
MARB: Bridge the Semantic Gap between Operating
System and Application Memory Access Behavior

Haifeng Li∗†§, Ke Liu∗§, Ting Liang∗†, Zuojun Li∗†, Tianyue Lu∗, Yisong Chang∗,
Hui Yuan¶, Yinben Xia¶, Yungang Bao∗†, Mingyu Chen∗†∥, Yizhou Shan‡

∗State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences
∥Zhongguancun Laboratory,Beijing,China †University of Chinese Academy of Sciences ¶Huawei Technologies ‡Huawei Cloud

Abstract—The virtual memory subsystem (VMS) is a long-
standing and integral part of an operating system (OS). It plays
a vital role in enabling remote memory systems over fast data
center networks and is promising in terms of transparency and
generality. Specifically, these systems use three VMS mechanisms:
demand paging, page swapping, and page prefetching. However,
the VMS inherent data path is costly, which takes a huge toll on
performance. Despite prior efforts to propose page swapping and
prefetching algorithms to minimize the occurrences of the data
path, they still fall short due to the semantic gap between the OS
and applications – the VMS has limited knowledge of its running
applications’ memory access behaviors.

In this paper, orthogonal to prior efforts, we take a fundamen-
tally different approach by building an efficient framework to
collect full memory access traces at the local bus, and make them
available to the OS through CPU cache. Consequently, the page
swapping and page prefetching can use this trace to make better
decisions, thereby improving the overall performance of systems.
We implement a proof-of-concept prototype on commodity x86
servers using a hardware-based memory tracking tool. To show-
case our framework’s benefits, we integrate it with a state-of-the-
art remote memory system and the default kernel page eviction
subsystem. Our evaluation shows promising improvements.

I. INTRODUCTION
Nowadays, the virtual memory subsystem (VMS) plays a

vital role in enabling remote memory systems over modern
networks with microsecond-scale latencies. This is because it
is a promising and practical approach due to its generality and
transparency. For instance, cloud vendors leverage the VMS
to transparently swap out cold memory to remote in order to
save cost [1], [2], kernel-based disaggregated memory systems
tightly couple with the VMS for remote access [3]–[5]. More-
over, heterogeneous and multi-tiered memory systems, built on
top of emerging memories such as PM [7] or interconnects such
as CXL [8], leverage the VMS for data migration or swapping.

However, the existing VMS data path is costly, has limited
parallelism due to coarse-grained locking and synchronous
function calls. Despite the efforts to optimize the data path,
this drawback is not fundamental and cannot be completely
avoided [6]. Prior works thus proposed better page prefetching
and eviction algorithms to avoid the data path as much as pos-
sible [3], [4]. However, they still fall short and their advantages
can be offset by the second limitation – the page swapping and
prefetching are not able to accurately identify what pages to
evict or prefetch. This is because they train algorithms with
limited memory access trace from page faults. One possible

§Equal contribution

workaround is using a daemon to periodically scan the access
bit in page table to approximate an LRU history [1]. But this
approach not only incurs non-trivial overheads due to TLB
shootdown and pinned thread but also produces coarse-grained
and stale trace, let alone sufficient memory trace in real-time.

We observe that this limitation stems from the semantic gap
between OS and hardware: the CPU hardware only exposes
coarse-grained and stale access information via page faults and
page tables, hence the OS has limited knowledge of its running
applications’ memory access history and has to use costly soft-
ware approaches to approximate application access pattern. Our
observation is driven by a simple insight that rich access history
originated from higher tiers in the memory hierarchy enables
the lower tiers to better model the memory access pattern,
thereby making better eviction or prefetching predictions. For
instance, if OS knows all the last-level cache (LLC) misses, the
OS can build a precise eviction and prefetching algorithm.

We therefore propose a fundamentally different approach
by collecting full memory access traces (i.e., LLC misses) at
the local bus and feeding them to the OS continuously and
efficiently. Consequently, the VMS has abundant supply of
real-time memory access information to improve its algorithms
on page swapping and prefetching. In specific, we build a
software-hardware co-designed framework called Memory Ac-
cess Record Buffering (MARB). By design, MARB deploys a
record unit in the memory controller (MC). The record unit
can record all memory accesses and generate compact access
records. To avoid making another round-trip to the main mem-
ory and to reduce memory bandwidth usage, the record unit
directly sends the generated records into the CPU cache [11].
To avoid polluting the CPU cache, we reserve a dedicated cache
partition to store the trace using way-partitioning [12] and page
coloring [13]. The trace is organized as a circular buffer, with
the MC writing to the tail and a dedicated OS thread reading
from the head whenever the buffer is not empty. Since the trace
is generated in massive volume, we employ a filter table to
screen noise and aggregate accesses to the same pages so as to
extract hot pages. These pages are then pipelined into a reverse
page table, which translates physical addresses back to virtual
addresses (VA) and associated process identifications (PID).

We build two use cases to demonstrate MARB’s benefits. We
first improve a state-of-the-art remote memory system [3] by re-
placing its default sequential prefetching policy with a stream-
based prefetching algorithm powered by MARB. Similarly, we

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

 Core
L1 cache
L2 cache

Last leve cache

 Core
L1 cache
L2 cache

Memory controller

DRAM DRAM IO device

PCIe controller
DDR bus PCIe bus

memory bus

Figure 1. A typical server layout with
CPUs, LLC, MC, DRAM, PCIe devices
connected via various buses.

Figure 2. Completion time per-
formance normalized to local sce-
nario with no remote memory.

improve the default Linux kernel LRU lists by replacing its
access bit-based approach with the rich access trace from
MARB. There are alternative ways to use the trace to highly
optimized for use cases. e.g., users could employ a different or
even opt-out the filter table to parse the raw trace instead.

Since the MC is vendor-locked, we build a proof-of-concept
prototype on commodity x86 servers for design validation and
evaluation (§V). To emulate the record unit’s role, we leveraged
a hardware-based memory tracking tool, HMTT [15] and Data
Direct I/O technology (DDIO) [11]. We build the MARB’s
software in user space. We believe MARB’s hardware design is
lightweight and generic hence could be easily integrated into a
CPU chip or an MC of various CPU platforms.

We evaluate MARB and the two use cases using a set of
microbenchmarks and many large-scale in-memory applica-
tions. Overall, MARB helps improve VMS-based systems. For
instance, when half of an application’s working set is disaggre-
gated, MARB improves a state-of-the-art remote memory system
by 59% with over 90% prefetching accuracy and coverage.
Also, MARB-enhanced page eviction eliminates swapping events
and delivers over 30% improvements over the default kernel.

In summary, we make the following contributions:
➊ We propose a lightweight hardware unit to collect access
trace in the memory controller and save trace directly to the
cache for software to improve VMS performance.
➋ We build a proof-of-concept prototype using a set of novel
techniques and a hardware tracking tool to emulate and validate
MARB, and demonstrate that it can efficiently capture and
expose trace to upper layer systems.
➌ We use MARB to improve a disaggregated memory system
and the default kernel eviction subsystem, which confirms that
MARB dramatically improves VMS-based systems.

II. BACKGROUND

We first walk through the modern server layout, laying out a
solid background of MARB. We then discuss the two use cases
that can benefit from using MARB.

A. Modern Server Architecture
Figure 1 shows a typical server layout. The LLC, MC, and

PCIe controller are interconnected through an internal local bus.
The MC talks to DRAM chips via a standard DDR bus. The
PCIe controller communicates with I/O devices via a PCIe
bus. Clearly, the MC knows the full memory accesses from
all CPUs. As writing trace to DRAM directly consumes extra
memory bandwidth, and takes another round-trip from DRAM
to the LLC when the OS reads the trace, for MARB, we let the
MC write the trace into the LLC directly over the local bus.

Table I
ACCURACY AND COVERAGE WITH DIFFERENT NUMBER OF THREADS.

Name Acc(P1) Cov(P1) Acc(P3) Cov(P3) Acc(P5) Cov(P5)
Leap 0.99 0.87 0.89 0.85 0.86 0.84

Fastswap 0.99 0.87 0.87 0.82 0.85 0.81
MARB-Prefetcher 0.99 0.99 0.99 0.99 0.99 0.99

Direct Cache Access. Typically, I/O devices exchange data
with CPU by using Direct Memory Access (DMA) to transfer
data into the DRAM. The CPU then reads the data over the
local bus and the DDR bus. However, this workflow involves
many unnecessary data movements. The Direct Cache Access
technique is therefore proposed to allow the PCIe controller
to access the LLC directly, such as DDIO [16] in Intel-based
platform. Other CPU architectures have similar ones [17].

Cache Partition. Cache partition techniques mitigate cache
interference and ensure fairness among co-running workloads
There are three techniques: 1) software-based, which uses page
coloring to partition the cache among sets [13]; 2) hardware-
based, such as hardware way-partitioning (e.g., Cache alloca-
tion technology (CAT) [12]); 3) hybrid one which combines
set and way partitioning [18] , divvying up the LLC space. For
MARB, we use a hybrid one, i.e., page coloring and CAT, along
with DDIO to reserve cache size to mitigate cache pollution.

B. Disaggregated Memory Systems
The VMS is selected as a key enabler for remote memory

systems for cloud vendors due to its generality and trans-
parency [1], [2]. However, the slow VMS data path inevitably
hampers applications from performing efficiently. As a case
study, we evaluate Fastswap [3], and find that Fastswap takes
roughly 9µs to read a page from remote using a single core.
The latency increases significantly when increasing the number
of threads (e.g., 16µs for 8 threads). It is clear that Fastswap
fails to scale. This is due to the coarse-grained locking and
synchronous data path designs inherent in existing VMS.

One way to overcome the above VMS overheads is to use
page prefetching by reading pages from remote beforehand so
as to avoid invoking the VMS data path as much as possi-
ble. Fastswap uses the default kernel read ahead prefetching
policy to read the subsequent seven pages following a faulting
page [3]. Presumably, if we run a program that scans a memory
region sequentially, the above simple policy should have perfect
accuracy and coverage (definitions in §VI). However, as Table I
shows, both metrics decrease as we increase parallelism, e.g.,
the accuracy and coverage drop to 85% and 81%, respectively
with 5 threads. This causes a worse completion time than a
prefetcher with full memory access knowledge from MARB
(MARB-Prefetcher in §IV-B) in Figure 2. The same obser-
vation is found in Leap [4], an optimized disaggregated memory
system with an online, majority-based prefetching algorithm.

The root cause is that both Fastswap and Leap only train their
prefetch algorithms with infrequent and stale access informa-
tion from page faults, thus cannot accurately differentiate the
accesses from different threads. To solve it we integrate MARB
with Fastswap by replacing its default sequential prefetching
policy with a stream-based one trained using the rich appli-
cation access trace provided by MARB. Second, MARB enables
any prefetch algorithm to run in a separate asynchronous data
path, independent from VMS one, to achieve scalability.

!

rd/wr req

core LLC

Memory Controller

mem trace

MARB

SW
 Filter TableReverse Page Table

PrefetchUSE CASE Eviction

Record Unit

MARB

HW
 wr-ptr

rd-ptr

Migration Others

buffer

wr-ptr update

Others

Figure 3. MARB framework architecture.
C. Page Swapping and Eviction

Page swapping plays a key role in modern data centers [1],
[2]. e.g., both Google and Meta rely on it to identify cold
memory. Generally, the page swapping uses approximate LRU
lists to model memory access pattern and select which pages to
evict. However, the lists are ordered by scanning the access bit
in page tables periodically, which produces unreliable, infre-
quent, and coarse-grained page-level accesses. Consequently,
LRU lists fail to capture the actual memory access pattern.
We improve the default LRU lists by replacing the access bit-
based approach with real-time rich memory trace from MARB.
Moreover, when there is an eviction request, we prioritize pages
with streaming access pattern as they are not likely to be used
again compared to randomly accessed pages.

III. DESIGN

MARB is a software-hardware co-designed framework. Fig-
ure 3 depicts the overall architecture. We deploy a hardware-
based record unit in the MC. This unit captures all memory
accesses originated from LLC misses. We exploit direct cache
access and cache partition techniques, the record unit sends
the trace into a reserved cache partition through the local bus
directly. We organize the trace as a circular buffer, with the MC
writing to the tail (write ptr) while a dedicated MARB thread
continuously reading from the head (read ptr). Once traces
are obtained, the MARB thread aligns the physical addresses
to page-granularity and uses a filter table to screen noise and
aggregate accesses to the same pages so as to extract a set of
hot pages. Then it sends them into a reverse page table, which
translates physical addresses back to VA and associated PID.

A. Record Unit
The record unit plays a key role in MARB with two tasks: 1)

It has a trace tracking unit snooping the memory request from
LLC and generates raw memory trace. 2) It has a parse-and-
forward unit that packages the trace into compactly formatted
records, which are then forwarded to the CPU cache for online
analysis. The record unit is the only new hardware logic added
by MARB. By design, the record unit is integrated with the MC.
For prototyping, we use a memory tracking tool for task 1 and
implement task 2 in a separate FPGA board (§V).

As Figure 3 shows, when the MC receives an LLC miss, the
record unit captures this request and generates a 6 B record.
Since the local bus’s transfer granularity is 64 B, the record unit
can pack at most ten complete records and one partial record
at a time. The packed records are then forwarded into the LLC
directly using one local bus packet (upper half in Figure 4). To

r/w(1) Physical address(39)
03839

Seq_no(8)
47

PacketHeader MemTrace0 MemTrace9 PartialTrace10 TargetPhysicalAddress

Figure 4. Local bus packet and trace record format.
prevent the OS from reading partial records from the circular
buffer, the record unit advances the write pointer in a batched
fashion, i.e., once per three bus packets or 32 complete records.
Thus, it only adds 200 B overhead for records batching. To
support above operations, the record unit only requires three
registers, namely the start physical address (MARB cache is
indexed by physical address), MARB cache size, and the batch
size. MARB is configured to be accessed by specific processes.
Protect MARB is equivalent to protect inter-process address.

Cache size. The records are sent and stored to a cache whose
size can be set to a minimum, 2 × batch size, if the MARB
thread processes trace fast enough. By prototyping, the records
are sent by PCIe, which requires a larger batch size (1 KB) to
ensure high throughput, thus a small cache of 2 KB is sufficient
to avoid buffer overflow for all the tested applications (§V).

Cache partition. To avoid cache pollution, MARB cache is re-
served by hybrid cache partitioning. We first use way-partition
like Intel CAT [12] to reserve 10% LLC (3.5 MB in our
platform). Since MARB only needs 2KB, we use page coloring
to return the rest back to applications (i.e., 3.5MB − 2KB).

Figure 4 shows the local bus packet format and the structure
of a record. The bus packet contains some packet headers, a
physical address, together with several records. This format is
bus-specific. Each record is 6 bytes, with a sequence number
(8 bits), a record type indicating whether it is a read or write
request (1 bit), and a cache line-aligned physical address (39
bits). The sequence number is increasing monotonically. The
MARB software uses it to determine whether any trace is lost
or overwritten, and takes extra measures to handle the sequence
number overflow and loopback during runtime. Essentially, we
trade some software complexity for hardware efficiency.

B. Filter Table
MARB software continuously monitors and reads the circular

buffer for incoming traces from the record unit, which performs
several tasks. First, it maps cache line-aligned address into
page-aligned. Second, it will drop all records whose type is
write, because every write LLC miss results in a read to
memory and a write to cache. Thus, it is sufficient to count read
requests. Once access frequency of a particular page exceeds
a configurable threshold, we extract it as a hot page. We
employ a busy flag to avoid repetitive extractions within a short
period. Moreover, users of MARB could design their own filter
table [19], or bypass the default filter table partially or entirely
(the dashed box in Figure 3). We leave these customizations
for future work. As measured, filter table can process the trace
generation rate over 10GBps (see §VI-C), which is sufficient
for most use cases. Additionally, the use cases using page-level
trace also can tolerate trace loss for streams detection (§IV).

C. Reverse Page Table
The memory address emitted by the filter table is still

physical address (PA). However, most subsystems cannot use
PA at all and have to deal with virtual address (VA). Reverse
mapping subsystem (rmap) in Linux kernel is designed for this

!

Process ID(16) Virtual Page Number(40)

03955

Huge(2)

56

Shared(1)

58

Figure 5. The structure of a reverse page table entry.
Pid

{PID=231

VPN=18}

231
230

VPNS
10
10

10 14 16 18
11 12

Stride
2

Figure 6. The structure of a stream table (ST), where start page and end page
denote the first and end page in VPN array. A hot page hits ST first entry. The
dominant stride is 2, thus the prefetching candidate is 18 + 100× 2.
purpose, but the rmap takes at least four memory accesses to
complete a single translation (i.e., it will read struct page,
struct vma, and a few other auxiliary variables), which is
unnecessarily complicated and inefficient for our purpose.

In response, we build reverse page table (RPT), a lightweight
mechanism tailored for MARB’s requirements. Similar to prior
works [15], the RPT is organized as a flat array indexed by
physical page numbers. Figure 5 shows the structure of an RPT
entry, which has a huge page flag (2 bits) indicates if the page
size is 4KB, 2MB, or 1GB, a shared page flag (1 bit) indicates
whether the physical page is shared by multiple processes,
followed by a PID (16 bits) and a virtual page number (40
bits). We perform address translation at 4KB granularity. The
huge page flag indicates whether a regular page is part of a
huge page. For most cases, one RPT translation requires only
one memory access, except for shared pages, where we would
consult the kernel rmap for details. Fortunately, page sharing
is uncommon in remote memory settings.

IV. USE CASES
Based on the full memory trace from MARB we build two use

cases to demonstrate how MARB can help VMS-based systems,
i.e., a new LRU-based eviction subsystem and a prefetching
engine for an RDMA-based disaggregated memory system [3].
A. Page Eviction

The off-the-shelf LRU page lists in the Linux kernel are
ordered using infrequent and stale access bits (§II). We build
a new subsystem called MARB-Evictor to improve it. First,
to avoid kernel complexity we build the eviction data path in
the user space. Once the evictor detects that the whole server is
under memory pressure, it will select a set of pages to evict and
instruct the kernel to finalize the eviction process. Second, the
evictor uses an LRU-based page list ordered based on the full
memory trace from MARB, which closely resembles application
access behavior. Finally, the evictor employs an optimization
to differentiate various access patterns. While selecting pages
to evict, we prioritize pages that follow a streaming access
pattern. This is based on a simple insight that pages already
used in a streaming access pattern are less likely to be used
again compared to pages following a random access pattern.
We use the page stream table to identify pages streams (§IV-B).

B. Disaggregated Memory Prefetcher
Based on the full trace from MARB, we build a stream-based

prefetcher in user space called MARB-Prefetcher. MARB
enables the prefetcher to instruct Fastswap to prefetch from
remote asynchronously (without waiting for page faults). We
also integrate the above MARB-Evictor into Fastswap.

A core concept in our prefetcher is page stream, which
describes a sequence of accesses following a fixed stride. An
application can have multiple page streams simultaneously.

 LLC MARB

MARB SW & USE CASE

DRAM
HMTT

LLC miss

Recieving

Card

optical

 fiber

OS Remote Node

R
D

M
A

 N
IC

Local

Node

R
D

M
A

 N
IC

DRAM

DRAM

DRAM

DRAM

MARB

HW

SW

Figure 7. MARB Proof-of-concept Prototype.

Our prefetcher maintains a stream table (ST) with each entry
representing a page stream. As shown in Figure 6, the ST has
64 entries which is sufficient in most scenarios. The entries are
managed using an LRU policy. Furthermore, an ST entry can
record up to five virtual page numbers (VPNs).

Our prefetcher works as follows: when {VPN,PID} arrives,
we first check whether the distance between a hot page’s VPN
and a particular stream’s start page is less than a predefined
value ∆stream, the prefetcher would determine that this hot
page belongs to that stream. Consequently, the prefetcher will
enqueue this page’s VPN into the matched stream’s VPN array
stored in its ST entry. When the array is full, we will calculate
the distribution of stride values (i.e., the distance between VPNs
within the array) and find a dominant stride. With that, the
prefetcher determines that VPNs for prefetching are stream’s
end page+ i×stride, where i is prefetch offset that indicates
how far in time should we prefetch. To incorporate host and
network delays, we set i = 100 to ensure the page arrives in
time before the application accesses it. We leave the online
adjustment of i to the future if those delays are fluctuating.

V. IMPLEMENTATION

MARB hardware. It does not need to modify the core and
cache. It only adds the recording logic of memory trace in MC
and uses less than 200B for batching records (§III-A).
MARB software and user cases. Our principle is to imple-

ment software functionalities (RPT and filter table) and user
cases in the user space. This allows us to iterate quickly and
upgrade MARB seamlessly. We minimize kernel changes: 1) we
scan existing page tables to initialize RPT, and add callbacks
to VMS functions (e.g., pte_clear, set_pte) to keep RPT
updated; 2) we improve the kernel swap interface, as it is lim-
ited to synchronous data path and coarse-grained locking. First,
it sends swap requests like prefetching or eviction requests to
an RDMA backend. At this point, we return control back to
the calling thread immediately without waiting for the request
to finish. Once the request finishes, the RDMA NIC sends an
interrupt and interrupt handler (built on top of the workqueue
subsystem) will finalize PTE related operations. Second, we
replace a coarse-grained PMD lock with a fine-grained per-
page lock which greatly increases parallelism.

Hardware platform. Most MCs are vendor-locked and
packaged with the CPU and LLC into a single die, hence we
cannot implement the record unit in MC. We therefore built
a proof-of-concept prototype on commodity x86 servers, as
shown in Figure 7. First, to emulate the trace tracking in the
record unit, we attach a hardware-based memory tracking tool
called HMTT [15] to the link between the MC and DRAM chips.
The HMTT captures the memory trace in real time by snooping

!

Table II
APPLICATION WORKLOADS.

Workloads Footprint(GB) Cores Bandwidth(GB/s)
Spark-GraphX (BFS,CC,LP,PR) 40 8 3 - 6

Spark-Bayes 37 8 3 - 6
Spark-K-Means 40 8 2 - 4
OMP-K-Means 3.2 4 2 - 3

High Performance Linpack 1.2 2 3 - 6
NPB (CG,FT,LU,MG,IS) 1 − 7 2 3 - 6

QuickSort 4 1 1 - 2

Figure 8. Completion time speedup. Figure 9. Swap reduction.
low-level DDR traffic at the DDRx memory bus. Second, to
perform direct cache access required by the record unit, we
use an FPGA-based PCIe receiving card that continuously
receives records from HMTT through an optical fiber, and then
sends them to LLC through DDIO. It takes 3-6µs to capture,
parse, and forward the trace into the CPU cache. This delay
only affects the timeliness of the trace but has no impact on
application’s memory access latency.

VI. EVALUATION
We first evaluate two MARB’s use cases: page eviction and

disaggregated memory prefetching with real applications. Then,
we evaluate MARB’s internal designs with microbenchmark.

Testbed and Workload. As Figure 7 shows, our testbed has
two servers connected via RDMA, with one being local server
running MARB and the other used as remote memory. Both
servers have a 14-core Xeon E5-2680 CPU with 35 MB 20-
way LLC, 64GB DRAM, and a 56 Gbps Mellanox ConnectX-4
NIC. Table II shows the 14 large-scale in-memory applications
used in our experiments. The footprint is their working set size.
A. Page Eviction

For the two use cases, we first evaluate MARB-Evictor,
the MARB-enhanced page eviction (§IV-A). We use the Linux
default eviction mechanism and its kswapd as the baseline.
We evaluate MARB-Evictor with 1) the LRU-list backed by
MARB’s full trace (MARB-LRU), 2) the streaming access pattern
(MARB-ST), and 3) both optimizations (MARB-LRU+ST). We
use Fastswap [3] as the swap backend thus pages are evicted to
remote memory. Compared to the baseline we report application
completion time speedup and swap reduction defined as the
reduced number of total swap events, higher the better.

Figure 8 and Figure 9 report the performance and swap re-
ductions of 8 real applications with MARB-Evictor. Random
pattern dominates the NPB-MG, NPB-FT and Spark-Graphx’s
access patterns, thus MARB-Evictor with MARB-LRU opti-
mization performs better than applying MARB-ST only for them.
In contrast, NPB-IS’s access pattern is dominated by Stream
pattern, thus MARB-Evictor with MARB-ST optimization
achieves the best speedup (1.3x). Similarly, the reason behind
the application speedup is because MARB-Evictor reduces
the number of swap events for non-stream pages (Figure 9).
As Kmeans’s access is similar to Stream-only, none of
MARB-Evictor optimizations works for Kmeans.

Figure 10. Speedup of MARB-Prefetcher compared to Fastswap.

Figure 11. The prefetching accuracy of MARB-Prefetcher and Fastswap.

B. Disaggregated Memory Prefetcher
We integrate the MARB-enhanced prefetcher with Fastswap

(MARB-Prefetcher) and compare it to original Fastswap
and Leap using various real applications (Table II). However,
Leap has much worse performance than the other two due
to its slow data path implementation (e.g., Figure 2). We
thus omit Leap’s results for better illustration. We use two
metrics to measure prefetch performance. Accuracy: The ratio
of total page hits and the total prefetched pages. Coverage:
The ratio of the total page hits from the prefetched pages and
the total number of remote accesses. We also use Application
completion time speedup over original Fastswap to show
MARB-Prefetcher’s efficiency. We set the local memory
to 50% of the application footprint for all tests.

Figure 10 shows the application completion time speedup
with MARB-Prefetcher. For QuickSort and Kmeans-OMP,
MARB-Prefetcher incurs no performance slowdown com-
pared to the local scenario where no memory is disaggre-
gated, even half of their working set is disaggregated. This
is because MARB-Prefetcher can accurately predict the
access pattern and prefetch pages into local DRAM asyn-
chronously, completely eliminating page faults. The average
acceleration of all workloads with MARB-Prefetcher is
32.2%. MARB-Prefetcher accelerates Fastswap by 48.2%
at most, and 11.4% at least.

To understand where the boost comes from, we further
compare their accuracy and coverage. Figure 11 shows that
the average accuracy of MARB-Prefetcher is over 97%,
which means that only a few false prefetches are issued and
local memory is not polluted. However, the average accuracy
of Fastswap is only 71.1%. Figure 12 shows the prefetching
coverage of MARB-Prefetcher is divided into two parts:
StreamHit and SwapCacheHit. SwapCacheHit is the number
of prefetched pages issued upon page faults by the underlying
remote system. Recall that MARB-Prefetcher is a comple-
ment to the remote memory system running on the same server.
StreamHit is the number of prefetched pages issued once a
stream is formed, which would not cause page faults. MARB
has the best prefetching coverage for QuickSort and Kmeans,
with more than 99% coverage, thus no page fault observed. The
application completion time is very close to the local scenario.

We evaluate the completion time speedup over Fastswap
if combining MARB-Evictor and MARB-Prefetcher to-
gether (MARB-ALL). As Figure 13 shows, MARB-ALL outper-

!

Program name 50% Fastswap MARB-Prefetcher ACC Fastswap MARB-Prefetcher
QuickSort 1.223 0.8226 0.997
HPL 1.114 0.672 0.843
Kmeans-OMP 1.339 0.875 0.999
NPB-CG 1.439 0.5498 0.940
NPB-FT 1.205 0.647299 0.990
NPB-LU 1.172 0.7756 0.967

0.5475 0.997
Spark-Kmeans 1.5218 0.738 0.968

Spark-Bayes 1.207387 0.843 0.994

Average 1.321669 0.711777 0.970154

0.258377

1.1
1.2
1.3
1.4
1.5
1.6

Sp
ee
du
p

C
ov
er
ag
e

0.0

0.5

1.0

Qui
ckS
ort HP

L

Km
ean
s-O
MP
NP
B-C
G
NP
B-F
T
NP
B-L
U
NP
B-M

G
NP
B-I
S

Spa
rk-P
G
Spa
rk-C
C

Spa
rk-B
FS

Spa
rk-L
P

Spa
rk-K
mea
ns

Spa
rk-B
aye
s
Ave
rage

Co
ve
ra
ge

Fastswap MARB_StreamHit MARB_SwapCacheHit

Figure 12. The prefetching coverage of MARB-Prefetcher and Fastswap.

Figure 13. The completion time
speedup if combining MARB’s
prefetcher and evictor.

Figure 14. MARB-Prefetcher’s
speedup over Fastswap with increas-
ing memory bandwidth (GBps).

forms the other setups for all applications. except Kmeans. By
sharing the same stream table, MARB-Prefetcher reduces
swap events of Stream pages, MARB-Evictor reduces swap
events of non-stream pages. As Kmeans has few non-streams,
MARB-ALL performs similarly to MARB-Prefetcher.

Effect of memory bandwidth. To verify whether MARB
is still effective with increasing memory bandwidth, we run
a linear access microbenchmark with MARB-Prefetcher
along with a background task generating memory traffic. The
filter table would capture records generated by both testing
programs but only analyze the ones from the microbenchmark.
Figure 14 shows that, when the background bandwidth is less
than 7 GBps, it has little effect on the MARB-Prefetcher.

C. MARB Design Feasibility
Record unit. Our record unit can generate at most 200 M

records/sec. This is constrained by the FPGA frequency in the
HMTT board [15]. Since each cache line is 64 B, the maximum
memory bandwidth the record unit can track without loss is
roughly 12.8 GBps. No record loss is found in our tests.

Filter table. The table is a flat array of one byte counters
indexed by physical address used to aggregate memory accesses
made to the same physical pages (§III-B). Our single-thread
implementation’ maximum process speed is 18.93 GBps, with
a min of 10.81 GBps. The filter table performs the best when
memory accesses are consolidated, resulting in cache hits, as
it runs at L1 speed, but performs worst for random access.

VII. RELATED WORK
Remote memory. Other than remote memory systems based

on VMS interface [1]–[5]. There are systems built atop of
interface such as objects [21], language runtime [20], and
hardware [8]. However, they are not general or practical as
VMS-based ones, either requiring nontrivial modification [8],
[20], [21] or limiting to a few languages [20].

Prefetch algorithms. A large number of prefetching tech-
niques have been proposed, like cache line granularity
prefetcher [19] and can be realized as MARB use cases, as it
provides sufficient memory access knowledge they need.

Intel PEBS. PEBS is a hardware feature in Intel CPUs. It
provides accurate and fine-grained profiling. However, using
PEBS has non-trivial CPU overhead. Whenever PEBS saves

context information, the target workload would slow down by
200 – 300 ns. If using PEBS to sample every LLC miss, the ap-
plication would take a huge performance toll. Moreover, PEBS
can pollute cache and consume extra memory bandwidth [22].

VIII. CONCLUSION
This paper presents MARB, a software-hardware co-designed

framework that can capture memory access trace and make
them available to upper layer systems efficiently, bridging
the semantic gap between OS and application memory access
behavior. We use MARB to improve a disaggregated memory
system and the kernel page eviction subsystem. We believe this
work opens a door for improving various VMS-based systems.

ACKNOWLEDGEMENT
This work was supported by Beijing Municipal Natural

Science Foundation (No. 4212028), National Key Research and
Development Plan of China (No. 2022YFB4500400), National
Natural Science Foundation of China (No. 62090020 and
62072439), Strategic Priority Research Program of the Chi-
nese Academy of Sciences (No. XDA0320300), and Shandong
Provincial Natural Science Foundation (No. ZR2019LZH004).
Corresponding authors: Ke Liu (liuke@ict.ac.cn) and Tianyue
Lu (lutianyue@ict.ac.cn).

REFERENCES
[1] Lagar-Cavilla, Andres, et al. ”Software-defined far memory in warehouse-

scale computers.” ASPLOS 2019.
[2] Weiner, Johannes, et al. ”TMO: transparent memory offloading in data-

centers.” ASPLOS. 2022.
[3] Amaro, Emmanuel, et al. ”Can far memory improve job throughput?.”

EuroSys. 2020.
[4] Al Maruf, Hasan, and Mosharaf Chowdhury. ”Effectively prefetching

remote memory with leap.” ATC. 2020
[5] Gu, Juncheng, et al. ”Efficient memory disaggregation with infiniswap.”

NSDI. 2017
[6] Wang, Chenxi, et al. ”Canvas: Isolated and Adaptive Swapping for Multi-

Applications on Remote Memory.” NSDI. 2023
[7] Eisenman, Assaf, et al. ”Reducing DRAM footprint with NVM in

Facebook.” EuroSys. 2018
[8] Li, Huaicheng, et al. ”First-generation Memory Disaggregation for Cloud

Platforms.” arXiv preprint arXiv:2203.00241 (2022).
[9] Navin Shenoy. A milestone in moving data, 2019.

[10] Guo, Zhiyuan, et al. ”Clio: A hardware-software co-designed disaggre-
gated memory system.” ASPLOS. 2022

[11] Intel.Intel®datadirectI/O(DDIO),2021.https://www.intel.com/content/
www/us/en/io/data- direct- i- o- technology.html.

[12] Cache Allocation Technology, 2018. https://xenbits.xenproject.org/docs/
unstable/features/intel psr cat cdp.html.

[13] Ye, Ying, et al. ”Coloris: a dynamic cache partitioning system using page
coloring.” PACT. 2014

[14] Zhang, Xiao, Sandhya Dwarkadas, and Kai Shen. ”Towards practical page
coloring-based multicore cache management.” EuroSys. 2009

[15] Huang, Yongbing, et al. ”HMTT: A hybrid hardware/software tracing
system for bridging the DRAM access trace’s semantic gap.” TACO. 2014

[16] Ibanez, et al. ”The case for a network fast path to the CPU.” Proceedings
of the 18th ACM Workshop on Hot Topics in Networks. 2019.

[17] ARM. Arm DynamIQ shared unit technical reference manual.
https://developer.arm.com/documentation/100453/0300/functional-
description/l3-cache/cache-stashing, 2021.

[18] Wang, Xiaodong, et al. ”SWAP: Effective fine-grain management of
shared last-level caches with minimum hardware support.” HPCA. 2017

[19] Pan, Haiyang, et al. ”LSP: Collective Cross-Page Prefetching for NVM.”
DATE. 2021

[20] Wang, Chenxi, et al. ”Semeru: A Memory-Disaggregated Managed Run-
time.” OSDI. 2020

[21] Ruan, Zhenyuan, et al. ”AIFM:High-Performance,Application-Integrated
Far Memory.” OSDI. 2020

[22] Akiyama, Soramichi, and Takahiro Hirofuchi. ”Quantitative evaluation of
intel pebs overhead for online system-noise analysis.” ROSS. 2017

!

	Select a link below
	Return to Previous View
	Return to Main Menu

