, making it an attractive tool to use for

!

!

(a) A sample power trace of PRESENT-128

(b) 1st order t-test (after 50 Mio. traces)

(c) 2nd order t-test (after 50 Mio. traces)

(d) Measurements for PRESENT-128

(e) A sample power trace of AES-128

(f) 1st order t-test (after 50 Mio. traces)

(g) 2nd order t-test (after 50 Mio. traces)

(h) Measurements for AES-128

(i) A sample power trace of Keccak

(j) 1st order t-test (after 50 Mio. traces)

(k) 2nd order t-test (after 50 Mio. traces)

(l) Measurements for Keccak

Fig. 3: Measurement results

practitioners in these fields. The modular structure of our
framework allows users to adapt it to their needs by exchanging
languages and transformations of the design flow.

The masking in our framework can be influenced by a
number of parameters, allowing to create several different
masked designs from a single algorithm specification. The
integration of optimized masked S-Boxes enables our tool
to generate implementations that are on par with handcrafted
hardware implementations in terms of size and speed. With the
optional instantiation of a mode of operation around a block
cipher, our framework allows to create an implementation that
is suitable for use in a real-world setting where large amounts
of data have to be encrypted and decrypted in a secure way.

In our case studies we successfully validated that our tool
generates correct circuits with automatically generated mask-
ing countermeasures that are capable to withstand practical
power side-channel attacks.

VI. ACKNOWLEDGMENTS

The work in this paper has been supported in part by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy (EXC
2092 CASA - 390781972) and Emmy-Noether-Project CAVE
(510964147), and through the project VE-HEP (16KIS1345)
supported by the German Federal Ministry of Education and
Research (BMBF).

REFERENCES

[1] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems,” in CRYPTO 1996, 1996.

[2] P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
CRYPTO 1999, 1999.

[3] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM
Side-Channel(s),” in CHES 2002, 2002.

[4] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards Sound
Approaches to Counteract Power-Analysis Attacks,” in CRYPTO 1999,
1999.

[5] T. Moos, A. Moradi, T. Schneider, and F. Standaert, “Glitch-Resistant
Masking Revisited or Why Proofs in the Robust Probing Model are
Needed,” IACR TCHES, 2019.

[6] S. Mangard, T. Popp, and B. M. Gammel, “Side-Channel Leakage of
Masked CMOS Gates,” in CT-RSA 2005, 2005.

[7] J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F. Standaert, “On
the Cost of Lazy Engineering for Masked Software Implementations,”
in CARDIS 2014, 2014.

[8] Y. Ishai, A. Sahai, and D. A. Wagner, “Private Circuits: Securing
Hardware against Probing Attacks,” in CRYPTO 2003, 2003.

[9] S. Nikova, C. Rechberger, and V. Rijmen, “Threshold Implementations
Against Side-Channel Attacks and Glitches,” in ICICS 2006, 2006.

[10] H. Groß, S. Mangard, and T. Korak, “An Efficient Side-Channel Pro-
tected AES Implementation with Arbitrary Protection Order,” in CT-RSA
2017, 2017.

[11] ——, “Domain-Oriented Masking: Compact Masked Hardware Imple-
mentations with Arbitrary Protection Order,” in TIS@CCS 2016. ACM,
2016.

[12] G. Cassiers and F. Standaert, “Trivially and Efficiently Composing
Masked Gadgets With Probe Isolating Non-Interference,” IEEE TIFS,
2020.

[13] D. Knichel, A. Moradi, N. Müller, and P. Sasdrich, “Automated Gener-
ation of Masked Hardware,” IACR TCHES, 2022.

[14] J. R. Lewis and B. Martin, “CRYPTOL: High assurance, retargetable
crypto development and validation,” Oct. 2003.

[15] D. Mercadier, P. Dagand, L. Lacassagne, and G. Muller, “Usuba:
Optimizing & Trustworthy Bitslicing Compiler,” in WPMVP@PPoPP
2018. ACM, 2018.

[16] M. Barbosa, R. Noad, D. Page, and N. Smart, “First steps toward a
cryptography-aware language and compiler.” IACR Cryptology ePrint
Archive, vol. 2005, p. 160, 01 2005.

[17] “SpinalHDL,” 2022. [Online]. Available: https://github.com/SpinalHDL/
SpinalHDL

[18] “Constructing Hardware in a Scala Embedded Language (Chisel),”
2022. [Online]. Available: https://www.chisel-lang.org/

[19] “Clash - A modern, functional, hardware description language,” 2022.
[Online]. Available: https://clash-lang.org/

[20] S. Lab, “SAKURA hardware security project,” 2014. [Online]. Available:
https://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html

[21] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “A testing methodology
for side channel resistance,” 2011.

[22] A. Poschmann, A. Moradi, K. Khoo, C. Lim, H. Wang, and
S. Ling, “Side-channel resistant crypto for less than 2, 300 GE,”
J. Cryptol., vol. 24, no. 2, pp. 322–345, 2011. [Online]. Available:
https://doi.org/10.1007/s00145-010-9086-6

[23] H. Gross, “aes-dom,” 2016. [Online]. Available: https://github.com/
hgrosz/aes-dom

[24] D. Schaffenrath, “keccak dom,” 2017. [Online]. Available: https:
//github.com/hgrosz/keccak dom

[25] H. Gross, D. Schaffenrath, and S. Mangard, “Higher-Order Side-Channel
Protected Implementations of KECCAK,” in DSD 2017, 2017.

[26] A. Rezaei Shahmirzadi and A. Moradi, “Re-Consolidating First-Order
Masking Schemes: Nullifying Fresh Randomness,” IACR TCHES, 2020.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

