
OverlaPIM: Overlap Optimization for Processing
In-Memory Neural Network Acceleration
Minxuan Zhou§

University of California, San Diego
La Jolla, USA

miz087@ucsd.edu

Xuan Wang§

University of California, San Diego
La Jolla, USA

xuw009@ucsd.edu

Tajana Rosing
University of California, San Diego

La Jolla, USA
tajana@ucsd.edu

Abstract—Processing in-memory (PIM) can accelerate neural
networks (NNs) for its extensive parallelism and data movement
minimization. The performance of NN acceleration on PIM heav-
ily depends on software-to-hardware mapping, which indicates
the order and distribution of operations across the hardware
resources. Previous works optimize the mapping problem by
exploring the design space of per-layer and cross-layer data layout,
achieving speedup over manually designed mappings. However,
previous works do not consider computation overlapping across
consecutive layers. By overlapping computation, we can process
a layer before its preceding layer fully completes, decreasing the
execution latency of the whole network. The mapping optimization
without overlap analysis can result in sub-optimal performance.
In this work, we propose OverlaPIM, a new framework that in-
tegrates the overlap analysis with the DNN mapping optimization
on PIM architectures. OverlaPIM adopts several techniques to
enable efficient overlap analysis and optimization for the whole
network mapping on PIM architectures. We test OverlaPIM
on popular DNN networks and compare the results to non-
overlap optimization. Our experiments show that OverlaPIM can
efficiently produce mappings that are 2.10× to 4.11× faster than
the state-of-the-art mapping optimization framework.

I. INTRODUCTION

Processing in-memory (PIM) has emerged as a promising
computing solution to boost the performance of many critical
applications, like deep neural networks. Compared to conven-
tional architectures, PIM provides extensive parallelism with-
out off-chip data movements, leading into higher throughput,
energy efficiency, and scalability. PIM can exploit the abun-
dant memory resources to realize high compute and memory
throughput at the same time. The large capacity of memory
brings other benefits for workloads which we can allocate
exclusive memory resources for different parts of the applica-
tion, significantly reducing the data loading overhead [7], [14],
[15]. Neural network inference is a good candidate that can
exploit these benefits where we can allocate exclusive memory
for different layers. Therefore, most previous large-scale PIM
accelerators adopt the spatially distributed acceleration for
neural network inference [7], [14].

The performance of DNN acceleration depends on not only
the hardware architecture of the accelerator but also the ap-
plication mapping which determines the execution order and
distribution of DNN operations on the hardware. Figure 1(a)
shows an example of two mappings for a 2D convolution

§Equal contribution

0 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6

0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

0 1 2 3

Mapping 1
parallel_for o = 0 to 3:

for f = 0 to 3
Output[o]
+= Filter[f]

* Input[o+f]

Mapping 2
for o1 = 0 to 1:

parallel_for o2 = 0 to 1:
for f = 0 to 3:
Output[o1*2+o2]
+= Filter[f]

* Input[o1*2+o2+f]

0 2
1 3
2 4
3 5
4 6

0 0
1 1
2 2
3 3

0 1
2 3

Mapping 1 Mapping 20 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3
0 1 2 3

Sense. Amp.

W
or

dl
in

e
D

riv
er

Input

Filter

Output

0 2
1 3
2 4
3 5
4 6
0 0
1 1
2 2
3 3
0 1
2 3

Sense. Amp.

W
or

dl
in

e
D

riv
er

4 output in parallel (1 step) 2 output in parallel (2 steps)

Layer 1 Memory Layer 2 Memory

Out0 Out1

Out2 Out3

In0 Inp2
Inp1 Inp3

time0

time1

time2

Out0
Out1

Out2
Out3

Inp0
Inp1

Inp2
Inp3

Compute

Out0

Out1

Out0 Out1

Compute

Move

(a) Data layout of mappings of a 2D convolution. (b) Overlap of consecutive layers.

Fig. 1. The mapping problem of DNN on PIM accelerator.

on a PIM-enabled memory block. This example uses the in-
memory bit-serial row-parallel processing as the PIM technol-
ogy [3], [4] which provides state-of-the-art performance due to
the extremely parallel in-memory computations. We describe
each mapping using the syntax of Timeloop [10]. Mapping 1
parallelizes computations of all 4 outputs by spreading data in
different memory columns; mapping 2 parallelizes two output
tiles where each tile sequentially processes 2 outputs. As
shown, different mappings vary in latency, data layout, and
the order of producing outputs. Considering the more complex
operations (e.g., 3D convolution can be represented as a 7-level
nested loop) used in DNNs, the design space of mapping DNNs
onto the hardware accelerator is extremely large.

DNN mapping is critical to the performance of hardware
accelerators so that existing accelerators optimize the mapping
based on hardware configurations (e.g., row-stationary mapping
of Eyeriss [2]). Recent works recognize large design space for
DNN mapping by proposing optimization frameworks to find
the optimized mapping through either exhaustive search [10],
[12], [13] or solving an optimization problem [6]. However,
the ASIC-based framework, which assumes the accelerator
processes one layer at a time, is not applicable to spatially
distributed acceleration on PIM architecture. PIM-based frame-
work [13] considers the scheduling of all DNN layers on
PIM architecture by integrating a global optimization with the
per-layer optimization. Although such a PIM-based framework
takes the whole-network mapping into account for optimiza-
tion, it misses the computation overlap enabled by spatially
distributed DNN acceleration, which is a critical optimization.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Specifically, the existing PIM-based framework assumes
DNN layers are executed sequentially in the spatially dis-
tributed PIM memory, where each layer should wait for the
full completion of its preceding layer(s) to start the execution.
In practice, the execution of a layer can start earlier when part
of its input has been computed from the preceding layer(s). In
other words, we can overlap the execution of different layers
to improve the performance. Figure 1(b) shows an example
of executing two consecutive layers in two memory blocks.
We divide the computation of each layer into multiple time
steps, where each time step processes several operation spaces
in parallel (spatially processed in different memory blocks). In
the example, Layer 2 can overlap the computation of its output
0 with Layer 1 at the time step 1, where Layer 1 completes the
computation of data space output0/1 (input0/1 in Layer 2). In
real DNNs, such overlapping can bring significant performance
benefits. When considering the overlapping, the existing PIM-
based framework, which only considers the end-to-end sequen-
tial latency, may generate the sub-optimal mapping.

In this work, we propose and implement a novel PIM-
based DNN mapping framework, OverlaPIM, that integrates
overlap analysis into mapping optimization. There exist several
challenges in implementing overlap optimization. First, we can
only generate the overlap information based on fine-grained
data analysis which compares data spaces between two layers.
However, the size of fine-grained data spaces can be extremely
large so previous mapping frameworks avoid the full analysis
for all operation spaces. To tackle this challenge, we propose a
lightweight algorithm that can efficiently generate fine-grained
data spaces for overlap analysis. The second challenge is the
search for mapping becomes slow with overlap analysis. In
order to speed up the search for good mappings, we propose
a transformation mechanism that transforms a searched map-
ping into overlap-friendly mappings with a trivial overhead
for analysis. In this case, we effectively increase the search
space of the framework in a similar amount of time. We
implement the proposed framework in an open-source DNN
mapping framework and compare the result against state-of-the-
art mapping optimization without the consideration of overlap.
Our evaluation of popular DNNs shows OverlaPIM can produce
mappings that are 2.10× to 4.11× faster than the mappings
optimized by existing methods [10], [13].

II. BACKGROUND AND MOTIVATION

A. DNN Mapping and Optimization

DNN mapping determines the operation scheduling and data
allocation of a specific DNN for a computing platform. For
example, Timeloop [10] parameterizes the 7-D loop and near-
exhaustively searches through possible mappings considering
loop decomposition (i.e., temporal tiling and spatial tiling) and
permutation. Each mapping has a direct relation to a specific
data allocation and operation schedule on given hardware,
which has hierarchical storage. The mapping optimization for
customized accelerators only optimizes a DNN layer because
such accelerators process one layer at a time. The per-layer
optimization may lead to sub-optimal performance for PIM ar-

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 O
ve

rl
ap

pe
d

L
at

en
cy

Fig. 2. The normalized overlapped latency for all layers in ResNet-18 opti-
mized by existing framework [10] - higher means better overall performance.

chitectures with sufficient resources to process many (even all)
layers simultaneously. The cross-layer optimization is solved in
a recent work [13] by applying a 2-level optimization algorithm
to find the efficient data layout of all layers in the memory.

B. PIM Acceleration for DNN

In this work, we focus on the bit-serial row-parallel PIM
architectures based on DRAM which exploit special memory
commands (e.g., activate-activate-precharge [4]) to implement
universal bit-wise operations (e.g., majority-based addition [1]).
Figure 1 shows the architecture for a PIM-based memory block
supporting bit-serial row-parallel in-memory computations. The
PIM block contains an array of memory cells and peripheral
that controls bit-lines (rows) and word-lines (columns). We
allocate memory rows to different bits of operand and result
vectors to support an in-memory computation. The example
only shows single-bit values for input, filter, and output. In
practice, each data may take multiple rows. Once aligning
operand and result vectors, the memory issues a sequence of
universal bit-wise operations to generate the result vector. Such
bit-serial operations achieve extensive parallelism because we
can simultaneously process all columns in memory rows in
different memory blocks.

Furthermore, considering the large memory size, the PIM-
based accelerators can accommodate the whole DNN network,
different from ASIC-based accelerators that usually process one
layer at a time. The whole network execution avoids costly
off-chip data communication. PIM DNN accelerators [7], [14]
achieve state-of-the-art performance due to these benefits.

C. Overlap-based Optimization for PIM DNN Acceleration

Although previous work [13] proposed an optimization
framework that can generate efficient mappings for the whole
DNN in a PIM architecture, it still misses a key feature for the
PIM DNN acceleration - computation overlapping. In practice,
the memory of the preceding layer cannot generate all its
outputs at the same time, making outputs ready at different
times. In this case, the following layer can consume some
inputs (outputs from the preceding layer) earlier than others,
overlapping the corresponding computations with the preceding
layer. Such overlapping can bring better performance than the
performance considered by the existing framework.

Figure 2 shows an experiment of PIM acceleration for
ResNet-18 where we use the state-of-the-art framework,
Timeloop [10], to search for the best mapping (the lowest

!

!

Per-layer
Mapping constraints

Whole-network
Description

Global Mapper for
Whole-network

PIM Performance ModelFine-grained Data Space
Generation

Overlap Analysis
+Transformation

Architecture
Configuration

Network
Optimization

Fig. 3. The overview of OverlaPIM.

latency) layer by layer. We modified Timeloop to analyze the
computation overlap of consecutive layers and reduce the over-
lapped computations from the original latency. We reduce the
latency only if the input for all operation spaces of the following
layer becomes ready in a specific time step. Therefore, not
all overlapped data spaces lead to a latency reduction. We
calculate the normalized latency of the overlapped computation
in the experiment, where a higher value indicates a better
performance with more overlapped computations. As shown
in the results, the overlapped latency varies significantly from
layer to layer if we naively search for the best non-overlap
performance mapping for each layer. Specifically, 13 out of
20 layers only have trivial overlapping (< 20%) while other
layers can overlap a significant portion of their computations
(29% to 78%). Therefore, it is great potential to optimize the
performance by optimizing the DNN mapping on PIM based
on overlaps of computations between consecutive layers.

III. OVERLAP-BASED MAPPING OPTIMIZATION

In this work, we propose OverlaPIM, a PIM mapping frame-
work for DNN with the consideration of overlapping between
different layers. We implement our framework in an open-
source mapping framework, Timeloop [10], which uses near-
exhaustive search to find efficient mappings. Figure 3 shows key
components of OverlaPIM to enable the new functionalities re-
lated to overlap-based optimization. First, we add the interface
to support the whole network mapping including the combined
description of mapping constraints and layer information for
the whole network. The new interface enables us to configure
the whole network in the optimization for the overlap analysis
between consecutive layers. Second, we add a new PIM per-
formance model to enable the accurate evaluation of mapping
on PIM architectures because the original Timeloop [10] per-
formance model only considers the compute, read, and write
latency. These are insufficient for PIM performance evaluation
which requires data movement. Third, we implement a fine-
grained data space generation that produces detailed data spaces
over time on different memory components for overlap analysis
and optimization. Furthermore, we propose a transformation
algorithm that can significantly increase the search capability
of whole DNN optimization with trivial overhead.

During the execution, the optimization mapper generates
mappings based on the configuration, including architecture
configuration and mapping constraints. For each mapping, it
generates the fine-grained temporal and spatial data spaces,

as well as the PIM performance evaluation. Then, the frame-
work calculates the overlap of consecutive layers based on
their fine-grained data spaces and recalculates the performance
considering the overlapped computations. The framework also
transforms the current mapping into overlap-friendly mappings
to increase the search space. The framework continues to
update the best mapping based on the overlap-based perfor-
mance until meeting the termination requirements (similar to
Timeloop [10]). The following subsections illustrate details for
each component of OverlaPIM.

A. PIM Performance Model

In this work, we focus on spatially distributed PIM accel-
eration for the whole DNN based on bit-serial row-parallel
processing [3], as introduced in Section II-B. We allocate a
fixed amount of memory (e.g., 2 channels) for each DNN layer,
for which we place the filter data as well as the input data
for the first layer in the memory based on the DNN mapping.
After each layer execution, we move its output to the memory
locations of the input for the next layer.

We cannot simply change the latency of operation in the
Timeloop’s original performance model, which only evaluates
the number of read/write operations, to evaluate PIM architec-
tures. Read/write operations of PIM acceleration are replaced
by the data movements, including the output-input data transfer
and the data movements for reductions of partial sums located
in different columns. Thus, we implement a new performance
evaluation model in Timeloop to support PIM architectures.

B. Fine-grained Data Space Generation

Analysis of the output/input overlapping between layers
requires the comparison of the detailed output/input data spaces
for each memory hierarchy level across DNN layers. However,
only a small portion of data spaces are collected for size
measurement in Timeloop [10] due to runtime limitation. Since
Timeloop [10] generate data spaces from recursive function
calls, collecting all data spaces is unacceptably expensive for
both runtime efficiency and memory consumption and makes
overlap analysis impossible. To reduce the complexity, we
propose a lightweight algorithm to infer all spatial and temporal
data spaces through analytical observation and formulation.

First, OverlaPIM exploits the same 7D-loop representation of
Timeloop for DNN layer. We use convolution as the example,
where R and S are the height and width of weight, P and
Q are the height and weight of output, C is the number of
input channels, K is the number of output channels, and the
number of inputs or batch size is represented by N . With this
parameterized representation, we define the output data space as
a 4-D tensor [N,K,P,Q] and the input data space as [N,C, P+
R−1, Q+S−1] for further input/output overlapping analysis on
different mappings. Figure 4 shows an example of data spaces
for a mapping on a two-level memory. For simplicity, we ignore
the dimension of N in later discussion.

Each mapping, with a specific loop decomposition and
permutation, can be translated into data spaces that are spatially
and temporarily distributed. Specifically, the spatial distribution
(i.e., parallel for) means data spaces are split and allocated

!

!

Spatial decomposition (channel)
parallel_for k1 = 0 to 1:
Temporal decomposition (channel)
for k2 = 0 to 1:

Spatial decomposition (bank)
parallel_for k3 = 0 to 1:
Temporal decomposition (bank)
for p = 0 to P:

for q = 0 to Q:
k = k1*2*2+k2*2+k3
output[k, p, q] = …

[0,0,0:K/2,P,Q] [K/2,0,0:K,P,Q]

[0,0,0:K/4,P,Q]

[K/4,0,0:K/2,P,Q]

[0,0,0:K/8,P,Q] [K/8,0,0:K/4,P,Q]

Channel0 Space

Ch0 Bank0 T0 Ch0 Bank1 T0

[K/4,0,0:3K/8,P,Q] [3K/8,0,0:K/2,P,Q]
Ch0 Bank0 T1 Ch0 Bank1 T1

[0,0,0:K/8,0,0]

[0,0,0:K/8,0,1]

[0,0,0:K/8,P,Q]

…

Ch0 Bank0 T0-0

Bank0-0 T0-1

Bank0-0 T0-PQ

[0,0,0:K/8,0,0]

[0,0,0:K/8,0,1]

[0,0,0:K/8,P,Q]

…

Ch0 Bank1 T0-0

Bank0-1 T0-1

Bank0-0 T0-PQ

[0,0,0:K/8,0,0]

[0,0,0:K/8,0,1]

[0,0,0:K/8,P,Q]

…

Ch0 Bank0 T1-0

Bank0-0 T1-1

Bank0-0 T1-PQ

[0,0,0:K/8,0,0]

[0,0,0:K/8,0,1]

[0,0,0:K/8,P,Q]

…

Ch0 Bank0 T1-0

Bank0-0 T1-1

Bank0-0 T1-PQ

[0,0,0:K,P,Q]

Channel1 Space

Total Space

Spatial decomposition (channel)

T0

T1

[K/2,0,0:3K/4,P,Q]

[3K/4,0,0:K,P,Q]

Temporal decomposition (channel)

[0,0,0:K/4,P,Q]Channel0 T0 [K/4,0,0:K/2,P,Q]Channel0 T1

Temporal decomposition (bank)

Spatial decomposition (bank)

(a) Example mapping. (b) Channel-level data spaces and execution.

(c) Bank-level data spaces and execution (channel 0).

Sequential Sequential

Fig. 4. Fine-grained Data Space Generation

to different hardware instances (e.g., banks). The temporal
distribution (i.e., for) happens when a data space of a hard-
ware instance is further decomposed into smaller data spaces.
These smaller data spaces are sequentially processed by the
corresponding hardware component in multiple temporal steps,
where the instance process a temporal data space in each step.
As shown in Figure 4, the whole output data space is spatially
decomposed into two channel-level spaces, each of which is
further decomposed into two temporal steps. Similarly, each
channel-level temporal step is decomposed into 2 bank-level
spaces, where each consists of P ∗Q temporal steps. In total,
each bank in this example consists of 2∗P ∗Q temporal steps.

We propose a lightweight data space analysis based on
the observation that the size of data spaces maintains the
same at each hardware level. The dimension value of data
spaces changes periodically corresponding to the inner loop
iteration, where each loop level increments one data space
dimension. Therefore, our analysis algorithm runs in two steps.
First, we analyze the nested loop of the mapping to split
the whole data space (input or output) into small data spaces
until the target level (e.g., bank-level). The loop analysis runs
in an up-down loop order to generate small data spaces by
splitting data spaces from the upper loop level. Second, we
map the generated data spaces into the correct temporal and
spatial locations. The spatial index for each data space can be
computed straightforwardly by tracking all spatial loops (i.e.,
parallel for). For the temporal index, we deduce a formula to
translate the indices of loop iterations into the temporal steps
at each hardware level. Assuming k is the index of the nth

temporal loop iteration and i is the global index of 0-(n-1)
temporal loops, the temporal index of a data space in the nth

loop can be found by:

Si
k(n) = Si−1

numn
(n) + (

n−1∏
j=q

numj) ∗ k

where numj is the number of iterations in the jth temporal

Bank0 Bank1 Bank2 Bank3 End Time
Out0
(𝑡)

Out1
(𝑡ଵ)

Out2
(𝑡ଶ)

Out3
(𝑡ଷ)

𝑡
ൌ 𝑡ଷ 𝑙1

Out0
(𝑡)

Out1
(𝑡ଵ)

Out2
(𝑡ଶ)

Out3
(𝑡ଷ)

𝑡
ൌ 𝑡 𝑙2

Out0
(𝑡)

Out1
(𝑡ଵ)

Out2
(𝑡ଶ)

Out3
(𝑡ଷ)

𝑡
ൌ 𝑡 𝑙3

Te
m

po
ra

ril
y

se
qu

en
tia

l
fo

r l
ay

er
 2

Bank0 Bank1 Bank2 Bank3 End Time
Out0
(𝑡)

Out0
(𝑡)

Out0
(𝑡) 𝑡 𝑙𝑚𝑎𝑥

Out1
(𝑡ଵ)

Out1
(𝑡ଵ)

Out1
(𝑡ଵ) 𝑡ଵ 𝑙𝑚𝑎𝑥

Out2
(𝑡ଶ)

Out2
(𝑡ଶ)

Out2
(𝑡ଶ) 𝑡ଶ 𝑙𝑚𝑎𝑥

Out3
(𝑡ଷ)

Out3
(𝑡ଷ)

Out3
(𝑡ଷ) 𝑡ଷ 𝑙𝑚𝑎𝑥

(a) Original mapping (no overlap available) (b) Transformed mapping

Fig. 5. Overlap-based transformation.

loop, and q is the lower bound of loops in the target hardware
level where the current loop iteration belongs.

As compared to Timeloop’s original logic, which depends
on recursive function calls, our method can more efficiently
compute all data spaces in O(n) time complexity, where n
is the total number of data spaces. If we implement the data
space generation in the Timeloop’s recursive function calls,
the analysis for one mapping takes around 600 seconds. Our
proposed analytical calculation only takes less than 60 seconds.

C. Overlap-based Performance Analysis

With the fine-grained data spaces for two consecutive layers,
Layer n and n + 1, we analyze the overlap and estimate the
overlapped performance. We denote Oi

t and Iit as the whole
output and input operation spaces in tth temporal step of all
hardware instances for Layer i. We first find the ready time of
In+1
t , which is the time when all data in In+1

t are finished by
the previous layer (Layer n). For each In+1

ti , we need to check
all On

t and find the latest time step to that On
to has an overlap

with In+1
ti . If to is earlier than the end time of Layer n, we can

compute On+1
ti right after to because the whole In+1

ti has been
calculated. In this case, the computation of On+1

ti is overlapped
with computations in Layer n after to.

Our new evaluation considers the overlapped data spaces
(computations) based on the hardware constraints to calculate
the overlapped performance as the new metric for optimization.
In our framework, we traverse through all data spaces at a
target storage level to find the ready timestamps. In the PIM
architecture, we conduct the overlap analysis at the bank level
because the analysis at an upper (e.g., channel) produces too
coarse-grained data spaces while a lower level (e.g., column)
has too many instances that will make the analysis intractable.

D. Overlap-based Mapping Transformation

One way to search for the best mapping, considering the
overlap, is to simply add overlap analysis in the normal search
process (e.g., Timeloop’s search algorithms). However, the
search time of this method can be extremely long. The most
time-consuming part of the search process is overlap analysis
which generates evaluation statistics. Based on our experiments,
the overlap analysis increases the evaluation time for a mapping
by 2.06× - 41.49 × as compared to the original Timeloop,
depending on the number of data spaces. Therefore, it is critical
to find a new method to search for more mappings in each
overlap analysis. If we can generate the analysis statistics for
different mappings in trivial time, we can significantly enlarge
the search space, hence improving the search result.

!

!

We propose an overlap-based mapping transformation that
can directly generate the evaluation results for different map-
pings based on the mapping that is analyzed in detail. Figure 5
shows an example of mapping transformation, where we mark
the ready time for the input of each data space (tx in each
parenthesis). The left part shows the original mapping, where
no overlap is available because the latest ready time of all data
spaces in a time step is the end time of the previous layer
(i.e., t3). For transformation, we reorganize the data spaces and
reschedule data spaces at the same ready time, as shown in the
right part, significantly decreasing the end time of the layer.

The transformation runs in two steps. First, it sorts the data
spaces in the ascending order of ready time of input. After the
sorting, the algorithm allocates the memory resources for each
data space based on the ready time. In practice, the number of
data spaces that have the same ready time can be larger than the
number of memory resources. Therefore, the memory allocation
algorithm needs an optimization process. We should note that
the transformation is not overhead-free because it might change
the locations of partial sums that require data movements for
reduction. Therefore, the algorithm uses a round-robin manner
to schedule the data space with the same partial sum to the same
memory location. Since the transformation does not require re-
analysis of the data space and the complexity of the algorithm
is O(logN) bounded by the search, the transformation only
introduces trivial overhead during the search process.

E. Overlap Optimization for the Whole DNN

OverlaPIM supports the mapping search for all layers in the
entire DNN model. To evaluate the whole network, we require
descriptions of all layers and their corresponding mapping
constraints and architecture configurations as inputs. These
inputs can be generated automatically through our self-designed
toolkit by providing information of architecture design and
constraints. Since DNNs are Directed Acyclic Graphs (DAG) of
various layers, the workload parameters for each layer will be
auto-generated according to the topological order for analysis.

Given that overlapping performance depends on both Layer
n and Layer n+1, finding the best performance mappings for
all layers through searching and comparing mappings would
be prohibitively expensive. For example, if we search for k
mappings in each layer, the total possible combination of
mappings for all N layers would be kN . The exhaustive
search for optimal mappings would be unacceptably expensive
in this case. Thus, for each Layer n + 1, the overlapping
optimization search is done based on the best mapping found
for Layer n. Our evaluation shows that such a linear method
can produce high-performance mappings. We leave a more in-
depth investigation of global optimization for future work.

IV. EXPERIMENTS

A. Experimental Setup

1) Implementation: We implement the proposed framework
in Timeloop [10] as illustrated in Section III.

2) Baseline: We compare OverlaPIM to several baselines
based on state-of-the-art PIM mapping optimization [13], im-
plemented in Timeloop [10]. Specifically, the “Best Original”

0

1

2

3

4

5

ResNet VGG

Sp
ee

du
p

(X
)

Best Original Best Original Overlap Best Overlap Best Transform

Fig. 6. Overall performance comparison over different algorithms.

indicates the mapping optimized by the original framework
and does not consider overlap; “Best Original Overlap” means
the same mapping as the “Best Original” but the performance
considers the overlapped computation, which is analyzed by
OverlaPIM; “Best Overlap” is the mapping optimized based
on the execution time considering overlap in the search process
(no transformation); “Best Transform” indicates the optimized
mapping generated by considering the transformation during
the overlap-based optimization. The searches explore the same
number of valid mappings for all methods in the main loop.
Note that “Best Transform” effectively checks more mappings
with the light-weight transformations for each valid mapping.

3) Architecture Configuration: We use the HBM [8] with
the support of majority-based bit-serial computation [1] as
the base technology for the PIM architecture. We allocate
the fixed number of HBM channels (8 banks/channel, 32MB
bank) for each layer, ranging from 1 channel to 4 channels.
The whole system has 4 8GB HBM2 stack, with a total of
128 channels. We assume all 4 HBM2 stacks are connected
through a host machine with a 256GB/s bus. We extract the
timing of HBM from previous work [9] including the detailed
latency for memory commands (e.g., activate, precharge, etc.)
and internal/external bandwidth of HBM.

4) Workloads and Mapping Constraints: We evaluate the ef-
ficiency of OverlaPIM on two popular DNN networks, ResNet-
18 [5] and VGG-16 [11]. Because certain groups of mapping
may be preferred for a specific architecture configuration, we
carefully construct mapping constraints (natively supported by
the original Timeloop) for different layers to reduce the overall
search time. We note that OverlaPIM is general to all workloads
and architectures supported by the original Timeloop [10].

B. Overall Comparison

Figure 6 shows the overall results of different mapping
optimization algorithms. For ResNet-18, the overlapped latency
of the original best mapping (Best Original Overlap) is 1.51×
faster than the end-to-end latency without overlapping (Best
Original). The mapping optimized by the overlapped latency
(Best Overlap) can provide another 1.22× speedup over “Best
Original Overlap”. If we adopt the transformation in the search
process, the best mapping (Best Transform) further improves
the performance of “Best Overlap” by 1.14×. OverlaPIM
behaves differently in VGG-16 where “Best Original Overlap”
and “Best Overlap” have similar performance (1.36× faster
than “Best Original”). However, the overlap-based optimization
with transformation produces significantly better mappings than
other algorithms, which is 4.11× faster than “Best Original”.

!

!

0

1

2

3

4

5

6

Sp
ee

du
p

(X
)

Best Original Best Original Overlap Best Overlap Best Transform

16.016.0

0
1
2
3
4
5
6
7
8

Sp
ee

du
p

(X
)

Best Original Best Original Overlap Best Overlap Best Transform
14.2 18.9

(a) ResNet-18

(b) VGG-16

Fig. 7. The per-layer performance comparison on ResNet-18 and VGG-16.
All results are normalized to “Best Original” for each layer.

0

2

4

6

8

10

12

1-Channel 2-Channel 4-Channel 1-Channel 2-Channel 4-Channel

ResNet VGG

Sp
ee

du
p

(X
)

Best Original Best Original Overlap Best Overlap Best Transform

Fig. 8. Efficiency of OverlaPIM on different memory capacity. All results are
normalized to the “Best Original” time for the 1-channel setting.

C. Per-layer Breakdown
Figure 7(a) shows the per-layer performance comparison

over different mapping optimization algorithms on ResNet-18.
As shown in the figure, the overlap-based algorithms, “Best
Overlap” and “Best Transform”, find better mappings than
the existing method (Best Overlap) for 15 out of 20 layers.
Among these layers, “Best Transform” is 2.30× better than
“Best Original Overlap”. The proposed optimization achieves
small performance improvements when the existing mapping
algorithm (without overlap consideration) coincidentally pro-
duces mappings with a high overlap ratio, as shown in Figure 2.
Figure 7(b) is the per-layer performance comparison on VGG-
16, showing a more significant benefit of transformation, which
improves the performance for 10 out of 13 layers. As a com-
parison, the normal overlap-based optimization (Best Overlap)
is not faster than “Best Original Overlap” in any layer.

D. Sensitivity Analysis of Memory Capacity

We adopt OverlaPIM on various architecture settings where
we allocate different amounts of memory resources for each
layer. We compare the performance of different optimization
algorithms in various architecture settings, as shown in Fig-
ure 8. The results show that, in ResNet-18, “Best Transform”

is 2.63×, 1.54×, and 1.21× faster than “Best Original”, “Best
Original Overlap”, and “Best Overlap” for 4-channel setting
(2× larger than the default 2-channel). Such performance
improvements are slightly better than the results shown in Fig-
ure 6. The performance improvements on the 1-channel setting
are similar to the 2-channel setting, which achieves 1.94×,
1.36×, and 1.21× speedup over three baseline algorithms.
We observe a similar result in VGG-16 where the relative
performance of the algorithm is similar across different settings.
Such results prove that OverlaPIM is a scalable and general
optimization for DNN mapping on PIM architectures.

V. CONCLUSION

This work proposes a novel DNN mapping framework,
OverlaPIM, on PIM architectures that consider the computation
overlapping. OverlaPIM integrates the overlap-based analysis in
the DNN mapping optimization that searches for the best DNN
mapping based on the overlapped latency, instead of sequential
latency considered by existing methods. We propose several
techniques to improve the effectiveness and efficiency of Over-
laPIM, including a fine-grained operation space generation,
an overlap-based performance analysis, and a transformation
algorithm to quickly find overlap-friendly mappings. Over-
laPIM can find mappings that achieve 2.10× to 4.11× better
performance than mappings optimized by existing methods.

ACKNOWLEDGMENT

This work was funded by CRISP, one of six centers in JUMP
(an SRC program sponsored by DARPA), SRC Global Re-
search Collaboration (GRC) grant, and NSF grants #2112167,
#2003279, #2100237, #2112665, and #2120019.

REFERENCES

[1] M. F. Ali et al., “In-memory low-cost bit-serial addition using commodity
dram technology,” IEEE TCAS I: Regular Papers, 2019.

[2] Y.-H. Chen et al., “Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks,” ACM SIGARCH computer
architecture news, 2016.

[3] F. Gao et al., “Computedram: In-memory compute using off-the-shelf
drams,” in IEEE/ACM MICRO, 2019.

[4] N. Hajinazar et al., “Simdram: A framework for bit-serial simd processing
using dram,” in ACM ASPLOS, 2021.

[5] K. He et al., “Deep residual learning for image recognition,” in IEEE
CVPR, 2016.

[6] Q. Huang et al., “Cosa: Scheduling by constrained optimization for spatial
accelerators,” in ACM/IEEE ISCA, 2021.

[7] M. Imani et al., “Floatpim: In-memory acceleration of deep neural
network training with high precision,” in ACM/IEEE ISCA, 2019.

[8] C. Oh et al., “22.1 a 1.1v 16gb 640gb/s hbm2e dram with a data-bus
window-extension technique and a synergetic on-die ecc scheme,” in
IEEE ISSCC, 2020.

[9] M. O’Connor et al., “Fine-grained dram: Energy-efficient dram for
extreme bandwidth systems,” in IEEE/ACM MICRO, 2017.

[10] A. Parashar et al., “Timeloop: A systematic approach to dnn accelerator
evaluation,” in IEEE ISPASS, 2019.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[12] X. Yang et al., “Interstellar: Using halide’s scheduling language to analyze
dnn accelerators,” in ACM ASPLOS, 2020.

[13] M. Zhou et al., “Pim-dl: Boosting dnn inference on digital processing
in-memory architectures via data layout optimizations,” in PACT, 2021.

[14] M. Zhou, W. Xu et al., “Transpim: A memory-based acceleration via
software-hardware co-design for transformer,” in IEEE HPCA, 2022.

[15] M. Zhou et al., “Gram: Graph processing in a reram-based computational
memory,” in ACM ASPDAC, 2019.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

