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Abstract—In this paper, we propose BIPOD, a brain-inspired
privacy-oriented machine learning. Our method rethinks privacy-
preserving mechanisms by looking at how the human brain
provides effective privacy with minimal cost. BIPOD exploits
hyperdimensional computing (HDC) as a neurally-inspired com-
putational model. HDC is motivated by the observation that the
human brain operates on high-dimensional data representations.
In HDC, objects are thereby encoded with high-dimensional
vectors, called hypervectors, which have thousands of elements.
BIPOD exploits this encoding as a holographic projection with
both cryptographic and randomization-based features. BIPOD
encoding is performed using a set of brain keys that are generated
randomly. Therefore, attackers cannot get encoded data without
accessing the encoding keys. In addition, revealing the encoding
keys does not directly translate to information loss. We enhance
BIPOD encoding method to mathematically create perturbation
on encoded neural patterns to ensure a limited amount of infor-
mation can be extracted from the encoded data. Since BIPOD
encoding is a part of the learning process, thus can be optimized
together to provide the best trade-off between accuracy, privacy,
and efficiency. Our evaluation on a wide range of applications
shows that BIPOD privacy-preserving techniques result in 11.3×
higher information privacy with no loss in classification accuracy.
In addition, at the same quality of learning, BIPOD provides
significantly higher information privacy compared to state-of-
the-art privacy-preserving techniques.

I. INTRODUCTION

Advances in deep learning have led to breakthroughs in
analyzing large-scale data produced in the Internet of Things
(IoT). Many internet companies collect users’ online activities
to train learning and recommendation algorithms to predict
their future interest [1], [2]. For example, collecting large-
scale health data can be used to produce new diagnostic
models. Similarly, collecting financial information, such as
payment network, history, merchant data, and account holder
information, can be used to train an accurate model for fraud
detection. Although recent platforms provide higher computa-
tional efficiency to process deep learning and large-scale data,
collecting and combining data from different sources remains
very challenging. Particularly, privacy concerns prevent many
users or organizations from sharing their data [3].

Privacy-preserving machine learning provides a promising
solution by allowing different organizations to share their
data [4]–[6]. Privacy-preserving learning protocols could be
classified into two categories [6]: (1) secure multi-party com-
putation that employs cryptographic tools to protect privacy
among involved parties. This approach often brings huge
extra computational overhead that cannot be supported by
most practical systems or organizations. (2) perturbation and
randomization-based approaches that sanitize samples prior
to their release [7]. Although this approach provides limited

privacy, it makes a controllable trade-off between accuracy and
privacy. The drawback of this approach is that perturbation and
learning algorithms are not well integrated. This results in a
high-quality loss for small privacy preservation.

This paper aims to develop an ultra-lightweight privacy-
preserving machine learning that can be used for many
practical systems. Our method rethinks privacy-preserving
mechanisms by looking at how the human brain provides
effective privacy with minimal cost [8], [9]. Unlike today’s
computing systems, the brain does not store information in a
human interpretable format. Our observed information from
our sensors (vision, hearing, smell, touch, and taste) stores
as a pattern of neural activity in the brain. Particularly,
the Cerebellum cortex in the brain is responsible for our
short/long-term memorization [10], [11]. In the cerebellum,
the information is stored in holographic and high-dimensional
space. More interestingly, these neural patterns are different
from person to person [12]. Even when observing the same
scene, the brain of two individuals will get entirely different
neural representations.

In this paper, we propose BIPOD, a brain-inspired privacy-
preserving mechanism. BIPOD exploits hyperdimensional
computing (HDC) as a neurally-inspired computational model
mimicking brain properties [10], [13]–[17]. There are few
recent efforts tried to enhance HDC privacy. Work in [18]
exploited MPC protocol to enable secure collaboration learn-
ing with the assumption that HDC encoding is a cryptography
method. Work in [19], [20] used existing privacy-preserving
mechanisms introduced for DNN to secure HDC data from
a privacy perspective. However, since these methods are not
well suited for HDC, a small privacy gain is obtained with a
significant quality drop. Unlike the existing privacy-preserving
method, BIPOD integrates learning and privacy by enabling
computation over neural representation. Our solution modifies
the HDC encoding to give inherent privacy-preserving fea-
tures in high-dimensional while ensuring maximum quality of
learning.

• HDC is motivated by the observation that the human brain
operates on high-dimensional data representations. In HDC,
objects are thereby encoded with high-dimensional vectors,
called hypervectors, which have thousands of elements [21].
BIPOD exploits this encoding as a holographic projection
with certain privacy-preserving features.

• BIPOD encoding naturally has both cryptographic and ran-
domization features. For cryptography, the encoding is per-
formed using a set of brain keys that are generated randomly
for different users. Thus, attackers cannot get encoded data
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without accessing the encoding keys. We develop a novel
data recovery approach showing the vulnerability of prior
methods to information attacks.

• Revealing the encoding keys does not directly translate to
information loss. We enhance BIPOD encoding to mathe-
matically create perturbation on encoded neural patterns. We
introduce encoding variance and hyper-latent quantization
as two effective techniques to enhance BIPOD encoding
privacy. These methods limit the amount of information
extracted from the encoded data, thus preserving privacy.

• Unlike existing privacy-preserving techniques that are not
optimized for HDC, we enhance HDC encoding for highly
accurate and efficient brain-inspired learning. Our tech-
niques are designed to mathematically randomize data de-
coding from high-dimensional space while providing mini-
mal overhead on learning accuracy. Our privacy-preserving
method is a part of data encoding, thus having negligible
cost on learning performance.

We evaluate BIPOD effectiveness on a wide range of appli-
cations. Our evaluation shows that BIPOD privacy-preserving
techniques result in 11.3× higher information privacy with
no loss in classification accuracy. In addition, at the same
quality of learning, BIPOD provides significantly higher in-
formation privacy compared to state-of state-of-the-art privacy-
preserving techniques.

II. RELATED WORK

Prior research applied the idea of hyperdimensional comput-
ing to diverse cognitive tasks, such as robotics, analogy-based
reasoning, latent semantic analysis, language recognition, pre-
diction from multimodal sensor fusion, and bio-signal process-
ing [22]–[24]. Prior work also focused on the security and
privacy of hyperdimensional computing. Work in [18], [25],
[26] designed a framework for security collaborative learning
using multi-party computation (MPC). The MPC assigns a
personal key for each user, which cannot be accessed by other
users of the cloud. However, this has the strong assumption
that keys can stay secure. However, the keys can be revealed
using a frequency attack or when a user collides with the
cloud in practice. Work in [9], [27], develop a novel adversarial
attack on an HDC-based classifier. Our solution is orthogonal
to this paper, as our focus is on privacy-preserving rather
than adversarial attacks. Work in [19] exploited conventional
differential preserving mechanisms (i.e., noise injection) to
ensure high-dimensional data is private. However, this method
is not well developed for HDC; thus (1) results in a significant
drop in classification accuracy, (2) it is only applicable to old
linear encoding methods. (3) the privacy shown in the paper
comes from the weak data recovery mechanism used.

In contrast, in this paper, we develop a novel approach that
provides a theoretical trade-off between accuracy and privacy
in hyperdimensional space. Our solution redesigns the state-
of-the-art HDC encoding methods to mathematically ensure
data privacy even when the encoding keys are revealed. Unlike
prior work, our solution minimizes information leakage with
no major quality loss.

III. HYPERDIMENSIONAL COMPUTING

Brain-inspired Hyperdimensional Computing (HDC) is a
neurally-inspired model of computation based on the obser-
vation that the human brain operates on high-dimensional

and distributed representations of data [10]. The fundamental
units of computation in HDC are high-dimensional data or
“hypervectors” which are constructed from raw signals using
an encoding procedure. HDC uses an encoding module to
transform data into high-dimensional representation. The en-
coding leverages randomly generated hypervectors [21]. Dur-
ing the learning process, HDC can apply brain-like operations
over encoded data. These operations include memorization,
association, as well as similarity search. During memorization,
HDC superimposes together the encodings of signal values to
create a composite representation of a phenomenon of interest
known as a “class hypervector”. In inference, the associative
search identifies an appropriate class for the encoded query
hypervector.

A. Hyperdimensional Encoding

Encoding or transforming data into high-dimensional space
is the first step of hyperdimensional computing. HDC encoding
spreads the data over a very large hypervector, thus a substan-
tial number of bits can be corrupted while preserving sufficient
information. HDC encoding depends on the data type [21],
[28].

We propose a novel encoding method inspired by the kernel
trick to map data points into the high-dimensional space.
The underlying idea of the kernel trick is that data, which
is not linearly separable in original dimensions, might be
linearly separable in higher dimensions. Let us consider certain
functions K(x, y) which are equivalent to the dot product in
a different space, such that K(x, y) = Φ(x) · Φ(y), where
Φ(·) is often a function for high or infinite dimensional
projection. The Radial Basis Function (RBF) is the most
popular kernel, and previous HD computing encoders has been
proposed to approximate it [29], giving a high dimensional
projection ϕ(·) such that Φ(x) · Φ(y) ≈ ϕ(x) · ϕ(y). The
high dimensional projection ϕ(·) to approximate the RBF
kernel was written as a cosine function of a random affine
transformation. In our case, ϕ is expressed as a tanh activation
of a random linear map instead. This allows us to keep a
non-linear transformation for a rich HDC representation while
maintaining a monotonous and bijective relationship between
the input and the hyperdimensional representation.

Let us assume a feature vector in original space x ∈ RM

is an input data. The encoding module maps this vector into
high-dimensional vector, h ∈ RD, where D � M . The
encoding method that maps input vector into high-dimensional
space is given by: h = tanh(Bx). In other words, our
encoding consists of a random projection of an input vector x
with a projection matrix B = (b1,b2, · · · ,bD)T ∈ R

D×M ,
followed by a non-linear activation function.

In our encoding, bi ∈ R
M is randomly independent vector

sampled from a normally distribution, bi ∼ N
(
0, σ2√

M
I
)

,

known as the encoding basis or keys. Because of the random
nature, the basis are nearly-orthogonal, δ(bj ,bj′) ≈ 0, where
δ denotes cosine similarity.

There are three factors that affect the quality of encoding:

• Dimensionality (D): increase results in a higher redundancy
and robustness.

• Encoding Variance (σ2): controls the distribution and vari-
ance of the representation.

 



• Activation Function (tanh(·)): sets the non-linearity of the
representation in high-dimension.

In the rest of the paper, we discuss how these parameters can
trade learning accuracy and information privacy.

B. Hyperdimensional Learning
In order to use HDC for classification problems, let us

assume we have a data set D = {(xn, yn)}Nn=1 with xn ∈ R
M

and yn ∈ {1, . . . ,K}. Our plan is to build a classifier to dis-
tinguish between K different classes. The first step needed is
to map the original data to HD space, hn = tanh(Bx) ∈ R

D,
and introduce K different D-dimensional vectors, wk ∈ R

K ,
known as the class hypervectors, initialized by adding hyper-
vectors of the same class together:

wk =

N∑
n=1

hn1{k = yn}

where 1{k = yn} = 1 whenever k = yn and 0 otherwise.
Using HDC terminology, this step corresponds to the “mem-
orization” operator [10].

In order to make label inferences from a new data point x,
we compare the cosine similarity of its encoded hypervector,
with all class hypervectors, that is, similarity search:

ŷ = argmax
1≤k≤K

δ(wk, tanh(Bx))

Using the HDC iterative training, we further optimize the
class hypervectors adaptively. This is done iterating batches
of the data set, and updating the class hypervectors whenever
the prediction ŷn doesn’t match the true label yn.

wyn
← wyn

+ (1− αn,yn
)hn

wŷn
← wŷn

− (1− αn,ŷn
)hn

where αn,k = δ(wk,hn) is the cosine similarity of data point
n with class label k.

IV. PRIVACY-PRESERVING HYPERDIMENSIONAL

COMPUTING

In HDC, it is also possible to decode HDC representation
back to the original space, given the encoding key. This data
invertibility can be used to design interpretable HDC models.
However, this can also result in privacy challenges, as the
encoded information can be accessed by unauthorized users.
In the following, we further explain the details of our HDC
encoding module and how we can enhance it from a privacy-
preserving perspective.

A. Data Recovery in Hyperspace
To obtain the information of encoded data, the attacker

needs to decode the high-dimensional data back to the original
space. This data decoding is very difficult when the attacker
does not have knowledge about the encoding procedure and
the encoding key [18]. Our goal is to make data recovery from
potential attacks harder while providing minimal impact on the
quality of learning.

We observe the encoded data in high-dimensional space x
and also hold a copy of the transformation matrix B. The
problem can be stated as finding the closest vector x′ in terms
of L2 norm:

argmin
x′∈RM

‖x− x′‖
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Fig. 1. Comparison of our data recovery method and previous work. On top:
Data recovery of our proposed method of an image of a cat. Bottom: Previous
method of data recovery for the same image.

From a theoretical perspective, we can recover x without error
under mild assumptions, using the fact that tanh is invertible,
the problem is restated as a least-squares solution:

argmin
x′∈RM

‖z−Bx′‖2 where z = arctanh(h) (1)

Because z = B · x, then x′ will satisfy the lowest error
‖x− x′‖. As long as the problem is well-posed, we can even
guarantee the equality x = x′.

We contrast this method with state-of-the-art solutions that
exploits analytical solution for data recovery [18]. In this work,
the data recovery approach is proposed in a similar fashion,
where the attacker possesses the encoded data h and encoding
keys B, but their encoding module was linear. Our method
provides:

1) The lowest error recovery in terms of L2 metric. Figure 1
compares the quality of data decoding of our approach
with state-of-the-art analytical solution [18]. The results are
reported when the hypervector dimensionality is changing
from D = 4k to D = 32k. Our evaluation shows that
encoding to higher dimensions increases the chance of
accurate data recovery. Figure 1 shows that our method
can decode an image with a 100% recovery rate using
hypervectors with over D = 16k dimensions. However, in
practice, the dimensionality required might be even lower
depending on the dimensionality of the input data (M ).
Figure 1 also compares the quality of our data decoding
with the analytical solution. Our results indicate that our
method has a significantly higher quality of data recovery.

2) Flexibility to expand to other activation functions ϕ, where
h = ϕ(Bx), as long as ϕ is invertible: z = ϕ−1(h). Note
that linear encoder is the special case when we have no
activation function, and thus our method is suitable to use
in the linear encoder too.

B. Computational Challenges in Decoding
Computers often work with floating-point representation

with a fixed number of bits. Therefore, computing arctanh
precisely is not always an option. If an input to the function,
|x|, is large enough, arctanh(x) will yield noisy inverse values.
The figure 2 plots ‘tanh’ and ‘arctanh ◦ tanh’ for different
values of bits used in the representation of tanh(x). We
observe that, with lower bits used in the representation, the
function is less accurate.

In fact, if we take |x| large enough, tanh(x) will be equal
to ±1, even though this should not be possible. This is
because the precision is not enough to compute tanh(x). In
this cases, arctanh(±1), is not defined. As Figure 2 shows, this
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Fig. 2. Impact of quantization for tanh. Left: graph of arctanhtanhx, dashed
lines show values where tanh(x) = ±1 and its inverse goes to ±∞. Right:
graph of tanhx. Color: number of bits used to represent value x.

corresponds to x values where the line is dashed. Note that
this effect happens regardless of the bits used, as long as it is
fixed during computation. The difference lies in how far away
from zero we can go. For instance, as show in Figure 2, with
32 bits we can invert correctly values for x up to 2.0, whereas
with 4 bits making |x| > 1 will already yield incorrect values.

In order to provide more numerical stability in this cases,
we provide a smart threshold correction procedure (STC), for
ε > 0:

STCε(x) =

⎧⎪⎨
⎪⎩
x −1 < x < 1

1− ε x ≥ 1

−1 + ε x ≤ −1

And thus, z in Equation (1) is replaced to z =
arctanh(STCε(h)).

C. Encoding Variance
Encoding variance (σ2), or variance of generated base

hypervectors (B), directly affects the accuracy and privacy of
the HDC encoding module. This variance determines a range
of values that projected data would get, B · x. This projected
data is an input to our activation function, tanh. Therefore, its
range determines the non-linearity that we can get from our
encoding module.

As σ2 goes to ∞, our encoding converges to a sign function:
tanh(Bx) ∼ sign(Bx)

This means that the learning capabilities of the HDC module
will be weakened. This occurs because the encoded vector will
be condensed in the discrete {−1, 1}D space.

On the other hand, for small values of variance (σ2 �
1), the projected data will get smaller values (|B · x| � 1).
Therefore, the non-linear effect of tanh will not contribute to
our encoding process. In practice, when the input data x is
normalized, the variance equal to σ2 = 1, generally achieves
the best performance.

From a privacy perspective, larger values of σ2 will end
up causing more problems to invert because of numerical
limitations, as explained in section IV-B. This means that
increasing the encoding variance gives a trade-off between the
accuracy obtainable by the learning system and the capability
of the attacker to perform data recovery successfully, which is
the privacy concern in this work.

D. Hyper-latent Quantization
We exploit the numerical issues discussed in section IV-B

to introduce a new hyparameter q ∈ N
+, the “hyper-latent

quantization factor”. We use this number to quantize the
hypervector elements after the activation function. That is, the
new hyperdimensional encoding h′ of h will be:

h′ = quantize(h, q)

q
=

4
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q
=

1
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Fig. 3. Impact of quantization (q) and encoding variance (σ2) in data recovery.

Note that the original hypervector before applying quanti-
zation will never be released, and the attacker will not be able
to access that information. So the HDC learning module will
also work with less precise data. This creates another trade-off
between data privacy and accuracy.

Hyper-latent quantization and tuning the encoding variance
can be jointly optimized to achieve the best possible accuracy
values while maintaining the data as private as possible.
Figure 3 shows an example of the effects of the number of
bits used in the representation (quantization, q) and σ2 during
data recovery. The maximum recovery is provided for smaller
values of σ2, and the quality of the decoding decreases as
σ2 grows larger. Increasing the precision q makes the data
recovery process more reliable regardless of the value of σ2.

E. Privacy Metrics

Evaluating the success of our approach requires assessing
whether the recovered data exposes private information. We
evaluated the privacy risk quantitatively with multiple metrics
to gather evidence of how well BIPOD protects data from
multiple sources.

• Mean Squared Error (MSE): Error-based metrics quantify
the error an attacker makes in creating his estimate. MSE is
commonly used to evaluate regression problems. In statisti-
cal parameter estimations, a common goal is to minimize the
mean squared error. As a privacy metric, the MSE describes
the error between reconstructions ŷ by the attacker and the
true data y.

privMSE =
1

N

N∑
i=1

(yi − ŷi)
2

• Structural Similarity Index Measure (SSIM) MSE ap-
proach estimates absolute errors; that is, it does not represent
how brains perceive similarity, so we also employed the
perception-based Structural Similarity Index Measure to
evaluate quality.

privSSIM (x, y) =
(2μxμy + cμ)(2σxy + cσ)

(μ2
x + μ2

y + cμ)(σ2
x + σ2

y + cσ)

where x and y are two representations being compared, μ∗
and σ∗ represents the mean value and standard deviation,
respectively, cμ = (kμL)

2 and cσ = (kσL)
2 are constants

to control instability and L a dynamic range.

 



TABLE I
LIST OF DATASETS USED (N : TOTAL NUMBER OF DATA POINTS, M :

NUMBER OF FEATURES, K : NUMBER OF CLASSES).

N M K Description Reference

PHONE 10929 561 6 Activity recognition (Smartphone) [31]
ISOLET 7797 617 26 Voice Recognition [32]
MNIST 70000 784 10 Handwritten digits [33]

HAR 10299 561 6 Activity recognition(Mobile) [34]
SOFTWARE 1109 21 2 PC1 Software defect prediction [35]

MICRO-MASS 360 1300 10 Microorganisms identification. [36]
OPTDIGITS 5620 106 10 Optical Recognition of Handwritten Digits [37]
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Fig. 4. Trade-off between accuracy and privacy for different values of
encoding variance, and hyper-latent quantization.

V. EVALUATIONS

We verified BIPOD functionality using Python implementa-
tion. Our implementation is built from the open-source library
Pytorch [30], which allows to run in both CPU and GPU,
achieving peak performance on both platforms. We evaluate
the effectiveness of BIPOD on a wide range of classification
applications, listed in Table I.

A. Accuracy and Privacy Trade-off
Figure 4 shows the trade-off between privacy and clas-

sification accuracy using different encoding variances and
hyper-latent quantization. The results are reported for three
applications. First, we observe that increasing encoding vari-
ance is an effective mechanism to prevent potential data
attacks. However, this comes at the cost of lower quality of
classification as tanh non-linearity in BIPOD encoder is not
well utilized. The trade-off in the encoding variance makes
the data recovery significantly harder. However, if the data is
linearly separable, the variance would have almost no impact
on the prediction quality.

We also observe a similar trade-off for hyper-latent quanti-
zation, where quantization defines as the number of bits used
in the numeric representation. For small q values, the data
reconstruction is less effective as the data is protected. This
comes with a minor overhead on the classification accuracy.
However, as q increases, the data recovery rate will succeed
even if that does not significantly boost the classification
accuracy. Our evaluation shows that BIPOD can provide
the best trade-off between accuracy and privacy using the
encoding variance equal to 10 and q = 8 quantization.

B. Impact of Encoding
Figure 5 compares BIPOD quality of data recovery with

state-of-the-art HDC encoding methods: a projection-based en-
coding (Uniform) [18], a bipolar seed-based encoding (Bipo-
lar) [28]. The “Uniform” encoder uses random uniform bases
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Fig. 5. Comparison of BIPOD with state-of-the-art HDC encoding methods
in terms of accuracy and privacy.

and no activation function, and the “bipolar” encoder uses

discrete random bases in {−1,+1}M to represent objects
and positions. For BIPOD, the results are reported for three
configurations: (1) BIPOD-BASELINE: without our opti-
mizations, (2) BIPOD-MAX: optimized BIPOD that provides
maximum accuracy to our baseline method, and (3) BIPOD-
EQ: optimized BIPOD providing the same accuracy as the
best prior encoding method. Our results show that BIPOD
with no optimization can still provide higher classification
accuracy and privacy level than the existing encoding method.
We observe that our BIPOD provides maximum classification
accuracy and privacy using tanh encoder. The tanh non-
linearity provides more opportunities to separate non-linear
data while at the same time serving as an initial barrier to
making data recovery harder. BIPOD-MAX configuration can
further enhance the privacy level by 11.3× with no quality
loss. Finally, BIPOD-EQ improves the privacy level by 340.1×
while ensuring the accuracy is the same as state-of-the-art
HDC methods. This is achieved by setting quantization and
variance values to ensure maximum privacy enhancement for
a small loss in classification accuracy.

C. Dimensionality & Privacy-Accuracy

Figure 6 compares the effectiveness of BIPOD quality
of classification and data privacy using different dimension
sizes (D). The graph reports normalized privacy values. Our
result indicates that dimensionality affects both classification
accuracy and data decoding rate. Using the default value of
σ2 = 1 and no quantization, we can reconstruct original
data from the encoded hypervector accurately. In other words,
with no optimization, our solution lacks privacy. Using low
dimensional hypervectors, our solution gets higher privacy at
the penalty of low classification accuracy. However, dimen-
sionality has a more significant impact on improving data
privacy. Hypervectors in lower dimensions still have enough
redundancy to enable learning and memorization. However,
the data decoding only depends on a single hypervector; thus,
reducing dimensionality directly affects the reconstruction
quality. In parallel to dimension, optimizing the variance and
quantization yields a complex representation to decode but has
minimal cost on classification accuracy. Our evaluation shows
that reducing dimensionality from D = 10k to D = 1k results
in a 2.9× improvement on data privacy while only having
about 3% effect on the classification accuracy.

D. BIPOD & Data Recovery

Table II compares BIPOD data recovery method with the
state-of-the-art analytical approach [18], [19]. As discussed
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Fig. 6. Impact of dimensionality on the efficiency of BIPOD classification and data recovery for different data sets.

TABLE II
DATA RECOVERY USING ANALYTICAL AND PROPOSED BIPOD.

PHONE HAR
Dimensions 1k 2k 4k 8k 1k 2k 4k 8k

Analytical [19] 23% 28% 33% 41% 36% 42% 57% 60%
BIPOD 79% 86% 98% 100% 91% 96% 99% 100%

TABLE III
PRIVACY SCORE (MSE) AT DIFFERENT LEVELS OF ACCURACY FOR

BIPOD AND PRIVE-HD [19].

Accuracy 85% 87% 89% 90% 91%

Prive-HD [19] 2.19 2.03 2.02 unreached unreached
BIPOD 1506 1506 52.21 2.51 1.26

in section IV-A, our least-squares formulation provides more
precise data reconstruction. The difference is intensified when
the data dimensionality is low because the analytical approach
relies on the orthogonality of random vectors that go near zero
in high dimensional. However, BIPOD does not make such
simplifications, and instead, the challenges in recovery come
from having precise enough numerical representation. Thus,
even for small dimensions, our approach will be more realistic
simulation of potential attackers in our privacy-oriented HDC
system. For example, our evaluation shows that our data
recovery can provide 100% data recovery using D = 8k
hypervector size, while the reconstruction rate of the analytical
approach does not exceed 60%.

E. Comparison with State-of-the-art
We also compare the effectiveness of our data privacy

techniques with state-of-the-art privacy techniques used for
HDC. Work in [19] exploited a differential privacy technique,
defined for neural network, to secure the HDC model from
a privacy perspective. In particular, it used noise injection
to encode data as a solution to make data recovery less
effective while having minimal impact on accuracy. Table III
shows the privacy (MSE score) of BIPOD and the state-
of-the-art approach provided when ensuring the same level
of classification accuracy. Our evaluation shows that for a
fixed level of accuracy, BIPOD provides significantly higher
privacy compared to the state-of-the-art method. For example,
as Table III indicates, existing approaches are not capable of
providing a high quality of learning while ensuring privacy.

VI. CONCLUSION

In this paper, we propose brain-inspired privacy-oriented
machine learning. Our method rethinks privacy-preserving
mechanisms by looking at how the human brain provides
effective privacy with minimal cost. BIPOD exploits hyperdi-
mensional computing (HDC) as a neurally-inspired computa-
tional model. BIPOD exploits this encoding as a holographic
projection with both cryptographic and randomization-based
features. BIPOD encoding is performed using a set of brain
keys that are generated randomly. Therefore, attackers cannot
get encoded data without accessing the encoding keys.
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