
SparseMEM: Energy-efficient Design for
In-memory Sparse-based Graph Processing

Mahdi Zahedi, Geert Custers, Taha Shahroodi, Georgi Gaydadjiev, Stephan Wong, Said Hamdioui
Department of Quantum and Computer Engineering, Delft University of Technology, Delft, The Netherlands

Email: {M.Z.Zahedi, G.A.J.Custers, T.Shahroodi, g.n.gaydadjiev, J.S.S.M.Wong, S.Hamdioui}@tudelft.nl

Abstract—Performing analysis on large graph datasets in an
energy-efficient manner has posed a significant challenge; not
only due to excessive data movements and poor locality, but also
due to the non-optimal use of high sparsity of such datasets.
The latter leads to a waste of resources as the computation is
also performed on zero’s operands which do not contribute to
the final result. This paper designs a novel graph processing
accelerator, SparseMEM, targeting sparse datasets by leveraging
the computing-in-memory (CIM) concept; CIM is a promising
solution to alleviate the overhead of data movement and the
inherent poor locality of graph processing. The proposed solution
stores the graph information in a compressed hierarchical format
inside the memory and adjusts the workflow based on this
new mapping. This vastly improves resource utilization, leading
to higher energy and permanence efficiency. The experimental
results demonstrate that SparseMEM outperforms a GPU-based
platform and two state-of-the-art in-memory accelerators on
speedup and energy efficiency by one and three orders of
magnitude, respectively.

Index Terms—in-memory, memristor, graph, sparsity

I. INTRODUCTION

Graph processing is employed in a wide range of areas
including but not limited to social media analysis [1], urban
planning [2], and machine learning [3]. Graph processing is
well-known for its three main characteristics [4], [5]: 1) poor
locality or random access pattern to the memory, 2) simple
and a small amount of computation over the accessed data, 3)
high sparsity of the graphs which implies that the computations
are frequently performed on zeros operands. Traditionally, the
active portions of the graph are loaded sequentially into the
memory hierarchy of the system while the rest of the graph
is stored in the secondary memory. Due to the explosion of
graphs’ size, data movement across the memory hierarchy
imposes a considerable overhead compared to the actual
computation time/energy and limits the system’s performance
due to the maximum memory bandwidth. Moreover, some part
of this latency and energy is wasted due to the sparsity of
the graph. Clearly, there is a need for new architectures and
methodologies to address the challenges mentioned above.

Several hardware accelerators were proposed to enhance
the energy efficiency and performance of graph processing.
Some of them have focused on optimizing memory access
[6], others on improving the computational efficiency [7].
To further improve the system’s efficiency beyond memory
bandwidth limitation, near-memory computing was deployed
in some previous works; e.g., TESSERACT [8] implements
a vertex-centric programming model on top of Hybrid Mem-
ory Cube (HMC). To mitigate the communication overhead
between different memory cubes, numerous solutions based

on efficient graph partitioning [4], configurable interconnect
[9], and batched-based communication [10] were provided. To
further reduce the memory bandwidth limitation, GraphR [5],
GRAM [11], and GraphSAR [12] proposed promising designs
by exploiting computing-in-memory (CIM) based on emerging
non-volatile memristors. Unlike the works mentioned earlier,
GraphSAR [12] takes into account graph sparsity and provides
a CIM sparsity-aware design on top of memristor devices in
which sub-graphs with low density are divided into smaller
ones. This approach can partially eliminate the sparsity and
has a high pre-processing overhead. Hence, there is still a need
for energy-efficient solutions that minimize the data movement
overhead while taking the data sparsity into consideration.

In this paper, we propose SparseMEM, an energy-efficient
design leveraging CIM; the design obtains maximum benefit
from data sparsity. SparseMEM presents graph information
in a hierarchical compressed format and comprises two key
components: 1) Destination-Weight (DW) Crossbar, where the
graph information is stored in a novel compressed represen-
tation; 2) Translation-Table (TT) Crossbar, which helps to
navigate through the DW Crossbar. We implement the design
using ReRAM memristor technology; memristor devices have
great scalability, high density, near-zero standby power, and
non-volatility [13], [14]. We compare SparseMEM with soft-
ware implementation on a GPU platform as well as two CIM
designs [5], [12]. The results show that we achieve 18× speed
up and 2000× energy efficiency on average compared to the
baselines. In short, our main contributions are:

• A novel data representation tailored for spars-based graph
processing and targeting computing-in-memory designs.
This enables the computations over a compressed graph
representation (stored inside the memory) irrespective of
the used memory technology;

• An optimized and scalable end-to-end ReRAM-based
computing-in-memory accelerator that makes use of the
proposed data representation for several widely used
graph algorithms. The efficiency of the accelerator is
studied over the different levels of graph sparsity;

• Case studies of different workloads to evaluate the design
for different performance metrics. The design is com-
pared with a software implementation on a high-end GPU
platform and two in-memory state-of-the-art designs.

The paper is organized as follows. Section II provides
background on memristor devices and graph processing. We
discuss our SparseMEM proposal in Section III. Section IV
evaluates the design, while Section V concludes the paper.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

(a)

(b)

...

...

BL1 BL2

WL1

WL2

SL1

SL2

SA or A/D converter

.
.

.

.
.

.

.
.

.

.
.

Sample and Hold

So
u

rce/G
ate

 D
rive

rs

Bitline Driver

.

.
.

.

Device in
LRS

Device in
HRS

TiN

Oxygen
vacancies

Pt

TiN

Pt

SrTiO3

SrTiO3

BL

WL

SL

(c)

Fig. 1: (a) ReRAM memristor device behavior (b) 1T1R mem-
ristor cell (c) CIM tile encompassing crossbar and peripheries

II. BACKGROUND

A. CIM based on Memristor devices

Despite charge-based memories, memristor devices hold
data as resistance levels. The data can be presented as a binary
value utilizing a low resistive state (LRS) and a high resistive
state (HRS). Among different memristor technologies, Figure
1(a) illustrates Resistive Random-Access Memory (ReRAM)
devices [15] consisting of a metal-insulator-metal stack; the
bipolar device is set and reset by changing the polarity of
the programming voltage (e.g., 2V) to form or dissolve the
conducting filament. To read the device without disturbance,
a small voltage (e.g., 0.2V) is applied, and the current (voltage)
through (across) the device should be sensed while program-
ming the device requires higher voltage/current and longer
latency. Figure 1(b) shows a schematic representation of 1T1R
memristor-based structure. This is a fundamental block for
constructing a CIM tile encompassing memristors in crossbar
structure and peripheries, as shown in Figure 1(c), where
drivers are employed to drive Select-line (SL), Word-line
(WL), and Bit-line(BL). The analog output of the crossbar
is captured and converted to the digital domain using a sense
amplifier (SA) or A/D converter (ADC).

B. Fundamentals of graph processing and motivation

A widely used method of graph representation is an al-
gebraic representation. In this method, an adjacency matrix
is constructed where each entry (i, j) represents an edge
from source vertex i to destination vertex j. This represen-
tation allows for intuitive calculations using linear algebra
operations. However, naive storage of this matrix in memory
does not scale. The storage occupied by a 2D matrix grows
quadratically, meaning that large graphs quickly occupy an
impractical amount of memory. However, by monitoring the
graph information stored in the memory, we observe that most
of the matrix elements do not contribute to the result of the
computation since they represent an edge that does not exist
between destination and source nodes. Figure 2 presents the
sparsity of some well-known datasets [16]; this illuminates the
intensity of sparsity in adjacency representation. Operating on
sparse data not only increases the memory requirements, but
also brings the computational efficiency down. The solution
in this paper aims to maximize computational efficiency and
resource utilization while performing over sparse datasets.

#edge #Vertices #Average degree

wiki-Vote (VW) 103689 7000 29,62542857

amazon (AZ) 1234877 262000 9,426541985

Slashdot (SD) 948464 82000 23,13326829

Epinions (EP) 508837 75000 13,56898667

email-Eu 25571 1005 50,88756219

AstroPh 198110 18772 21,10696782

com-Orkut (OK) 117000000 3000000 39

LiveJournal 69000000 4800000 28,75

web-Google 5100000 875000 11,65714286

web-Standford (WS) 2300000 281000 16,37010676

98,9%

99,3%

99,7%

91%

94%

97%Sp
ar
si
ty

0

5

10

15

20

25

30

35

40

45

Fig. 2: Percentage of sparsity in adjacency matrix over some
well-known graph datasets

Preprocessing

Disk
Preprocessed

dataset

Graph
processing

ReRAM
Memory

ReRAM Graph
engines

Decompressed
to Adjacency

Compressed
Hierarchical Mapping

Lo
ad

 n
ew

su

b
gr

ap
h

Lo
ad

 n
ew

bl

o
ck

GraphR

SparseMEM

Translation-Table
Crossbar

Destination-
Weight Crossbar

ReRAM Graph engines

Fig. 3: SparseMEM and GraphR workflow comparison. Re-
ducing the overhead of device programming by enabling
computation over a compressed representation

III. SparseMEM Architecture

A. Overview of SparseMEM

Figure 3 shows the workflow of SpraseMEM compared to
one of our baselines GraphR [5]. As stated before, real-world
graph datasets are extremely large, even using compressed
representations. However, the size of the storage unit, ReRAM
memory, is practically limited due to the current technology
restrictions. Therefore, we need to store the entire prepro-
cessed graph dataset on disk. In the GraphR approach (as
shown in Figure 3), the computation and storage are distin-
guished even within the ReRAM crossbars. While the first part
(ReRAM Memory) holds the graph information loaded from
the disk, the second part (ReRAM Graph engines) performs
the computation over the uncompressed information. Never-
theless, the following challenges are faced: (a) Considerable
data movement between ReRAM memory and Graph engines
reduces the performance and energy efficiency of the system;
(b) Conversion from the coordinate list (a compressed repre-
sentation) to the adjacency representation (used for processing)
imposes extra processing overhead on ReRAM engines in each
iteration; and (c) Mapping the adjacency matrix to the graph
engines leads to poor resource utilization due to high data
sparsity. It is worth mentioning that increasing the number
of memristor device programming reduces the endurance and
energy efficiency.

SparseMEM presents the graph information in a new com-
pressed hierarchical format inside the ReRAM crossbars.

1 2 1 3

2 3 1 4

2 3 5 2

1 4 2 3 5

2

4

5

M 1 2 M M

1 M 3

2 M M 5 M

M 3 5 M 2

M M

M M M 2 M

SparseMEM

1 2

3 5

41 3

2

GraphR

iteration=1

Clk=1

Clk=2

Clk=1

iteration=2

Clk=1

Clk=2

...

...

Destination-Weight Crossbar

Periphery

Periphery

M 1 2 M M

1 M 3

2 M M 5 M

M 3 5 M 2

M M

M M M 2 M

1 1 1 1 1

Periphery

d[1]= 0

M 1 2 M M

1 M 3

2 M M 5 M

M 3 5 M 2

M M

M M M 2 M

1 1 1 1 1

Periphery

d[2]= 1,
d[3]= 2

1 2 1 3

2 3 1 4

2 3 5 2

1 4 2 3 5

2

4

5

d[1]= 0 Periphery

1 2 1 3

2 3 1 4

2 3 5 2

1 4 2 3 5

2

4

5

d[2]= 1,
d[3]= 2

Periphery

Clk=3

Clk=4

Clk=1

Clk=2

(a) (b) (c)

Destination-Weight CrossbarDestination-Weight Crossbar

Fig. 4: (a) Graph example; (b) mapping of graph information into crossbar for computation phase considering SparseMEM
and GraphR design; (c) the first two iterations of the SSSP algorithm starting with source vertex 1.“M” means no connection

The design comprises two main components: 1) Destination-
Weight (DW) Crossbar, where the graph information is stored
in compressed representation 2) Translation-Table (TT) Cross-
bar, which decodes the information in the DW Crossbar and
guides to extract information regarding the positioning of
vertices which is needed for computation. This allows us to
perform the computation exactly where the data is stored
inside the ReRAM memory. Hence, there is no separation
between ReRAM memory and the ReRAM processing unit.
The SparseMEM major differentiators are: (a) it alleviates
the number of data loading from disk due to the efficient
use of ReRAM memory; (b) it uses computational resources
efficiently by performing computation over compressed in-
formation; and (c) it eliminates the data conversion from
compressed to adjacency representation.

B. Graph mapping and data representation

In this section, we explain our compressed hierarchical
representation by providing a simple example based on a toy
graph depicted in Figure 4(a). To clarify more on SparseMEM
and identify the differences, we compare it with the GraphR
design [5], where the adjacency matrix is directly mapped to
the crossbar (similar to GraphSAR [12]).

In the case of GraphR (below part of Figure 4), where
the adjacency matrix is directly mapped to the crossbar, the
storage of edge weights encodes more information than just the
weight. Since the entries are expanded, the location of the edge
in the crossbar also encodes the source and destination vertex
of this edge. Figure 4(b) shows the mapping used in GraphR.
As an example, the first row of the crossbar shows which
vertices of the graph are connected to vertex 1, the second
row in the crossbar gives the vertices connected to vertex 2,
etc. For example, vertex 1 is connected to vertices 2 and 3;
entities in the matrix give the weight of connections (1 and 2)
and “M” denotes no connection. However, this information is
lost when the edges are stored in a compressed format. Thus,
a proper mapping to preserve this information is required.

In the case of SparseMEM design (top part of Figure 4),
optimal use of storage is made. Each graph’s vertex gets a
sub-array in the Destination-Weight (DW) Crossbar; each
of these sub-arrays consists of two rows: one for the index
of destination vertices and one for the weights of the edges
connecting the source to destination vertices; the number of
columns in a sub-array depends on the connectivity of a vertex
to other vertices. In Figure 4(b), each color in the DW Crossbar
represents a sub-array for a vertex. For example, the pink color
presents the sub-array associated with vertex 1. As vertices 2
and 3 are connected to vertex 1, we store the index of these
vertices in the first row (being 2 and 3) and their weights
(being 1 and 2 respectively) in the second row. Note that,
in SparseMEM, only the non-sparse data is stored which is
required for computation. E.g., for vertex 1 only four values
are stored in DW Crossbar. However, in the GraphR design,
the entire row 1, which represents the collection of edges
with source vertex 1, has to be stored. All these devices
contribute to the execution, even though only two hold the data
of interest and the rest hold a predefined value representing
no connection.

The key question is now how to preserve the information
regarding the location of edges belonging to a vertex in the
DW Crossbar. In order to encode this information, a separate
Translation Table (TT) Crossbar is used. This crossbar is
employed to encode the location of the edges of a particular
source vertex (being stored in the DW Crossbar) and navigates
through it. In the TT Crossbar, we store the information
for each vertex as ‘start address’ and ‘end address’; these
refer to the first and last location, respectively, occupied by
a vertex in the DW Crossbar. Figure 5 illustrates an example
of 4× 4 TT Crossbar; it assumes the addressing is performed
in an increment manner from left to right (i.e., fast column
addressing). The first two addresses are reserved for vertex
1, the second two addresses for vertex 2, etc. For example,
the start and end addresses of vertex 3 stored in the TT
Crossbar are 6 and 7, respectively. To translate the address

2 3 1 4 4

1 2 1 3 2

1 2 3 5

2 5 3 5 2

4

SA

D
ec

o
d

er 6 7 8 10

Destination-Weight Crossbar

D
ec

o
d

er

vertex 1 vertex 2

1 2 3 4

SA

Cluster i

vertex 3 vertex 4

5 5
vertex 5

Translation-Table Crossbar

Fig. 5: Mapping of information regarding positioning of ver-
tices in the DW Crossbar into the TT Crossbar

to the DW Crossbar addresses, the following formula is used:
ADW = ATT + ⌊ATT /C⌋ × C where C denotes the number
of columns in the DW Crossbar and ⌊⌋ denotes the floor of
division. In the example of Figure 5, C=5; hence, for vertex
3, ADW is 11 (start) and 12 (end), assuming also fast column
addressing of DW Crossbar. Note that, the translation of ATT

to ADW skips the even rows as they always store the weights
corresponding to ADW addresses (vertices). This hierarchical
storage format eliminates sparsity, while still preserving edge
source and destination. TT Crossbar is operating in parallel
with DW Crossbar and can provide information to multiple
DW Crossbars regarding the address of active vertices for the
next iteration. Several DW Crossbars together with their TT
Crossbar form a cluster. A design may contain several clusters.

C. Execution flow

In this subsection, we explain the execution flow of Sprase-
MEM by providing an example based on Single-Source
Shortest-Path (SSSP) algorithm (see Algorithm 1). In graph
algorithms, the execution can be divided into two steps: a)
compute and b) update. Considering the SSSP algorithm, we
take a single start vertex and compute the distances “d” to
every other vertex in the graph. The vertices whose distance
values are updated in the current iteration are activated for
the next iteration. The algorithm continues until there are no
active vertices. When we access the edge that connects an
active source vertex to a destination vertex, the edge weight
has to be added to the current distance value of the source
vertex (compute step). At the end, we need to update the
destination registers (update step) where we store the distance
value of vertices to the source vertex. This is usually a simple
mathematical operator and varies across algorithms. In the case
of the SSSP algorithm, this operator is a Min function that
gives the minimum of the current computed distance value
as well as the old value for a vertex. Next, we illustrate the
algorithm for SparseMEM and GraphR implementation.

GraphR: Figure 4(c) illustrates the first two iterations (line
3 in Algorithm 1) of the SSSP algorithm where we want to
find out the distance of vertex 1 to other vertices. To clarify
more on the implementation, we consider the second iteration
of the algorithm in Figure 4(c) as an example where we
want to find the distance from vertex 1 to the rest of the
vertices through vertex 2 and 3 (they got activated after the

Algorithm 1 SSSP algorithm

1: ActiveV ertices[start]← True
2: d[start]← 0
3: while ActiveV ertices ̸= ∅ do
4: for v ∈ ActiveV ertices do
5: for each neighbour u of v do
6: New d[u]← d[v] + weight(v)(u) // compute
7: d[u]← min (New d[u], d[u]) // update
8: if d[u] changed then
9: ActiveV ertices[u]← True

10: end if
11: end for
12: end for
13: end while

first iteration). When we get access to the edges belonging
to vertex 2 (i.e., weight2[4] = 3), the current distance from
vertex 1 to vertex 2 (d[2]), which was computed in the first
iteration, has to be added up (New d[4] = d[2]+weight2(4)).
In the GraphR implementation, this addition is performed in an
analog manner where the current distance of the active vertex
d[2] is given to the crossbar as input as shown in the bottom
part of Figure 4(c). Note that, the last row is programmed to
value 1. This is because d[2] has to be first multiplied by 1
and then added to the second row storing the edge weights
belonging to vertex 2 (e.g., weight2[4]). Due to the limited
resolution of the input drivers, input data has to be sliced and
applied to the crossbar in several steps. As a consequence,
the implementation of such addition requires costly peripheral
components like power-hungry ADC and Shift-and-Add units,
as shown in Figure 6(a). After the compute step, the update
step takes place in the periphery of the DW Crossbar using a
digital circuit (Min in Figure 6), and stores the result in the
destination register dedicated to this vertex.

SparseMEM: To demonstrate how SparseMEM performs
computing, we consider the same case as we did for GraphR;
i.e., the second iteration of Algorithm 1 where we aim at
finding the distance from vertex 1 to vertex 4 through vertex
2. The compute step (i.e., New d[4] = d[2] + weight2(4))
is calculated by first reading weight2(4) from DW Crossbar
(see iteration 2 in Figure 4) and then adding it to d[2], which
is provided as input to the periphery of the crossbar. The
addition is done with a digital adder as shown in Figure 6(b).
This approach avoids activating the crossbar several times and
using Shift-and-Add units. This also helps to replace expen-
sive ADCs with simple Sense Amplifiers (SAs). However,
SparseMEM needs a bus or an interconnect component. Due
to the compressed representation in SparseMEM, the crossbar
no longer encodes vertex location. Therefore, a bus is placed
in order to navigate data to the target destination register.
As already mentioned, before computing the new distance
value (e.g., New d[4]), the index of the vertex where this
value belongs (e.g., 4) is read from the DW crossbar. This
information is used to configure the bus and navigate the new
distance value to its destination register.

SA SA SA

+ + +

BUS

input

min

Reg

...

...

...

min

Reg

min

Reg

ADC ...

Shift & Add
DMUX

min

Reg

...

min

Reg

#vertices#vertices

(a) (b)

ADC

Shift & Add
DMUX

min

Reg

...

min

Reg

...

Fig. 6: Periphery design for (a) GraphR and (b) SparseMEM

D. Sub-graphs streaming and processing

To process graphs much larger than the available memory
size provided by the crossbars, it is necessary to stream the
graph data into the crossbar from another source, such as
secondary memory storage. This is considered for GraphR,
GraphSAR, and SparseMEM. To stream a graph, we split it up
into “sub-graphs”. To be more specific, the adjacency matrix
is partitioned into sub-matrices which either represent the
connectivity within a sub-graph or between two sub-graphs.
In the case of GraphSAR [12] and GraphR [5] designs, sub-
matrices in which all elements are equal to zero are eliminated
from the process to improve efficiency in the presence of
high data sparsity. In SparseMEM, while the sub-matrices
are streamed from the secondary memory storage to the
DW Crossbars, we program the TT Crossbar as well. This
information is known at compile time and does not require
extra processing during the execution. Such a format of graph
streaming allows for processing graphs much larger than the
available memory size provided by the crossbars.

IV. EVALUATION AND DISCUSSION

A. Experimental setup

Our simulation results are obtained by creating a platform
for SparseMEM written in C++ [17], which takes graph
datasets and performs the same steps as the hardware. These
steps include the various operations performed on the crossbar,
such as reading and writing to the crossbar. The parameters
for ReRAM technology are taken from [18]. We assume each
memristor cell can hold one bit (two resistance levels) for
all the simulations. The parameters for ADCs are taken from
[19] given in 32 nm technology, and the resolution of the
input drivers for the crossbars are 1-bit [20]. We summarize
the parameters regarding the crossbar technology in Table I.
Digital peripheries are synthesized in Cadence Genus targeting
standard cell 15 nm Nangate library. Finally, we use 16-bit
integer data size in all experiments.

We evaluate SparseMEM in terms of speedup and energy
while comparing the solution with GraphR [5], GraphSAR
[12], and Nvidia Geforce RTX2080 GPU platform. We use
Nvidia-smi to obtain the power consumption of the GPU plat-
form. Our experiments concern three algorithms (application):
1) SSSP, 2) Breadth First Search (BFS), and 3) PageRank
on real-world graph data sets, which are retrieved from the
SNAP graph repository [16]. Datasets (workload) used for the
experiments are summarized in Table II.

TABLE I: Memristor tile specification

Crossbar - ReRAM (128x128 @1bit)
Energy (Single Cell) Latency

Read 40fJ 10ns
Write 20pJ 100ns

ADC (8-bit)
Energy 2pJ per sample
Latency 1ns per sample
Shared with 32 columns

SA
Energy 0.01pJ per sample
Latency 1ns per sample
Shared with 4 columns

TABLE II: List of graph datasets

Dataset Average Degree #Vertices #Edges Domain
wiki-Vote (WV) 29 7k 104k Social

amazon0302 (AZ) 9 262k 1.23M Co-purchasing
soc-Slashdot0902 (SD) 23 82k 948k Social

soc-Epinions1 (EP) 13 75k 508k Social
com-Orkut (OK) 39 3M 117M Communities

web-Stanford (WS) 16 281k 2.3M Web

B. Experimental Results

Figure 7 depicts speedup and energy improvements of
SparseMEM w.r.t the baselines. It shows the following:
1) Speedup is strongly application and workload-dependent.

E.g., SparsMEM archives minimum speedup for PageRank,
and minimum speedup for ’WV’ workload.

2) SparseMEM systematically outperforms in terms of energy
efficiency irrespective of the workload and application.

3) On the average, SparseMEM achieves 18× speedup and
2000× energy improvement compared to CIM baselines.

Speedup: Sparsity is the main factor determining the speedup
in SparseMEM compared to the baselines. Figure 8 depicts
the utilization of memristor devices in SparseMEM and
GraphR implementations; this represents the total number of
(re)programming memristor devices during the execution of
two algorithms. Less reprogramming devices in SparseMEM
leads to significant improvement in speedup. According to the
results, the minimum speedup improvement is for the Wiki-
Vote (WV) workload with the lowest sparsity (see Figure
2); as sparsity reduces, the overhead of hierarchical mapping
used in SparseMEM increases. Note that even if graphs have
similar sparsity (e.g., ‘AZ’ and ‘SD’ workloads in Figure 2),
the speedup can be different (see Figure 7); this is due to the
distribution of data over sub-graphs (graph connectivity). If the
data is scattered over many sub-graphs, there would be fewer
sub-graphs whose all elements are zero. Consequently, there
are fewer sub-graphs to be eliminated from the process, which
increases the overhead in the baselines. Among applications,
SparseMEM achieves similar (or less) performance to the
baselines for the PageRank algorithm. Since the baselines
directly map the adjacency matrix to the crossbar, analog
matrix multiplication can be supported inside the crossbar.
Therefore, they can achieve more parallelization for PageRank,
where matrix multiplication is an essential kernel.

Energy: Sparsity and the periphery design are also major
factors influencing energy consumption. As stated in sub-
section III-C, the input drivers and ADCs are major energy

Fig. 7: Speedup and energy improvement of SparseMEM compared to the baselines for three algorithms (normalized to GPU)

Fig. 8: Relative number of memristor programmings required
by SparseMEM and GraphR (normalized to SparseMEM)

consumers. In GraphR implementation, feeding a data operand
(e.g., 16 bits size) to the input driver requires several (e.g.,
16) iterations due to the limited driver resolution [21]. This
increases both energy and latency. In addition, using ADC in
the periphery consumes more energy. Hence, higher energy
overhead is imposed on the system. SparseMEM, however, is
a read-driven design where the computation (e.g., addition) is
performed in the periphery. This reduces the energy required
for computation in the crossbar as well as its periphery.

V. CONCLUSION

This paper proposes SparseMEM, an in-memory graph
processing accelerator tailored for sparse workloads. The key
idea is the compressed and hierarchical mapping of the graph
information into memristor-based crossbars to efficiently per-
form the computation inside the memory. The design requires
less reprogramming of memristor devices (i.e., read-driven),
while performing data-centric computing (CIM). The result
implies the importance of hardware/mapping co-design for
energy-efficient CIM design.

REFERENCES

[1] I. Pitas, Graph-based social media analysis. CRC Press, 2016, vol. 39.
[2] H. Peng et al., “Spatial temporal incidence dynamic graph neural

networks for traffic flow forecasting,” Information Sciences, vol. 521,
pp. 277–290, 2020.

[3] X. Dong et al., “Graph signal processing for machine learning: A review
and new perspectives,” IEEE Signal processing magazine, vol. 37, no. 6,
pp. 117–127, 2020.

[4] M. Zhang et al., “GraphP: Reducing communication for PIM-based
graph processing with efficient data partition,” in HPCA. IEEE, 2018,
pp. 544–557.

[5] L. Song et al., “GraphR: Accelerating Graph Processing Using
ReRAM,” in HPCA, 2018, pp. 531–543.

[6] J. Lin et al., “Overcoming the Memory Hierarchy Inefficiencies in Graph
Processing Applications,” in IEEE/ACM ICCAD. IEEE, 2021, pp. 1–9.

[7] S. Rahman et al., “Graphpulse: An event-driven hardware accelerator
for asynchronous graph processing,” in 53rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). IEEE, 2020.

[8] J. Ahn et al., “A scalable processing-in-memory accelerator for parallel
graph processing,” in Proceedings of the 42nd Annual International
Symposium on Computer Architecture, 2015, pp. 105–117.

[9] G. Dai et al., “Graphh: A processing-in-memory architecture for large-
scale graph processing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 38, no. 4, pp. 640–653, 2018.

[10] Y. Zhuo et al., “Graphq: Scalable PIM-based graph processing,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 712–725.

[11] M. Zhou et al., “Gram: graph processing in a ReRAM-based compu-
tational memory,” in IEEE Asia and South Pacific Design Automation
Conference, 2019.

[12] G. Dai et al., “GraphSAR: A sparsity-aware processing-in-memory ar-
chitecture for large-scale graph processing on ReRAMs,” in Proceedings
of the 24th Asia and South Pacific Design Automation Conference, 2019,
pp. 120–126.

[13] M. Zahedi et al., “MNEMOSENE: Tile Architecture and Simulator for
Memristor-based Computation-in-memory,” ACM JETC, vol. 18, no. 3,
pp. 1–24, 2022.

[14] M. Zahedi, “System Design for Computation-in-Memory: From Primi-
tive to Complex Functions,” in IFIP/IEEE VLSI-SoC. IEEE, 2022, pp.
1–6.

[15] O. Golonzka et al., “Non-volatile RRAM embedded into 22FFL FinFET
technology,” in 2019 Symposium on VLSI Technology. IEEE, 2019, pp.
T230–T231.

[16] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[17] “SparseMEM simulation platform.” [Online]. Available:
https://github.com/Geertiebear/honours

[18] K. Fleck et al., “Energy dissipation during pulsed switching of
strontium-titanate based resistive switching memory devices,” in ESS-
DERC. IEEE, 2016, pp. 160–163.

[19] L. Kull et al., “A 3.1 mW 8b 1.2 GS/s single-channel asynchronous SAR
ADC with alternate comparators for enhanced speed in 32 nm digital
SOI CMOS,” IEEE JSSC, vol. 48, no. 12, pp. 3049–3058, 2013.

[20] M. Saberi et al., “Analysis of power consumption and linearity in
capacitive digital-to-analog converters used in successive approximation
ADCs,” IEEE TCAS I: Regular Papers, vol. 58, no. 8, pp. 1736–1748,
2011.

[21] M. Zahedi et al., “Efficient organization of digital periphery to support
integer datatype for memristor-based CIM,” in 2020 ISVLSI. IEEE,
2020, pp. 216–221.

	Select a link below
	Return to Previous View
	Return to Main Menu

