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Abstract—Quantum measurement is one of the critical
steps in quantum computing that determines the probabilities
associated with qubit states after conducting several circuit ex-
ecutions and measurements. As a mesoscopic quantum system,
real quantum computers are prone to noise. Therefore, a major
challenge in quantum measurement is how to correctly inter-
pret the noisy results of a quantum computer. While there are
promising classification based solutions, they either produce
incorrect results (misclassify) or require many measurements
(expensive). In this paper, we present an efficient technique
to estimate a qubit’s state through analysis of probability dis-
tributions of post-measurement data. Specifically, we estimate
the state of a qubit using cumulative distribution functions
to compare the measured distribution of a sample with the
distributions of basis states |0) and |1). Our experimental
results demonstrate a drastic reduction (78%) in single qubit
readout error. It also provides significant reduction (12%)
when used to boost existing multi-qubit discriminator models.

Index Terms—Quantum Computing, quantum measure-
ment, error mitigation, statistical learning

I. INTRODUCTION

Quantum computing is expected to significantly out-
perform classical computing on many hard problems due
to quantum mechanical effects such as entanglement and
superposition [1], [2]. While a classical computer can only
be in one possible state at a time, a quantum computer
can be in an arbitrary combination of states at the same
time. Unfortunately, quantum computing also introduces
a significant level of noise and uncertainty compared to
classical computing [3]-[5]. Moreover, the result of mea-
suring a quantum computer forces the arbitrary state to one
known state with some probability, which requires several
executions to identify the final output.

There are various sources of noise (errors) in quantum
computers including (a) initial state preparation, (b) actual
computation, and (c) measurement of results. In this paper,
we specifically focus on mitigation of quantum measurement
errors. In order to enable noise-resilient quantum computing,
it is crucial to mitigate measurement errors that ranges from
5% to 30% in today’s machines [6]. Modern quantum com-
puters approach measurement by coupling sensitive equip-
ment (which introduces noise) with statistical techniques
that infer properties of the quantum state. This analysis is
performed on classical computers using a large amount of
quantum data produced by repeatedly measuring quantum
circuit output across many iterations (shots) to converge to
a correct solution. The statistical model used for mapping a
quantum measurement to its inferred quantum state is known
as a qubit discriminator.
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Fig. 1: An overview of quantum measurement procedure.

Figure 1 shows an overview of the measurement proce-
dure in quantum computers. In popular physical realizations
of quantum computers, such as superconducting transmons,
quantum measurement devices represent a collapsed qubit
as a 2-component vector — the in-phase and quadrature
components (IQ) of an observed wave transmitted through
the resonator [7]. The quantum measurement device returns
sets of measurement results, such as IQ points. A classifier
is then used to label each point as belonging to either |0)
or |1). Our approach uses the measurement data to form a
cumulative distribution function, which is compared to that
of the training distributions using convex optimization. Such
an approach does not exclude hidden statistical properties
that may be present in the measurement data.

Quantum measurement error arises due to noisy mea-
surement readings as well as classification errors caused
by imperfect discriminators. Hence, the accuracy of the
quantum computer is contingent on the performance of the
qubit discriminator. We propose an efficient classification
technique to improve the measurement accuracy. Specifi-
cally, this paper makes the following major contributions.

o We propose a framework for mitigation of quantum
measurement errors using cumulative distribution func-
tions to accurately classify quantum measurements.

« Experimental evaluation demonstrates the effectiveness
of our model in terms of non-linearity, statistical con-
sistency, and versatility compared to state-of-the-art
qubit discriminator approaches.

This paper is organized as follows. Section II surveys
related efforts. Section III describes our proposed frame-
work. Section IV presents the experimental results. Finally,
Section V concludes the paper.

II. RELATED WORK AND MOTIVATION
A. Related Work

Machine learning techniques are widely used for qubit
state discrimination [8]-[19]. Linear discriminant analysis
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Fig. 2: An overview of linear quantum state discrimination
in the IQ space. The model is trained by configuring the
quantum computer to output known samples of basis states
|0) and |1), which are measured and used to divide the
measurement space with a hyperplane. When performing
inference, a measurement that is located above the hyper-
plane will generate a prediction of |1); and a measurement
located below the hyperplane will generate a prediction of
|0). Training data was sampled from ibm_quito, and the
hyperplane was computed using scikit learn.

is one of the popular models for qubit state discrimination.
Figure 2 shows the basic idea of the linear discriminator. A
hyperplane is selected to partition the IQ vector space into
regions of |0) and |1) based on the measured IQ outputs
from the training data, which the model assumes follows a
Gaussian distribution. The figure highlights the difficulty of
the classification task. Due to noise in quantum systems (im-
perfect measurement devices, environmental contamination,
and qubit cross-talk), sampled data contains high variance
and may collapse into an incorrect state.

Other machine learning models such as kNN [10], [11],
deep neural networks [11]-[18], and support vector ma-
chines [12] have been used with quantum IQ data to
partition the measurement space into regions of |0) and |1).
Some of these models also consider the effects of quantum
“crosstalk” — a phenomena where unwanted interactions
among qubits can be predicted and accounted for post-
readout. While these methods offer alternative ways to
partition; they each implement the same inference workflow
by mapping each qubit measurement to a single location
within the partition space. An overall qubit state is obtained
by analyzing the frequencies associated with each predic-
tion. Beyond variations in the partitioning method, further
improvements have been obtained by enabling models to tag
samples as “inconclusive” [12], [19], and discarding such
samples from processing. Some of these methods can be
extended to classify higher energy states [18].

B. Limitations of State-of-the-Art Approaches

The existing quantum measurement classification methods
have the following fundamental limitations.

o The existing models operate by partitioning the IQ
space into regions corresponding to each basis state.
Regardless of the partitioning method used, the individ-
ual measurements are inherently noisy and often appear
to collapse into incorrect states, shown in Figure 2,
leading to incorrect mappings in the 1Q space.

o The current methods map a single IQ measurement
tuple into a single quantum state. Since only a single
measurement tuple is used for prediction, valuable
statistical information encoded within the distribution
of test data is neglected. For example, the |1) basis
state contains higher variance than the |0) state [6],
and thus sample variance — a distribution property —
contains unused information about bitstate.

e« Many current methods assume properties of quantum
data and partitions (Gaussian, linear, quadratic, etc).
Since quantum measurements diverge from ideal dis-
tributions, such assumptions may introduce bias.

e« Some current methods operate by discarding data
deemed “inconclusive”. We believe a method that quan-
tifies uncertainty without discarding data can outper-
form these techniques.

o Most qubit discriminator models are difficult to ef-
fectively boost (combine with other models). While
ensemble techniques exist, such methods require signif-
icantly more computation and have not to date demon-
strated superior results for quantum discrimination.

o It is difficult to quantify or guarantee convergence
with many state of the art qubit discriminator meth-
ods. Quantum circuits are often sampled for tens of
thousands of iterations since no stochastic framework
exists to bound the error associated with classification.
In practice, many quantum engineers evaluate the ac-
curacy of the discriminator via the use of a test set.
Sampling is repeated until the discriminator reaches an
accuracy threshold on the test set, requiring potentially

thousands of additional quantum samples.

We propose a sophisticated quantum discriminator that
overcomes these limitations, guarantees convergence, and
as an additional benefit, can produce an estimate for the
number of samples needed to attain convergence within a
threshold without requiring a holdout (testing) set.

III. DISTRIBUTION-BASED CLASSIFICATION FOR
MITIGATING QUANTUM MEASUREMENT ERRORS

The goal of measurement classification is to take the
results of measuring qubits in a quantum register (a collec-
tion of IQ points) and correctly identify the corresponding
bitstring labels. For example, after measuring the quantum
state %(|OO> +111)), the classifier should provide bitstrings
“00” and “11”, each occurring with equal probability. Tra-
ditionally, classifiers are trained to partition the 1Q space, as
shown in Figure 2. We choose to use the linear discriminator
as a baseline for this work, due to its prevalence in the
community and widespread use in open source libraries,
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Fig. 3: Visualization of the distribution approach to single
qubit state discrimination. The training |0) and |1) eCDFs
are shown in gray. The sample qubit eCDF is shown in
blue, and the fitted eCDF estimate is shown in red. The
fitted eCDF is obtained by creating a convex combination
of both gray curves with weights selected to follow the blue
curve as closely as possible, as outlined in Section III-B.
The coefficients used for the combination are the estimate
for the quibt’s state. Data obtained from ibm_quito.

such as Qiskit, and its high performance among other
discrimination methods [11] on IBM’s quantum machines.

Rather than providing yet another approach to partition
the 1Q space, we propose an entirely novel distribution-
based classification workflow that overcomes the shortcom-
ings outlined in Section II. Unlike previous methods which
produce classifications for every measurement shot, our
method directly estimates the probabilities of |0) and |1)
in one task.

In this section, we first outline the use of cumulative
distribution functions (CDF) for classification. We then show
an example of classification on a single qubit using CDFs.
Finally, we incorporate our CDF approach to existing clas-
sification techniques, as highlighted in Figure 4 — providing
the advantages of CDF while also being scalable even for a
large number of qubits.

A. Classification using Cumulative Distribution Functions

It is a well established fact that the Cumulative Distri-
bution Function (CDF) uniquely characterizes a probability
distribution. Since a qubit exists in a superposition of states
|0) and |1), it follows that the qubit exists in a mixed
distribution of basis states |0) and |1). Thus, its unique
CDF can be decomposed into a linear (convex) combination
of |0) and |1) CDFs, where the weights associated with
the constituent |0) and |1) CDFs directly represent the true
proportion of measurements that collapsed into each of the
|0) and |1) states. This decomposition for an arbitrary qubit
superposition is depicted in Figure 3.

Properties like randomness, state stability, and variance
are inherently accounted for in the CDF. Additionally, by

analyzing the CDF of the qubit as a whole, we avoid
the need to classify each shot individually to arrive at a
state estimate. Instead, we analyze properties of the qubit
distribution, the |0) distribution, and the |1) distribution.
Next, we discuss methods for estimating each of these CDFs
and the procedure used for the decomposition.

B. Empirical CDF-based Single Qubit Classification

We begin by preparing a training data set of size k for
both |0) and |1) quantum states. Each state is prepared,
measured, and tagged with the associated |0) or |1) label.
Since each measurement consists of both the in-phase and
quadrature components, both the |0) and |1) data sets have
dimensions (k by 2). We then construct a test distribution
of dimensions (k by 2) by placing the qubit into a random
mixed distribution of |0) with frequency « and |1) with
frequency 1 — «, where « is randomly selected. We will
evaluate our method’s ability to reproduce « given the test
data, the training data, and the training labels. Next, we
study the distribution of both the |0) and |1) training data
sets. We estimate the CDF of both sets by computing the
empirical CDF (eCDF). The empirical CDF is a consistent
and unbiased estimator that converges absolutely to the
true CDF. Moreover, as an additional benefit, the Dvoret-
zky—Kiefer—Wolfowitz inequality [20] provides a closed
form error bound for each of the eCDF estimators as a
function of the sample size. The eCDF is computed by
finding the proportion of values in the data set less than
or equal to z, given by

L
P(Xsm:E;I(tin) (M
where t; runs through each element of the set. Here, I(q) is
the indicator function, which is given as 1 if q is true, and 0
otherwise. We implement binary search to compute this sum
in log(k) complexity. We then perform a linear interpolation
to transform these staircase-like empirical CDFs to smooth
estimates — a technique useful for small data sets.

Algorithm 1 eCDF summation with binary Search

in: x: the value to find, array: the sorted array to search
out: the interpolated index with which z lies

1: procedure INDXINTER(z, array)

2 if > arrayllen(array) — 1] then

3 return 1

4: else if © < array[0] then

5: return 0

6 end if

7 upper <— binarySearch(x, array)

8 lower < upper — 1

9 dif ference < arraylupper| — array[lower]

10: return lower + ((x — array[lower]) /difference)
11: end procedure

Algorithm 1 describes the procedure for finding an element
x in an array with linear interpolation. If a value z



lies between indices ¢ — 1 and ¢, Algorithm 1 returns a
decimal value estimating an index between i — 1 and ¢
per the linear interpolation formula. For example, an array
containing [1, 3, 4] would return index 0.5 for the query 2, as
the value 2 lies directly in between values at indices 0 and 1.

Using this method, we compute the eCDF for both
the in-phase and quadrature component across all values
2z € Xin U Xguaq of each set. To compute the joint eCDF
of a set given by p(X < z), we assume independence be-
tween component measurement distributions, and compute
the product of the eCDF estimates for both components.
Thus, we have produced estimates for the |0), |1), and test
distributions CDF.

Algorithm 2 Computation of empirical CDF

Constraint Generation

Measurement

|
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Probabilities
Probabilities
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in: x: the domain input to the CDF function, inPhase: the
sorted in-phase data from the measurement device, quad:
the sorted quadrature data from the measurement device
out: the estimate CDF for the value z

1: procedure ECDF(z,inPhase, quad)

2: indl < indxInter(x,inPhase)

3: ind2 « indxInter(z, quad)

4: return (indl/len(inPhase)) x (ind2/len(quad))
5: end procedure

Algorithm 2 describes the procedure for producing an
eCDF estimate for the value x. Rather than computing
the sum explicitly — as defined in Equation 1 - a
binary search is performed using Algorithm 1 to
identify the indices where x would lie within the in-
phase and quadrature distributions. The indices are
interpolated, and the joint estimate is returned as the eCDF.

We use least squares regression to obtain a value for &,
under the constraint 0 < & < 1, such that they minimize

(@ F(z) + (1 - &) - G(x)) - H(z)]|

where F(x) and G(x) are the eCDF estimates for |0) and
|1), and H(z) is the estimate eCDF of the sample. & and
1 — & are the estimates for the qubit’s state. Overall, & is
computed in klog(k) time complexity.

C. Empirical CDF-based Multi-Qubit Classification

In the above section, we demonstrated how an eCDF
single qubit discriminator can be used instead of a tra-
ditional discriminator. This is possible since the eCDF
discriminator fully constrained all two basis states. In this
section, we show how the method can be employed with
existing methods for quantum computers with more than
one qubit.

With the single qubit eCDF estimation method, it is
possible to effectively decompose the mixed distribution of
a single qubit into known distributions of |0) and |1) states
using estimation and regression techniques. On a machine of
n qubits, this method generates n constraints on the position

Fig. 4: A high-level overview of the multi-qubit measure-
ment classification procedure that consists of three stages.
The first stage (Traditional Classification) uses existing
methods to produce an estimate. The second stage (Con-
straint Generation) applies the eCDF method to each qubit
to generate constraints. The final stage applies the con-
straints to the existing estimate to produce a new estimate
(Refined Classification).

space of 2™ basis states. To illustrate this point, suppose
we have a quantum computer with n = 2 bits, and it is
estimated from the above method that qubit 0 decomposes
into |0) with frequency « and that qubit 1 decomposes into
|0) with frequency ;. From this, we have the following
constraints (X indicates a “don’t care” bit that can take any
value): (1) The frequencies of states | X0) given by |00) and
|10) sum to «yp, (2) the frequencies of states |0.X) given by
|00) and |01) sum to «, and (3) the frequencies of states
|00), |01), |10), and |11) sum to 1.

For a computer with n qubits, the solution space contains
2™ unique basis states, n + 1 constraints, with 2" — (n+ 1)
remaining free variables. For time complexity purposes, a
qubit discriminator can not typically constrain all 2" states.
We demonstrate how the constraints can improve perfor-
mance and enhance state of the art classification methods. To
underscore this claim, we employ a linear discriminator to
classify quantum measurements and measure classification
performance before and after the constraints are applied. Our
workflow is highlighted in Figure 4.

We begin by creating a training distribution for each
qubit in the |0) and |1) quantum states in the same manner
as the single qubit method. We then generate a sample
convex label vector @ by sampling a random proportion
of measurements from each of the 2" states. For example,
if @ = [025 0.75 0 0], then 25% of our test
distribution would be sampled from the 00000 state, and
75% of our test distribution would be sampled from the
00001 state.

Next, we employ the existing state-of-the-art linear dis-



criminator method to produce an estimate for the qubit’s
state, given as &;j. This is done by first training n linear
discriminator models on each qubit’s training set. In the
traditional manner, each IQ pair in the test set is classified
independently as |0) or |1), producing an estimate bitstring.
This is repeated for every qubit string in the test set and the
frequencies are computed to generate &y.

Finally, we generate the constraints and produce a refined
estimate ¢y that adheres to each constraint. As described in
the previous section, we create eCDF estimates for each
qubit’s |0), |1), and test distributions. We compile these
constraints into 3, a vector of length n which, for each
qubit, independently estimates the proportion of that qubit’s
test distribution measured in the |0) state.

Due to the presence of free variables, there are many
possible candidates which adhere to all 3 constraints. Rather
than considering all of them, we define the refined estimate
Qo as the distribution closest to &y that adheres to all 3
constraints. In other words, we update the estimate & to
satisfy the marginal probabilities given by the constraints 3
while minimizing ||&; — &2

IV. EXPERIMENTS

This section demonstrates the effectiveness of our pro-
posed quantum measurement methods compared to the state-
of-the-art approaches. We first outline our experimental
setup. Next, we present our experimental results.

A. Experimental Setup

We use ibm_quito, a 5-qubit machine, to initialize states
and perform measurements. Quantum circuits and measure-
ments are performed to output |0) and |1) basis states for
each qubit. Each measurement is performed 20,000 times
(shots), thereby obtaining 20,000 samples of IQ measure-
ments in each of the |0) and |1) quantum states. Data
was partitioned into a training and testing set. We evaluate
the effectiveness of our proposed methods compared to the
state-of-the-art approach implemented in Qiskit [21] as the
linear discriminator. We use Scipy’s optimizations library
to perform all necessary minimization using the “Nelder -
Mead” method.

B. Classification Results for Single Qubits

For a single test, we first shuffle the entirety of the
experiment dataset. The set is then partitioned into training
and testing data. We then generate 1,000 random values
for «, each of which lies between 0 and 1. For each value
of a, we then build a mixed testing dataset of size 5,000
composed of a% randomly selected values from the testing
data of |0) and (1 — &)% randomly selected values from
the testing data of |1). The model is then evaluated on how
well it can reconstruct the value of .. We evaluate the mean
absolute error (MAE) as the absolute difference between the
measurement and truth, given as |& — «|.

Figure 5 shows the resulting Mean Absolute Error (MAE)
of using a basic linear discriminator versus our eCDF-based
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Fig. 5: Mean Absolute Error (MAE) for reconstruction using
traditional linear discriminator and our proposed eCDF
discriminator method. The data was shuffled across 66
iterations; and for each iteration, 1000 random distributions
were generated, reconstructed, and evaluated as described
above. The error bar depicts one standard deviation in the
sample mean MAE performance of each method.

method. The eCDF model attained a lower error at all
training sizes and greatly reduced in variance as the sample
size enlarged. This demonstrates that our proposed approach
(eCDF) can outperform traditional discriminators.
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Fig. 6: Percent improvement in Mean Absolute Error (MAE)
of proposed eCDF method compared with existing linear
discriminator across different training sample sizes.

Figure 6 shows the relationship between number of
samples and the MAE provided by our proposed approach
(CDF) as well as existing approach (Linear Discriminator).
It highlights two important points: (1) increasing training
samples improves the performance at a disproportionately
higher rate than the baseline, and (2) our proposed solution
significantly outperforms (up to 78.69%) state-of-the-art,
and attains significant improvements above the baseline at
each training size.



C. Classification Results for Multiple Qubits

We begin by configuring the quantum computer to output
each of 2° basis states for the 5 qubit machine. Similarly,
each measurement is performed k£ = 20, 000 times. It should
be noted, however, that for the purposes of evaluating the
method, we consider all 2™ states as candidates for output
of the quantum computer. In practice, our method does not
require enumeration of all 2" states; and only considers a
maximum of min (2", k) states.

For a single test, we shuffle the dataset and partition
the experimental data into training and testing datasets. We
generate a test vector by producing a random convex vector
a of size 2". We construct a test dataset of size 5,000 by
randomly sampling ;% values from the i*" basis state.

The pipeline is evaluated on how well it can reconstruct
the value of a We compute the mean absolute error as the
Ha%ﬁ‘z“, which we compare to the baseline mean

~ 2
absolute error given by M
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Fig. 7: Mean Absolute Error (MAE) for reconstruction using
traditional linear discriminator and the proposed linear dis-
criminator / eCDF estimation pipeline. The data was shuffled
across; and for each iteration 100 random distributions were
generated, reconstructed, and evaluated as described above.

As shown in Figure 7, the qubit discriminator pipeline
with our proposed eCDF model outperforms the traditional
discriminator at all training sizes. Therefore, it is beneficial
to combine eCDF with traditional models.

V. CONCLUSION

Quantum measurement classification is fundamental to a
successful execution of any quantum algorithm. Measure-
ment classification includes several nuances, such as inher-
ent physical error, as well as randomness associated with
measured data. In this work, we have introduced a new qubit
classifier model that is able to outperform the current state-
of-the-art linear discriminator. The models performance is
achieved by assuming a statistical distribution viewpoint,
which enables the model to capture important features
while ignoring the noise and bias associated with individual
measurement. Specifically, our proposed eCDF technique
significantly outperforms (up to 78.69% for single qubits)
state-of-the-art in single qubit classification accuracy. We

showed that this method offers a fundamental improvement
(up to 12%) to state of the art multi-qubit classification
methods by building a qubit discriminator pipeline that first
performs any standard qubit discriminator method, followed
by an eCDF qubit correction stage.

As demand for quantum computing increases, techniques
that can attain convergence with fewer measurements enable
quantum providers to trade off valuable quantum computer
resources with processing performed on classical computers.
This work opens a path to building robust, yet simple,
measurement classifiers based on fundamental statistical
principles. It invites quantum engineers to engage with quan-
tum data at the distribution level and provides a framework
to add independent qubit distribution insights into existing
quantum classification workflows.
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