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Abstract—Hyperdimensional computing (HDC) is a computing
paradigm that draws inspiration from human memory models. It
represents data in the form of high-dimensional vectors. Recently,
many works in literature have tried to use HDC as a learning
model due to its simple arithmetic and high efficiency. However,
learning frameworks in HDC use encoders that are randomly
generated and static, resulting in many parameters and low
accuracy. In this paper, we propose TrainableHD, a framework for
HDC that utilizes a dynamic encoder with effective quantization
for higher efficiency. Our model considers errors gained from the
HD model and dynamically updates the encoder during training.
Our evaluations show that TrainableHD improves the accuracy of
the HDC by up to 22.26% (on average 3.62%) without any extra
computation costs, achieving a comparable level to state-of-the-
art deep learning. Also, the proposed solution is 56.4× faster and
73× more energy efficient as compared to the deep learning on
NVIDIA Jetson Xavier, a low-power GPU platform.

Index Terms—Hyperdimensional Computing, Quantization, Al-
ternative Computing, Data Representation

I. INTRODUCTION

Hyperdimensional (HD) computing is an alternative computing
paradigm that draws inspiration from brain functions. It exploits
a high degree of binary-centric operations and boasts highly
parallel computations to realize highly lightweight learning.
For example, prior research utilized HDC as an energy-efficient
classifier alternative to sophisticated deep learning to solve var-
ious classification problems [1], [2] with high accuracy. Unlike
conventional representation systems where specific positions
of elements define the meaning. e.g., computing with 32/64-
bit words, HDC uses holistically represented vectors of high
dimensions, i.e., dimensions in thousands, called hypervectors,
enabling noise-tolerant and highly-parallel learning. Based on
the property of the hypervectors and distances in the high-
dimensional space, we can represent different data and learn
their relationships. The key idea is to first map (encode)
original data into hypervectors and combine them with the
lightweight HD operations, which perform brain-like cognitive
functionalities, e.g., memorization and information association,
eventually training a set of new hypervectors representing each
class. We can then perform inference by computing hyperspace
distances between the hypervector encoding’s given input and
each of the class hypervectors trained.

As aforementioned, when learning on HD models, data
points are encoded to hyperspace — that is, we first convert
raw input data into hypervectors. The encoding method plays a
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prominent role in the accuracy and complexity of models. The
state-of-the-art encoding methods exploit a high-dimensional
matrix of hypervectors, called base hypervectors, whose el-
ements for each dimension are randomly generated before
the training. The randomized generation ensures any member
hypervectors are unrelated, as they are near-orthogonal in the
hyperspace. The encoder associates factors of data points with
the projection matrix to encode feature data into hypervectors.

There are various encoding methods proposed [1], [2], [3],
[4], [5], [6], [7], [8], [9]; but once generated, all existing en-
coding methods use the same projection matrix for the entirety
of the learning phase, posing critical technical issues. First,
randomly drawn values result in hypervectors that disregard
relations between features of input data points; but are also
learnable during the training as performed in other state-of-the-
art algorithms such as deep learning. Second, the HDC based on
the existing encoders necessitates extremely large dimensions,
e.g., D = 10, 000 to guarantee high accuracy. This requirement
is inevitable since the distinguishable hypervectors must be
generated on purely random extraction. The large dimension
consequently degrades the efficiency.

To sum up, the static nature of the encoding forces the
utilization of higher dimensions and is widely considered as
the reason behind the lower accuracy of HD learning models.
In this paper, we propose the TrainableHD framework, an
HDC method to improve accuracy by applying a dynamic
encoder along with an efficient quantization method. During
the training process, TrainableHD evaluates the quality of the
trained models and updates base hypervectors used in the
encoders by calculating the expected errors with HD arithmetic.
It improves the accuracy significantly and makes use of lower
dimensions in HDC. Since we do not introduce any additional
operations for the inference, TrainableHD can provide high
performance and efficiency, ensuring high prediction quality.
The followings summarize our contributions:
1) We propose TrainableHD, which enables learning of the
appropriate HD encoder. To the best of our knowledge, this
is the first work that trains the encoder of HDC, addressing the
static nature of existing encoders.
2) We present an optimization technique to minimize the
overhead of the encoder training. We train the encoder only
when necessary, significantly improving the performance.
3) To realize the efficient inference, TrainableHD enables
quantization for HD learning. We also show an efficient in-
ference framework on various acceleration platforms, including
CPU with SIMD, Tensor Core (GPU), and FPGA.

Our evaluation shows that TrainableHD outperforms the ac-
curacy of existing HD learning methods by up to 22.26% with-
out introducing additional computational costs to the inference.
Combined with quantization, the inference of TrainableHD on
Jetson Xavier GPU (Zynq-7000 FPGA) is 56.4× (180.8×)
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Fig. 1: Overview of TrainableHD

faster and 73× (167.8×) more energy efficient than deep
learning on the Xavier GPU.

II. RELATED WORK

HD computing has been implemented to solve various learning
problems [9]. The encoding of data samples into hypervectors is
the most important phase for the HD learning models as it has
the most influence on the model’s accuracy and complexity.
However, existing encodings [1], [2], [3], [4], [5], [6], [7],
[8], [10] do not utilize the knowledge obtainable from training
samples. Recently, work in [11] proposed an alternative encod-
ing method called ManiHD, which implements the manifold
projection before the static HD encoder. However, ManiHD is
a class information-agnostic method that does not consider the
characteristics of each class and still utilizes the static encoder,
resulting in suboptimal accuracy. In our measurement over
various datasets, the manifold projection procedure also spent
about 2.95× more time in the encoding process. Our work is
different in that we learn the encoder itself dynamically without
adding any extra overheads to the inference.

III. TRAINABLEHD OVERVIEW

Figure 1 shows an overview of the proposed TrainableHD

learning framework. The goal of our training is to identify
two types of learned hypervector representations: (i) base
hypervectors of the encoder, initially created with random
components generated from Gaussian distribution, and (ii)
class hypervectors that represent high-dimensional patterns for
each class, initially having zero-value components. During
training, using the current base hypervectors, we first encode
the hypervector representation for the training samples, called
(encoded) feature hypervectors. The training is proceeded by
comparing the similarity between the feature hypervectors and
every class hypervector. The HD module defines the class of
training data as the class hypervector that showed the maximum
similarity value. Based on the similarity values and ground-
truth labels, the HD module computes per-class errors and
updates the class hypervectors to reduce the error for later
predictions. The core of TrainableHD is the encoder training
technique discussed in Section IV, which translates the per-
class scalar errors to per-feature hypervector errors to update the
base hypervectors. The encoder training happens only when it
is necessary based on an optimization technique called Encoder
Interval Training (EIT) (Section V-A.) This process is repeated
for all training samples with a mini-batch over multiple epochs.
We also propose a method to train the model quantized with
low precision hypervector elements, e.g., 8-bit integers, using
quantization-aware training (QAT) (Section V-B.)

At the inference phase fully accelerated by the quantization,

the trained encoder creates the query hypervector using infer-
ence data without extra computation costs upon the existing
HD learning solutions. Then, the HD model performs the
similarity computation between the query hypervector and class
hypervectors to identify the sample’s class.

IV. DYNAMIC ENCODER TRAINING WITH HD MODEL

A. Encoding Principle

Much like how the human brain has millions of neurons and
synapses that activate upon input stimuli, HDC uses hyper-
vectors to represent any entities in high dimensional space, or
hyperspace. The hypervector is of a holistic representation [12]
which distributes information equally over all its components.
In the majority of related work, to map/encode raw values,
e.g., features of training/testing samples, to hypervectors, they
generate base hypervectors by randomly sampling each dimen-
sion from bipolar values {-1,1} [2] or Gaussian distribution
N(µ, σ2) for higher accuracy [4]. The reason HDC neces-
sitates randomness and high dimensions is to achieve quasi-
orthogonality. In other words, it assumes that different features
are uncorrelated to each other, presenting near-zero similarity.1

However, since the existing encoders do not touch the base
hypervector once created, they cannot identify the accurate
representation if different features are correlated.

Before explaining our encoder training method, we discuss
key properties of the general encoding procedure, which we
used to devise our proposed technique. Let v⃗(∈ R

p) be a
vector of scalars, ⟨v1, · · · , vp⟩, to be encoded, and assume
that a codebook C(∈ R

p×D) comprises the information of
D-dimensional hypervector representations corresponding to
each element, i.e., C = ⟨C1, · · · ,Cp⟩. The state-of-the-art
encoding methods, e.g., random projection [2] and non-linear
encoding [4], can be represented by

v1 ⊗C1 ⊕ v2 ⊗C2 ⊕ · · · vp ⊗Cp

Here, ⊗ is the binding operation, which associates different
information with element-wise multiplication, and ⊕ is the
bundling operation to combine different information into a
hypervector with element-wise addition. Then, the encoder
usually applies an activation function, e.g., cos(·), sign(·), etc.

In principle, we can view the HD encoding as an interdimen-
sional mapping across domains represented with different vec-
tor bases. In other words, it maps information in real coordinate
space of p dimensions to another hyperspace, whose basis can
be any set of hypervectors, C. We define the interdimensional
mapping function, H = ϕp→q

C
(v⃗), as a procedure that transmits

identical information stored in v⃗ into a hypervector, H(∈ R
q),

by referring codewords in C. For example, the original encoder
maps raw features with a random codebook of B; we can also
map the error values in scalar vectors to the domain of class
hypervectors with another encoding, ϕk→D

K
(v⃗), by using the

codebook of the class hypervectors, K. We utilize the HD
encoding properties to translate the information of per-class
scalar errors to the base hypervector errors.

B. HD Model Training

Algorithm 1 describes the steps of the training of TrainableHD.
The TrainableHD algorithm first encodes the feature hypervec-
tor, H, with the sign(·) function activation for binarization
(•A ). It then updates (i) the class hypervectors, K, (•B ) and (ii)

1We use the dot product, denoted with δ(·), for the similarity measure.
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Fig. 2: An Illustration of Base Hypervector Training

the base hypervectors, B (•C ). To train the class hypervectors,
we compute the per-class errors, e⃗, using the similarities in
hyperspace calculated by the dot product with softmax(·)
normalization and the one-hot-encoding vector, o⃗, given by the
ground-truth label. We then scale the feature hypervector for
each class considering the amount of per-class error, i.e., e⃗×H,
and adjust the class hypervectors with a learning rate, λ.

Algorithm 1 Training procedure of TrainableHD

1: for f⃗ in training datasets do
2: // •A Encoding

3: X← ϕ
f→D
B

(f⃗); H← sign(X)
4: // •B Updating class HVs
5: s⃗← softmax(δ(H,K)); e⃗← o⃗− s⃗; Θ← e⃗×H

6: K← K⊕ (λ×Θ)
7: // •C Updating base HVs
8: Fbz ← I− tanh(X)2; Ferr ← ϕk→D

K
(e⃗)

9: E← Ferr ⊗ Fbz ; ∆∆∆← f⃗ × E
10: B← B⊕ (λ×∆∆∆)

Figure 2 illustrates how TrainableHD updates the base
hypervectors at the next stage. Our goal is to translate the
information of per-class errors to the per-feature errors due
to the incorrectness of the base hypervector, B. TrainableHD
accomplishes this with two steps: (i) encoding the sample-wise
error in a hypervector, E, called the sample error hypervector,
(ii) estimating the per-feature error hypervector from E.
Step 1: Encoding the sample-wise error in a hypervector:
TrainableHD encodes the sample error hypervector, E, which
includes the hypervector-type information of how much error
occurs for a single sample. The encoded hypervector, X, even-
tually contributes to the scalar errors, e⃗, through two following
computations: (i) the binarization, (i.e., due to H ← sign(X)
in •A of Algorithm 1) and (ii) the discrepancy with the
class hypervectors, (i.e., due to δ(H,K) in •B ). TrainableHD
represents the two factors in a form of hypervectors, Fbz and
Ferr. Figure 2•2 illustrates how we compute each factor.

• (•2 -a) The first factor due to the binarization, Fbz , is
computed by I − tanh(X)2 where I is a hypervector whose
every element is 1 and tanh(·) is the hyperbolic tangent. Since
the binarization function, sign(·), amplifies the hypervector
element of X in the range of [−1,+1], an element value closer
to 0 may create higher errors in the prediction, where the impact
of each element on the error is bound within the same range.
We exploit the square of tanh(·), which is suitable to explain
these impacts of the hypervector elements on the errors.
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• (•2 -b) Next, we compute the second factor due to the class
hypervectors, Ferr. As discussed in Section IV-A, we can
see the HD encoding as an interdimensional mapping. Thus,
we encode the per-class error of e⃗ with the basis of K by
Ferr = ϕk→D

K
(e⃗), meaning that Ferr bundles all per-class

error hypervectors scaled with the corresponding error value.
With the two hypervector-encoded factors, TrainableHD can
compute the sample error hypervector by associating(binding)
the information through E← Ferr ⊗ Fbz .

Step 2: Estimating the per-feature errors in hypervectors: In
this step (•3 ), TrainableHD generates base error hypervectors,
denoted as ∆∆∆, which estimates per-feature errors that occur
from each base hypervector. Using the sample error hypervector
that represents the error for each sample, we distribute the
per-sample error into the feature domain, assuming that higher
feature values in the raw training sample contribute to higher

error in hypervectors. It can be described by ∆∆∆ = f⃗ × E.
Then, the base error hypervectors, ∆∆∆, has f hypervectors, each
of which has the information of the amount of the per-feature
error. We can finally update the base hypervectors by bundling
the base error hypervector with the learning rate.

V. OPTIMIZED IMPLEMENTATION FOR ACCELERATORS

A. Encoder Interval Training

Encoding feature hypervectors with the updated base hyper-
vector every time may add extra complexity to the existing
HD learning. We address this issue with an optimization
technique called Encoder Interval Training (EIT). EIT enables
the reuse of feature hypervectors to reduce the encoding time
of TrainableHD training. Figure 3 describes an example of
the EIT. For the first iteration, we perform TrainableHD with
encoding feature hypervectors. The EIT stores generated feature
hypervector values into memory. For the next (n-1) iterations,
where n is a hyperparameter that defines the EIT period,
we perform the training using the previously stored feature
hypervectors. Note that the base hypervectors keep updating
during the reuse iterations, which have the capability of encod-
ing better feature hypervectors; in our observation, the noise-
tolerant nature of HD can compensate as long as we update the
feature hypervectors when sufficiently changed. At every nth,
we re-encode and perform HD model and base hypervector
training. EIT is repeated until the training is terminated.

B. Acceleration with Quantization

The proposed trainable encoder exploits the floating-point
base hypervectors for high accuracy in a similar way to the
state-of-the-art HD encoders [4], even though the encoded
hypervectors are binarized. To offer high efficiency for infer-
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ence, TrainableHD employs quantization, which enables integer
operation-only accelerator designs by completely eliminating
the costly floating-point operations. We propose an optimized
Quantization-Aware Training (QAT) method for HDC, which
makes precision adjustments during training.

Training Quantized Hypervectors Figure 4a shows the
TrainableHD learning procedure modified with QAT. To model
the effects of quantization on the base hypervectors, the original
input features and current base hypervectors are fake-quantized,
i.e., it clamps and rounds their elements to produce an ap-
proximate version of the inputs in 8-bit integers (INT8) but
stores them as the floating-point (FLOAT32) data type. We
apply the fake quantization for the class hypervectors in the
same manner. At the end of the training, we finally convert the
trained base and class hypervectors with INT8 representations,
so the inference can be performed completely on the INT8
domain as shown in Figure 4b.

One challenge to training in floating-point with quantization
is how to set the quantization parameters for either the original
inputs or hypervectors. We use a transformation method, known
as affine transformation, which performs the quantization for
x using two parameters, s and z as follows:

quant(x) = min(max(round(s · x+ z), 2b−1 − 1),−2b−1))

where s is the scale factor, z is the value to be mapped to
zero in the quantized form, and b = 8 for INT8. Since the
upper and lower bounds of the input x are changed, e.g., due
to the base and class hypervectors updates, we also learn the
two parameters during the training iterations. To this end, we
observe the moving averages of the minimum and maximum (⊥
and ⊤) for the given hypervectors to be quantized, as shown in
Figure 4a. Here, we empirically selected the decay rate for the
moving average by ρ = 0.01. Then, we can set s = 2b/(⊤−⊥)
and z = ⊥ − round(−2b−1/s), i.e., dividing the range of the
moving averages, [⊥,⊤], equally into the quantized points.

QAT performance optimization To minimize the QAT costs
mainly coming from the inserted fake quantization process, we
propose an optimization technique called Drift-Aware Update

TABLE I: Evalution Datasets

Name Description Ntrain Ntest k f
EMOTION [13] Emotion recognition from ECG signal 1705 427 3 1500
FACEA [14] Face recognition 22441 2494 2 512
FACE [14] Face recognition 22441 2494 2 608
HACT [15] Human activity recognition 7352 2947 6 1152
HEART [16] MIT-BIH Arrhythmia dataset 119560 4000 5 187
ISOLET [15] Voice recognition 6238 1559 26 617
MAR [17] Plant classification 1440 160 100 64
MNIST [18] Hand-written digit classification 60000 10000 10 784
PAMAP2 [19] Physical activity monitoring dataset 16384 16384 5 27
SA12 [20] Smartphone-based activity recognition 6213 1554 12 561
TEX [17] Plant classification 1439 160 100 64
UCIHAR [15] Human activity recognition 7352 2947 6 561

(DAU), which decides when to perform the fake quantization.
As discussed in Section IV-B, we update the base and class
hypervectors using the hypervector-type errors with a learning
rate, i.e., Θ

′ = λ × Θ and ∆∆∆′ = λ × ∆∆∆. Since HDC is
robust to noise, a few differences in the base and hypervectors
would not significantly affect the training results. We perform
the fake quantization only when observing a large number of
changes accumulated by Θ

′ and ∆∆∆′, called drift. More formally,
the proposed DAU optimization invokes the fake quantization
procedure for the class hypervectors if

∑
i |Θ

′

i|/|K| > ϵ and
for the base hypervectors if

∑
j |∆∆∆

′

j |/|B| > ϵ, which the fake
quantization was skipped at the previous iteration i and j. In
our current implementation, we conservatively set the threshold
ϵ by 0.01 (1%) to guarantee the QAT to run with the correct
simulation during most iterations.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

We have implemented the training procedure of the
TrainableHD framework using PyTorch running on NVIDIA
GeForce RTX 3090. The inference procedure was implemented
on various acceleration platforms that support both floating-
point and integer vector operations, including CPU (Intel Xeon
Silver 4110), low-power GPU (Nvidia Jetson Xavier), and
FPGA (Xilinx Zynq-7000). We measured the execution time
and power consumption using Intel RAPL for CPU, Nvidia
Nsight for GPU, and Xilinx Vitis toolkit for FPGA.

Implementation Methodologies To implement the accelerated
inference on CPUs, we exploited the state-of-the-art library,
Facebook’s FBGEMM library, supporting optimized INT8 op-
erations based on x86 SIMD instructions and multithreads. We
expanded the FBGEMM library to support the sign function.
since the base and class hypervectors are constant once de-
ployed, we can reorganize the stored order of the hypermatrix
elements in advance to make the memory access pattern fully
sequential in GEMM operations. For the GPU acceleration, we
use Tensor Cores in NVIDIA’s Jetson Xavier. We extended the
XCelHD [8], which is the CUDA impemetaion of HD comput-
ing, to accomplish the quantized execution of trainableHD. We
mapped HD operations to cuBLAS APIs, and also implemented
an in-place element update function for the intermediate results
to support the sign function without uncoalesced memory
accesses. The proposed quantization method enables the highly-
accurate and efficient implementation on FPGA without using
the resource-hungry DSP units unlike existing work [2]. We
utilized the Xilinx Vitis framework to implement the GEMM
and reduction operations on a systolic array structure that
performs most computations using LUTs. Since the base and
class hypervectors are invariant during inference, we load them
into the buffer of the systolic array in advance and reuse them
for multiple inputs without extra host communications.

Baselines and datasets We compare TrainableHD with (i)
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the state-of-the-art HD learning method, which retrains class
hypervectors using the static nonlinear encoder (Baseline) [4],
(ii) ManiHD, which applied the manifold projection on HDC
(ManiHD) [11], and (iii) the deep learning models optimized
using Ray Tune to achieve the best accuracy (DNN) by
performing the hyperparameter search, which have up to 64
batch sizes, 5 layers, and 512 neurons, trained for 50 epochs.
To evaluate TrainableHD, Baseline, and ManiHD frameworks,
we retrained each model with 50 epochs with λ = 0.01 and
n = 10 emperically selected. Table I summarizes the details of
the datasets, which include a wide range of practical problems.

B. Classification Accuracy of TrainableHD

Figure 5 presents the accuracy comparison results over different
learning methods. For Baseline and TrainableHD, we mea-
sured under two different hypervector dimensions 3K and 10K.
The result showed that (i) TrainableHD achieves higher accu-
racy levels than Baseline, one of the state-of-the-art encoding
methods that use a nonlinear encoder, and (ii) the QAT has a
very minor impact on the accuracy. For example, for HACT,
the classification accuracy of Baseline is 57.28% and 59.35%
for D = 3, 000 and D = 10, 000, respectively. In contrast,
TrainableHD achieved 78.62% on D = 3, 000 and 81.61% on
D = 10, 000. In the same dimension, TrainableHD achieved
3.62% and 2.58% higher accuracy on average as compared to
Baseline with D = 10, 000 and D = 3, 000, respectively,
which are comparable to the state-of-the-art deep learning
models tuned for high accuracy. When comparing TrainableHD

with ManiHD for D = 3, 000, we observed that TrainableHD
outperforms ManiHD with the exception of one dataset. On
average, TrainableHD achieves 6.27% higher accuracy than
ManiHD. However, ManiHD exploits the manifold projection,
which is a non-negligible overhead during inference.

Learning Performance To understand why TrainableHD out-
performs the state-of-the-art HD learning methods, we evaluate
the training/testing accuracy changes over epochs. One of the
important properties of HD learning is that it can achieve a
sufficient amount of classification performance with a small
number of epochs. As shown in Figure 6, the Baseline and
TrainableHD provided a high degree of training accuracy within
the first several epochs. Compared to Baseline, the training
accuracy of TrainableHD is lower. However, it is because
the Baseline tends to overfit the training datasets, whereas
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TrainableHD prevents such an issue in the earlier training
phase, eventually achieving higher testing accuracy.

Dimension Reduction Figure 7 next shows the testing accu-
racy of TrainableHD and Baseline over different hypervector
dimensions. We observe that TrainableHD is more robust to
the dimension reduction. The accuracy of the Baseline at
D = 3, 000 is 85.87% which is comparable to the accuracy
of TrainableHD at D = 1, 000 which is 86.31%. Note that
TrainableHD with D = 3, 000 still outperforms the accuracy
of BaselineHD with D = 10, 000, implying that we can
effectively reduce the dimension with minimal loss to accuracy.

C. Efficiency of TrainableHD

Training Efficiency We evaluated the training efficiency of
TrainableHD as compared to DNNs. Figure 8 shows the com-
parison results using two varients of TrainableHD, one training
without QAT and the other one with QAT, over the DNN model.
The results show that TrainableHD without quantization im-
proves training performance by 24.48× on average. We can also
enable quantization to yield INT8-quantized models, achieving
higher efficiency when deployed for inference. The quantization
simulation adds additional computation times, however, it still
achieves 12.13× speedup as compared to the DNNs.

Inference Efficiency Figure 10 summarizes the comparison re-
sults for speedup and energy efficiency improvements over the
DNN inference on GPU. We use D = 3, 000 that TrainableHD
still shows higher quality than Baseline with D = 10, 000
The results show that TrainableHD achieves a significantly high
learning efficiency as compared to DNN. For example, when
using the same GPU platform, TrainableHD is 56.4× faster and
73× more energy efficient even when not using quantization.
Enabling quantization, TrainableHD additionally improves the
performance by 3.1× without accuracy loss. We also observe
that the lightweight characteristics of TrainableHD enable high
efficiency even on CPU for edge or cloud computing, assuming
there are no on-device accelerators. TrainableHD with quanti-
zation provides 20.7× faster than DNN on GPU. When using
on-device FPGA units, it can offer 180.8× higher speedup
and 167.8× better energy efficiency as compared to DNN.
The computation costs during inference are the same as the
Baseline as it does not add any extra computation procedure.
TrainableHD with FP32 (INT8) also shows 3.3× (16.1×) better
performance than ManiHD since ManiHD has non-negligible
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overheads to achieve higher accuracy due to the preprocessing
CPU overhead of the manifold projection.

D. Impact of Optimization Techniques

Encoder Interval Training The EIT technique runs the en-
coder training on a regular basis. We measure the inference time
without EIT and compare it with the case using EIT. Figure 10
shows the breakdown of training times for each case using the
representative datasets. The EIT technique effectively reduces
the training time to update the base hypervectors (labeled
with Base Update) and the overhead of the repeated encoding
procedure (labeled with Encoding). In our evaluation, the EIT
technique reduces the training time for the base updates and
encoding by 89.20% and 69.89%, respectively.

Drift-Aware Update for QAT Our second optimization tech-
nique is DAU (Section V-B), which performs the simulated
quantization selectively only when sufficient changes happen
in the hypervector updates. We verify the effect of DAU by
comparing to the case of disabling the DAU, i.e., performing
QAT and fake quantization for every update. As shown in
Figure 11 showing the ten representative datasets, DAU sig-
nificantly reduces the QAT overhead by 84.50% on average,
which is essential for highly efficient inference. Note that we
observed very minimal accuracy changes when using DAU,
thanks to the holistic representation.

VII. CONCLUSION

In this paper, we proposed TrainableHD, an efficient and effec-
tive dynamic encoder for learning in HDC with the capability
of the quantization. TrainableHD address the limiting factors in
prior HD learning’s training process, i.e., the static encoder, by

continuously updating the encoder during the training process
for better performance. Our evaluations show that TrainableHD
improves the accuracy of the HDC by up to 22.26% (on average
3.62%) without any extra computation costs. It also achieves
comparable accuracy to deep learning and is 56.4× faster and
73× more energy efficient on the NVIDIA Jetson Xavier.
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