
HD-I-IoT: Hyperdimensional Computing for
Resilient Industrial Internet of Things Analytics

Onat Gungor1,3, Tajana Rosing1, and Baris Aksanli3

1Department of Electrical and Computer Engineering, University of California, San Diego
3Department of Electrical and Computer Engineering, San Diego State University

Abstract—Industrial Internet of Things (I-IoT) enables fully
automated production systems by continuously monitoring de-
vices and analyzing collected data. Machine learning (ML)
methods are commonly utilized for data analytics in such systems.
Cyberattacks are a grave threat to I-IoT as they can manipu-
late legitimate inputs, corrupting ML predictions and causing
disruptions in the production systems. Hyperdimensional (HD)
computing is a brain-inspired ML method that has been shown
to be sufficiently accurate while being extremely robust, fast, and
energy-efficient. In this work, we use non-linear encoding-based
HD for intelligent fault diagnosis against different adversarial
attacks. Our black-box adversarial attacks first train a substitute
model and create perturbed test instances using this trained
model. These examples are then transferred to the target models.
The change in the classification accuracy is measured as the
difference before and after the attacks. This change measures
the resiliency of a learning method. Our experiments show that
HD leads to a more resilient and lightweight learning solution
than the state-of-the-art deep learning methods. HD has up to
67.5% higher resiliency compared to the state-of-the-art methods
while being up to 25.1× faster to train.

I. INTRODUCTION

Industry 4.0 revolutionized monitoring, analysis, and au-
tomation of production systems through smart technology [1].
It is mainly powered by the Industrial Internet of Things
(I-IoT). I-IoT is the interconnection of smart devices that
enables full automation, remote monitoring, and predictive
maintenance. However, small-scale I-IoT devices with their
limited computation and communication capabilities make I-
IoT system an easy target for possible cyberattacks. System
vulnerabilities (e.g., network protocols, insecure data transfer
and storage) can be discovered by an attacker, and used to
sabotage communication, do physical damage, alter existing
data, or prevent asset availability [2]. The average estimated
losses were $10.7 million per breach of data among manufac-
turing organizations in Asia Pacific in 2019 [3]. To minimize
these costs, cyber-security measures should be taken such as
cyber-security awareness training, keeping software updated,
installing firewalls, using strong passwords and others [4].

Abundant system monitoring data in I-IoT systems makes
data-driven predictive maintenance (PDM) popular. Machine
learning (ML) methods are commonly used for identifying best
maintenance schedules [5]. Intelligent fault diagnosis (IFD) is
a key data-driven PDM application that finds and classifies
different fault types before they occur. The success of these
ML-based methods heavily depends on input data. Adversarial

attacks against ML methods manipulate legitimate inputs and
force the trained model to produce incorrect outputs leading to
incorrect predictions. Since ML is in the center of intelligent
fault diagnosis, these attacks may have serious consequences
such as undetected failures [6]. Hence, there is a need for novel
intelligent learning solutions that can stay resilient against
various adversarial attacks.

In this work, we propose hyperdimensional (HD) computing
as a resilient learning solution against different black-box
adversarial attacks for intelligent fault diagnosis (IFD). Our
black-box attack is based on a transferable attack strategy [7].
We first train a substitute deep learning model, a wide deep
convolutional neural network (WDCNN), and create artificial
test samples using this trained model. We then transfer these
instances to the target methods (e.g., LSTM, GRU, HD). In
testing, we measure the classification accuracy of the target
models before and after the attacks. The accuracy change gives
us the resiliency of a target method. We show that HD is the
most resilient and lightweight method, outperforming all deep
learning (DL) methods on commonly used CWRU Bearing
dataset [8]. HD is up to 67.5% more resilient and 25.1× faster
during training compared to the state-of-the-art DL methods.

II. RELATED WORK

Industrial Internet of Things (I-IoT) is an adaptation of tradi-
tional IoT for production environments focusing on machine-
to-machine communication, big data, and machine learning
for higher system efficiency and reliability. I-IoT systems are
often insufficiently secure and vulnerable due to off-the-shelf
communication protocols [2]. An adversary can exploit these
vulnerabilities to arrange a cyberattack. There are various
cyberattacks against I-IoT systems such as denial of service,
side channel, and attacks against ML [2]. We focus on attacks
against ML where an attacker corrupts the collected data or
model parameters leading to worse prediction performance.
These attacks are dangerous since data analytics is an indis-
pensable part of I-IoT systems. They can result in serious
outcomes, e.g., undetected failures in a system [6].

Predictive maintenance determines an optimal maintenance
schedule based on time-to-failure prediction of industrial as-
sets [5]. Data-driven predictive maintenance utilizes historical
data to create ML models. Intelligent fault diagnosis (IFD)
is a branch of data-driven PDM which classifies different
fault types in advance. There are various IFD methods, such
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as convolutional neural network (CNN) [9], long short-term
memory (LSTM) [10], gated recurrent unit (GRU) [11], en-
semble learning [12], etc. However, adversarial attacks against
deployed ML models can lead to serious consequences for
a PDM system such as delayed maintenance or replacement
of a machine [6]. Mode and Hoque [6] analyze the impact
of different adversarial attacks in remaining useful life (RUL)
prediction domain. They show that adversarial attacks can lead
to 5× worse prediction performance. This work is limited in
terms of the number of attack and DL models. Gungor et
al. [13] propose stacking ensemble learning framework as a
resilient learning solution which can select the most resilient
base learners efficiently. Their framework can perform well
in the presence of cyber-attacks and has up to 60% higher re-
siliency compared to the most resilient individual ML method.
In our paper, we propose a lightweight learning solution HD
which can stay resilient against different adversarial attacks.

Hyperdimensional (HD) computing was introduced as a
brain-inspired learning solution for robust and efficient learn-
ing [14]. HD encodes raw data into high-dimensional vectors
(i.e., hypervectors) and then performs simple operations in this
space, e.g., element-wise addition, dot product. HD has been
employed in a range of applications such as activity recog-
nition [15], speech recognition [16], and biomedical signal
processing [17]. However, the security aspect of emerging
HD classifiers has not been clearly understood. Yang and Ren
[18] showed that HD can be vulnerable to even minimally-
perturbed adversarial samples. To strengthen the security of
HD, they used adversarial training and retraining. In our work,
we show that by using non-linear encoding, HD can stay
resilient against different black-box adversarial attacks. To the
best of our knowledge, HD has not been used in PDM domain
where it can provide both lightweight and robust learning so-
lution. In our work, we propose HD as a resilient and efficient
learning solution to adversarial attacks. Our experiments show
that HD is more resilient against various adversarial attacks
compared to the state-of-the-art DL methods while bringing
significant computational advantage.

III. ADVERSARIAL ATTACK METHODS

We adapt a transferable black-box attack strategy [7] where
we select a single substitute model and craft examples using
this model. We then transfer the created examples to target
models. In this strategy, attacker does not need to know
anything about the target models, yet have an access to the
input data. Black-box attack represents a more realistic attack
scenario in a way that the attacker can be an outsider, with
limited or no knowledge about the internal system details [7].

We select 4 different state-of-the-art adversarial attack
methods: fast gradient sign method (FGSM), basic iterative
method (BIM), momentum iterative method (MIM), and robust
optimization method (ROM). The selected methods utilize
loss gradient information to craft adversarial examples by
adding different amounts of perturbation. In that sense, they
represent different attack scenarios. An adversary, who is able

to access the I-IoT system data (e.g., collected sensor mea-
surements), can implement these methods using a substitute
model and harm the prediction performance of target models
without being detected. We define the following variables
to explain different attack strategies: θ (parameters of the
substitute model), x (collected sensor input data), y (fault
types), J(θ, x, y) (cost function to train the substitute model).

A. Fast Gradient Sign Method (FGSM)

FGSM first calculates the gradient of the cost function with
respect to the input of the neural network [19]. Adversarial
examples are then created based on the gradient direction:

ẍ = x+ ϵ ∗ sign(∇xJ(θ, x, y)) (1)

where ẍ represents the crafted adversarial examples and ϵ
denotes the amount of the perturbation.

B. Basic Iterative Method (BIM)

BIM is an improved version of FGSM where FGSM is
applied multiple times with really small step size [20]. BIM
perturbs the original data in the direction of the gradient
multiplied by the step size α:

ẍ = x+ α ∗ sign(∇xJ(θ, x, y)) (2)

where α is obtained by dividing the amount of perturbation
(ϵ) by the number of iterations (I): α = ϵ/I . Then, BIM clips
the obtained time series elements to ensure that they are in the
ϵ-neighborhood of the original time series.

C. Momentum Iterative Method (MIM)

Momentum Iterative Method (MIM) solves underfitting
and overfitting problems in FGSM and BIM respectively by
integrating momentum into the BIM [21]. At each iteration i,
the variable gi gathers the gradients with a decay factor µ:

gi+1 = µ ∗ gi +
∇xJ(θ, ẍi, y)

∥∇xJ(θ, ẍi, y)∥1
(3)

where the gradient is normalized by its L1 distance. The
perturbed data for the next iteration is created in the direction
of the sign of gi+1 with a step size α:

ẍi+1 = ẍi + α ∗ sign(gi+1) (4)

D. Robust Optimization Method (ROM)

The goal of a supervised learning problem is to find
model parameters θ that minimize the empirical risk
E(x,y)∼Ξ[J(θ, x, y)] where Ξ is the underlying supervised
data distribution. However, this formulation cannot handle the
change in input data. To solve this problem, set of allowed
perturbations ∆ is introduced. Then, empirical risk formula-
tion is modified by feeding samples from the distribution Ξ
directly into the loss function J leading to the following min-
max (saddle point) optimization formulation [22]:

min
θ

ζ(θ), where ζ(θ) = E(x,y)∼Ξ[max
δ∈∆

J(θ, x+ δ, y)] (5)

Here, while inner maximization finds an adversarial version
of a given data point x that achieves a high loss, outer

 



minimization discovers model parameters to minimize the
adversarial loss given by the inner attack problem. To solve
the robust optimization problem, ROM replaces every instance
with its FGSM-perturbed counterpart.

IV. PROPOSED FRAMEWORK

In this section, we present our hyperdimensional (HD)
computing and black-box attack frameworks.

A. Hyperdimensional (HD) Computing

HD is a computing paradigm inspired by the fact that
brains take sensing data and map it into a high dimensional
sparse representation before analysis. HD mimics this by
mapping each data point into high-dimensional space D. All
computational tasks are performed in D-space using simple
operations such as element-wise additions and dot products.
Fig. 1 illustrates HD learning framework which contains 3
main stages: encoding, training, and inference.

Fig. 1: HD Learning Framework

1) Encoding: The first step of HD is to encode input data
into hyper-vectors. Most of the proposed encoding methods
[23] linearly combine the hyper-vectors corresponding to each
feature, resulting in sub-optimal classification quality [24].
In this work, we use non-linear encoding which considers
the non-linear interactions between the feature values with
different weights and exploits the kernel trick. This encoding
approach is based on a study which shows that the Gaussian
kernel function can be approximated by the dot product of two
vectors [25]. Assume that an input vector in original space
Ξ⃗ = {ξ1, ξ2, . . . ξn} ∈ Rn. Encoded high-dimensional vector
is represented as H⃗ = {h1, h2, . . . , hD} ∈ RD where D ≫ n.
Encoding from Ξ⃗ to hi is based on the following equation:

hi = cos(Ξ⃗ · B⃗i + bi)sin(Ξ⃗ · B⃗i) (6)

where B⃗ks are randomly chosen of dimension D ≃ 10k and
bi ∼ U(0, 2π). That is, B⃗kj ∼ N (0, 1) and δ(B⃗k1, B⃗k2) ≃ 0,
where δ is the cosine similarity.

2) Training: The second step of HD, model training con-
sists of two steps to generate hyper-vectors representing each
class. The first step, initial training, performs element-wise
addition of all encoded hyper-vectors in each existing class.
Let’s assume that H⃗i is the encoded hyper-vector of input i.
We know that each input i belongs to a class j. Hence, H⃗j

i

denotes the hyper-vector for input i from class j. In the initial

training, HD simply adds all hyper-vectors of the same class
to generate the final model hyper-vector:

C⃗j = ηH⃗j
0 + ηH⃗j

1 + · · · =
∑
m

ηH⃗j
m (7)

where η is the learning rate. This process is also called
as one-pass training since each input is visited only once
and added to class hyper-vectors. The second step of HD
training, retraining, performs model adjustment by iteratively
going through the training dataset. Retraining is beneficial for
HD to improve the prediction accuracy. During this step, the
encoded hyper-vector of each input is created again, and its
similarity with the existing class hyper-vectors is checked. If
HD misclassifies, say that H⃗j from class C⃗j is predicted as
class C⃗k, it updates its model as follows:

C⃗j = C⃗j + ηH⃗j

C⃗k = C⃗k − ηH⃗j
(8)

which means that the information of H⃗j causing misclassifi-
cation to C⃗k is discarded.

3) Inference: In the last step, HD checks the similarity
of each encoded test data with the class hyper-vector. Most
commonly, cosine similarity is used for the similarity check
although other metrics (e.g., Hamming distance) could be
suitable based on the problem. To calculate cosine similarity
between hyper-vector H⃗ and class hyper-vector C⃗j :

cos(H⃗, C⃗j) =
H⃗ · C⃗j

∥H⃗∥ · ∥C⃗j∥
(9)

which is calculated by the dot product of the H⃗ and C⃗j divided
by the product of these two vectors’ lengths. As an output of
this step, HD provides the most similar class.

B. Black-box Attack Framework

In this work, we use a black-box transferable attack strategy
which first trains a substitute model and crafts new test
instances using the trained substitute model. For full list
of DL methods used in this paper, you can refer to the
Section V-B. As our substitute model, we select wide deep
convolutional neural network (WDCNN) since it is one of the
most commonly used DL methods in intelligent fault diagnosis
[12], [26]. For our black-box attack setting, we assume that an
adversary has access to the training and test data, yet does not
know anything about the attacked (target) models. We illustrate
our black-box attack framework in Fig. 2. Attacker first trains
the substitute model (WDCNN) and use the trained model to
create perturbed test data. Attacker can employ different attack
strategies to obtain perturbed test data (see Section III for
the attack strategies used in this paper). Afterwards, adversary
sends these crafted examples to the target models in testing
time. In Fig. 2, we give long short-term memory (LSTM) as
the target model for illustration purposes. However, note that
there is a pool of pretrained target models adversary is not
aware of (thus black-box attack). Attacker simply sends the
created examples to the target models to see if the attack will

 



Fig. 2: Black-box Attack Framework

be successful or not. We measure the attack success based on
change in test data classification accuracy before and after the
attack where accuracy is defined as:

Accuracy =
Number of correct predictions
Total number of test samples

(10)

Change in accuracy gives us the resiliency of a learning
method which we measure by the metric called Compromise
which is formulated as:

Compromise =
Accuracynormal

Accuracyperturbed
(11)

where Compromise > 1 (under the assumption that at-
tacks lead to worse prediction performance). The smaller the
compromise value is, the more resilient the model becomes
against the adversarial attack. For instance, given two methods
RNN and LSTM, and their compromise values 5 and 2
respectively, we can conclude that LSTM is more resilient
against the adversarial attack. If we have M number of
adversarial attacks (M > 1), then we need to calculate the
mean compromise value for each learning method as follows:

Compromisemean =

(
M∑
i=1

Accuracynormal

Accuracyiperturbed

)
/M (12)

Because we have multiple attack strategies (where M = 4),
mean compromise gives a more accurate idea about single
model resiliency. Overall, we obtain mean compromise value
for each learning method and use this metric for our ex-
perimental analysis. Furthermore, to show the HD resiliency
improvement, we define the following improvement metric:

Improvement =

(
CompromiseDL − CompromiseHD

CompromiseDL

)
(13)

where CompromiseDL denotes the single DL model mean
compromise value, and CompromiseHD is the HD mean
compromise. We report the improvement in percentage (%).
Improvement signifies the resiliency of our HD learner against
adversarial attacks compared to a single DL model.

Fig. 3: CWRU Experimental Test Apparatus [27]

V. EXPERIMENTAL ANALYSIS

A. Dataset Description

We use Case Western Reserve University (CWRU) Bearing
dataset [8], a widely used benchmark for fault diagnosis.
Fig. 3 represents the experimental test apparatus to collect
this dataset. The data were collected from both the drive
end accelerometer and the fan end accelerometer at 12k
samples/second over a range of motor loads (from 0 hp to
3 hp). Both datasets (drive end and fan end) contain 19,800
training and 750 test samples. Bearing used in this experiment
has three components: rolling element, inner race, and outer
race. 9 different fault types are provided in the dataset based
on the fault diameter (0.007, 0.014, and 0.021 inches) and the
component (plus the normal bearing condition).

B. Experimental Setup

Selected Deep Learning (DL) Methods: We select 9
different DL methods: long short-term memory (LSTM) [10],
gated recurrent unit (GRU) [11], wide deep convolutional
neural network (WDCNN) [28], convolutional recurrent neural
network (CRNN, CLSTM, CGRU) [27], and simplified CRNN
(SCRNN, SCGRU, SCLSTM) [27]). We cover a good range
of DL methods, increasing the generalizability of our study.

Adversarial Attack Methods: We select the following
parameters for our adversarial methods: fast gradient sign,
basic iterative, momentum iterative, and robust optimization
[21], [22]: amount of perturbation (ϵ): 0.1, step size (α): 0.001,
number of iterations (I): 100, decay factor (µ): 1.

Parameter Selection: For both DL methods and HD, we
use a sliding time window of size 100 with a number of epochs
of 100. We replicate each experiment 10 times and report
average values where we run all experiments on a PC with
16 GB RAM and an 8-core 2.3 GHz Intel Core i9 processor.
For DL methods, the following hyper-parameters are selected:
Adam optimizer with learning rate 0.001, relu activation
function, batch size of 16. For HD, we select the following
parameters: encoding: non-linear, hyper-vector dimension size:
10,000, learning rate: 0.005, number of epochs: 100, similarity
metric: cosine.

Number of Training Samples: We measure the selected
methods’ resiliency by using different number of training
samples while using the whole test data. Specifically, our
smallest experiment configuration uses 1.2% (240 samples)
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Fig. 4: Mean Compromise Analysis

of the whole training data where we double this ratio until
we reach approximately 38.8% (7680 samples). We call this
ratio sample training ratio (STR) for the rest of this section.
Considering different STRs is crucial for intelligent fault
diagnosis (IFD) since it might not always be feasible to label
fault data for the whole training dataset. IFD methods should
perform well under limited supervision [12].

C. Resiliency Analysis

Mean Compromise Comparison: We analyze the re-
siliency of selected DL models and HD using mean com-
promise metric defined in Equation 12. Fig. 4 shows the
mean compromise values of the 6 most resilient learning
methods under different sample training ratios for drive end
(Fig. 4a) and fan end (Fig. 4b) datasets. In these figures, x-
axis represents the selected STRs and y-axis gives the mean
compromise values where each color represents a different
learning method. We can observe that the mean compromise
of a DL method changes significantly. To illustrate, while
SCRNN (represented with purple color) is the most resilient
method for really small STRs (e.g., 1.2, 2.4), it becomes
the least resilient algorithm as we reach the maximum STR.
For drive end dataset, we can observe that HD is the most
resilient method for STRs greater than 2.4%. As the number
of training samples increases, HD becomes a more resilient
method compared to the DL algorithms. We can make a
similar observation for fan end dataset as well. For STRs
larger than 9.6%, HD is the most resilient method against
adversarial attacks. To present a single mean compromise

TABLE I: Average Compromise Comparison

Method / Dataset Drive end Fan end
CGRU 2.77 2.52

CLSTM 2.52 2.69
CRNN 2.30 2.77

SCLSTM 1.59 1.42
SCGRU 1.58 1.56
SCRNN 1.54 1.69
LSTM 1.52 1.45
GRU 1.42 1.42
HD 1.24 1.30

TABLE II: Average and Maximum Resiliency Improvement
of HD over DL Methods

Drive end Fan end
DL Method Average (%) Maximum (%) Average (%) Maximum (%)

CGRU 51.34 61.9 44.25 64.5
CLSTM 48.1 54.1 48.3 67.5
CRNN 42.1 52.4 49.9 64.4

SCLSTM 21.1 34.5 8.1 19.3
SCGRU 20.2 33.5 14.4 38.1
SCRNN 15.3 41.1 14.8 52.4
LSTM 18.5 27.6 10.0 21.7
GRU 10.9 25.9 8.0 14.2

value (for better understanding), we calculate the average of
mean compromise values over all STRs. Table I presents these
average compromise values for all the methods. When we
compare DL methods (i.e., all methods excluding HD), we
can observe that recurrent neural network structures are the
most resilient. Specifically, GRU is the most resilient DL
method with an average compromise value of 1.42 for both
datasets. This observation can be attributed to the fact that our
hybrid DL model structures contain convolutional layers. Since
our crafted examples are based on wide deep convolutional
neural network, more test examples are able to deceive hybrid
methods. Most importantly, according to Table I, HD is the
most resilient method on average outperforminng other DL
methods at both datasets. This shows that HD provides a
resilient learning solution performing well even under different
black-box adversarial attack configurations.

HD Resiliency Improvement: We calculate HD resiliency
improvement over the selected DL models using Equation 13
for each STR configuration. Then, we find the maximum and
average improvement for each DL method. Table II demon-
strates the HD average and maximum resiliency improvement
over the selected DL methods. For drive end experiment, HD
improves DL model resiliency by up to 61.9% where this
number rises to 67.5% for fan end dataset. Compared to the
most resilient DL method (GRU), HD improves the resiliency
by up to 25.9% and 14.2% for drive end and fan end data sets
respectively. We are able to verify that HD provides a resilient
learning solution against adversarial attacks.

Training Overhead Comparison: Table III presents target
models’ training time (in seconds). In this table, each row
represents a different target model (where the models are
ordered in decreasing training overhead) and each column
corresponds to the selected STR. We can observe that HD
is the most lightweight model across all STRs. In the last
column of this table, we share the average (across sample

 



TABLE III: Target Models Training Time Comparison

Sample Training Ratio (%) Average
Method 1.2 2.4 4.8 9.6 19.4 38.8 Normalized
LSTM 151.0 366.1 514.8 980.4 1882.4 3294.8 25.1
GRU 161.5 307.7 451.5 861.5 1623.3 3165.5 23.0

CLSTM 16.0 31.8 81.0 174.6 413.7 820.2 5.4
CGRU 15.7 61.2 94.2 196.9 360.8 727.5 5.1

SCLSTM 15.6 28.9 52.2 119.5 246.4 488.6 3.3
SCGRU 15.2 27.6 50.6 106.8 228.1 448.5 3.1
CRNN 10.8 19.4 36.1 77.4 167.6 327.1 2.2

SCRNN 7.7 13.8 26.9 53.6 98.6 198.3 1.4
HD 6.0 10.2 18.6 37.5 72.0 141.8 1.0

training ratios) normalized training time with respect to HD.
HD can achieve up to 25.1× training speed up compared
to DL methods. Compared to the most resilient DL method
(GRU), HD brings 23× faster training. By this analysis, we
can conclude that HD also provides a computationally efficient
learning solution while being resilient to adversarial attacks.
Training overhead is especially critical for I-IoT systems
since data is collected continuously. When new data arrives,
learning models require retraining to keep their prediction
performances at a certain level [29]. HD can alleviate this
retraining overhead due to its lightweight feature.

VI. CONCLUSION

Industrial Internet of Things (I-IoT) is a notion that facili-
tates monitoring, automation and reliability of smart devices
in production environments. I-IoT ensures that these devices
are connected to the Internet which helps collecting big data,
and utilizing this data to extract useful information. However,
these interconnection brings numerous security vulnerabilities
which can be exploited by an attacker to harm the system.
Attacks against ML deceive ML methods with fake inputs
leading to worse prediction performance. Hyperdimensional
(HD) computing is a novel learning solution which is robust
against noise. In this paper, we utilize HD to stay resilient
against created black-box attack scenarios. Our experiments
show that HD can improve the resiliency of the state-of-the-
art DL methods by up to 67.5%. HD can also achieve up to
25.1× training speed up compared to DL methods, providing
a lightweight learning solution. This means that HD can still
perform well and efficiently under adversarial attacks which
leads to more accurate replacement and maintenance decisions
even under cyberattacks.
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