
CEST: Computation-Efficient N:M Sparse Training
for Deep Neural Networks
Chao Fang1, Wei Sun2, Aojun Zhou3, Zhongfeng Wang1

1ICAIS Lab, Nanjing University 2Eindhoven University of Technology 3CUHK-Sensetime Joint Lab, CUHK

Abstract—N:M fine-grained structured sparsity has attracted
attention due to its practical sparsity ratio and hardware-friendly
pattern. However, the potential to accelerate N:M sparse deep
neural network (DNN) training has not been fully exploited, and
there is a lack of efficient hardware supporting N:M sparse train-
ing. To tackle these challenges, this paper presents a computation-
efficient scheme for N:M sparse DNN training, called CEST. A
bidirectional weight pruning method, dubbed BDWP, is firstly
proposed to significantly reduce the computational cost while
maintaining model accuracy. A sparse accelerator, namely SAT,
is further developed to neatly support both the regular dense
operations and N:M sparse operations. Experimental results
show CEST significantly improves the training throughput by
1.89− 12.49× and the energy efficiency by 1.86− 2.76×.

I. INTRODUCTION

N:M fine-grained structured sparsity [1]–[5], where only N
out of consecutive M elements in a group can be nonzero,
has attracted increasing attention due to its practical spar-
sity ratio as well as its hardware-friendly pattern. However,
the potential to accelerate N:M sparse deep neural network
(DNN) training has not been fully exploited, and there is a
lack of efficient hardware supporting N:M sparse training.
From the perspective of algorithm, previous works solely
accelerate DNN training by introducing N:M sparsity in
either forward [1] or backward pass [5], lacking a unified
method to integrate N:M sparsity into both forward and
backward passes for further DNN training speedup. From
the perspective of architecture, the existing Ampere GPUs
only supports static 2:4 sparse acceleration, which limits the
speedup potential for DNNs leveraging more flexible N:M
sparsity. Unlocking these missing opportunities, we propose
an algorithm-hardware co-design training scheme for DNNs,
called Computation-Efficient N:M Sparse Training (CEST),
with innovations from the training algorithm and hardware
architecture. The contributions can be summarized as follows:

• Algorithm for N:M sparse DNN training: We propose
a bidirectional weight pruning method, namely BDWP,
leveraging N:M sparsity during both forward and back-
ward passes of DNN training. Compared to SDGP [5],
BWDP reduces 2× number of operations while the
trained models achieve 5.77% higher accuracy.

• Hardware architecture for DNN training: We design a
sparse accelerator for DNN training, namely SAT, to sup-
port computation-efficient N:M sparse operations besides
the regular dense operations. It achieves 1.89 − 12.49×
higher throughput and 1.86− 2.76× greater energy effi-
ciency than prior training accelerators [6]–[9].

• Scheme for efficient DNN training: We present CEST,
an efficient scheme for DNN training that incorporates the
BDWP algorithm and the SAT architecture. It improves
the training speed by 1.93× on average compared to the
conventional dense training scheme deployed on SAT.

II. BDWP ALGORITHM

BDWP preserves values with the N most significant mag-
nitude in each group of M elements. For a convolutional
layer, BDWP removes pruned elements in each group across
the input channels in the forward pass, and across the output
channels in the backward pass, respectively. For a linear layer,
BDWP is applied to each group across input features in
the forward pass and across output features in the backward
pass, respectively. The training process of BDWP is shown
in Algorithm 1. Every iteration to train an L layer network
consists of three steps. BDWP is first applied to generate N:M
sparse weights, w̃t and w̃T

t , for further computation in FF and
BP, respectively. In FF, as shown in Line 3, the activations
perform operations with the N:M sparse w̃t, which have been
slimmed for M

N times. In BP, as shown in Line 7, the activation
gradients are obtained by performing operations with output
gradients and w̃T

t . The other steps of the training process stay
the same as the standard training flow.

Algorithm 1 Training an L layer network using BDWP
Input: A mini-batch of input activations and labels (x0

t , yt), current
weights wt, sparse ratio N and M .

Output: Updated weights wt+1.
Step 1: Generate N:M sparse weights

1: w̃t, w̃
T
t ← BDWP(wt, N , M).

Step 2: Forward Pass
2: for l = 1 to L do
3: xl

t ← FF(xl−1
t , w̃l

t).
4: end for
5: Compute the gradient of the output layer gaL

t
.

Step 3: Backward Pass
6: for l = L downto 1 do
7: g

al−1
t
← BP(gal

t
, w̃T

t).
8: g

wl−1
t
← WU((xl−1

t)T , gal
t
).

9: end for
10: Optimize wt+1 with momentum SGD.

III. SAT HARDWARE ARCHITECTURE

SAT, as shown in Fig. 1, consists of three major computing
engines: i) an N:M sparse tensor computing engine (STCE),
ii) a weight update vector engine (WUVE), and iii) an online
sparse reduction engine (OSRE).

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

TABLE I
COMPARISON BETWEEN SAT AND PREVIOUS FPGA-BASED TRAINING ACCELERATORS

Accelerator Platform Network Precision Logic Util. DSP Util. Freq.
(MHz)

Power
(W)

Throughput
(GOPS)

Comp. Effi.
(GOPS/DSP)

Energy Effi.
(GOPS/W)

SAT (this work) XCVU9P ResNet-18 FP16+FP32 432K (37%) 1216 (18%) 180 17.94 299.86 0.25 16.71
TODAES’22 [7] ZCU102 VGG-16 FP32 N/A 1508 (60%) 100 7.71 46.99 0.03 6.09
ICCAD’20 [6] Stratix 10 MX VGG-like FP16 221K (31%) 1046 (26%) 185 ∼20.00 ∼158.54 0.15 ∼9.00
FPGA’20 [8] Stratix 10 AlexNet FP32 616K (66%) 1796 (31%) 253 N/A ∼24.00 0.01 N/A
FPT’17 [9] ZU19EG LeNet-10 FP32 329K (63%) 1500 (76%) 200 14.24 86.12 0.06 6.05

gt+1 gt+1
half-to-float

svt

μ

lr
wt+1

float-to-half

FP16

master
wt

vt+1

FP16

FP32

FP32

FP32

master
wt+1

FP32

Weight Update Vector Engine (WUVE) | WU

…
…

…

…

…

…

uMACuMACuMAC

uMACuMACuMAC

uMAC

uMACuMACuMAC uMAC

C
on

fig
ur

ab
le

 D
at

a
R

ou
te

r

N:M Sparse Tensor
Computing Engine
(STCE) | FF, BP, WU

weights (FF, BP) / output gradients (WU)

ac
tiv

at
io

ns
 (

F
F,

 W
U

)
/ o

ut
pu

t g
ra

di
en

ts
 (

B
P

)

outputs (FF) / activation gradients (BP) / weight gradients (WU)
…

…

re
du

ce
d

w
ei

gh
ts

&
 in

di
ce

s

up
da

te
d

w
ei

gh
ts

To
p

-K
S

or
te

r

D
at

a
P

ro
vi

de
r

Online Sparse Reduction Engine

…(OSRE) | WU

F
P

16

O
u

tp
u

t
D

at
a

S
ch

ed
u

le
r

D
at

a
fr

om
S

T
C

E
, P

U
V

E
, O

S
R

E

In
pu

t B
uf

fe
r

(a
ct

. &
 a

ct
. g

ra
d) FP16

FP16

FP16

C
on

tr
ol

 S
ig

na
l

D
is

tr
ib

ut
or

Programmed by a host CPU

To external memoryFrom external memory

From external memory

In
pu

t B
uf

fe
r

(w
gt

. &
 o

ut
. g

ra
d)

O
ut

pu
tB

uf
fe

r
(o

ut
. d

at
a)

Fig. 1. The overall microarchitecture of SAT is composed of three computing
engines, namely STCE, WUVE, and OSRE, respectively.

STCE unifies all the matrix multiplications of FF, BP, and
WU steps, and supports both sparse and dense operations
generated by BDWP (Line 3, 7, 8 in Algorithm 1), significantly
boosting computational efficiency. There are 32x32 unified
multiply-and-accumulate (uMAC) units orchestrated as a sys-
tolic array in STCE. A data router module is tightly coupled
with the uMAC array and distributes the data to the uMAC
array according to configurations of DNN layers.

WUVE is a dedicated optimizer for momentum stochastic
gradient descent, capable of updating weights in an mixed-
precision scheme (Line 10 in Algorithm 1). To minimize
quantization errors in the WU step, WUVE specifically el-
evates the numerical precision of gradients from FP16 to
FP32. Moreover, WUVE provides 32-parallel lanes to improve
computational efficiency, and each lane consists of three FP32
multipliers, two FP32 adders, one FP16-to-FP32 switcher, and
one FP32-to-FP16 switcher.

OSRE performs online BDWP sparse reduction operations
by taking as input the dense weights in a group from WUVE,
and generating as output the N:M sparse weights along with
the corresponding indices (Line 1 in Algorithm 1). There are
32-parallel lanes with deep pipelines in OSRE, and each lane
consists of a top-K sorter and a data provider. The top-K sorter
sequentially receives dense data in a group with a size of M,
and after M cycles, the K data sorted in the top-K sorter with
their indices in the group are passed to the data provider.

IV. EXPERIMENTAL RESULTS

Accuracy Robustness of BDWP. We evaluate BDWP on
the robustness of model accuracy in comparison with SDGP
[5] and SRSTE [1] using ResNet9 on CIFAR10, ViT on
CIFAR100, and ResNet18 on Tiny ImageNet, respectively.
All networks are trained by an NVIDIA RTX 2080 Ti card
with a batch size of 512. BDWP reduces 2× number of
operations in comparison with SDGP and SRSTE under the
same N:M sparsity ratio, and achieves comparable accuracy
(merely 0.45% loss on average) to the dense baseline in 75%

sparsity ratio. Compared to SDGP, BDWP is much more robust
in training accuracy. Note that ViT and ResNet are distinct
on model architectures, which indicates BDWP can be easily
migrated to other DNNs with robust training accuracy.

Hardware Implementation of SAT. We have synthesized
SAT on a Xilinx Virtex UltraScale+ VCU1525 card con-
taining an XCVU9P FPGA. In our implementation, SAT
works at 180 MHz and supports BDWP with 2:8 sparsity
during training. Table I compares SAT with prior FPGA-
based training accelerators for DNNs. SAT exhibits the highest
throughput, computational efficiency, and energy efficiency.
Compared to [6]–[9], SAT can improve the training throughput
by 1.89− 12.49× and the energy efficiency by 1.86− 2.76×.

Sparse Training Efficiency of CEST. For training ViT and
ResNet18 models, we evaluate the training time deployed on
SAT to achieve a validation accuracy of 59.5% and 62.0%,
respectively. CEST (BDWP on SAT) is compared to training
methods varying the conventional dense training, SDGP, and
SRSTE. The required training time of CEST can be signifi-
cantly reduced by 48.4% for ViT and 50.8% for ResNet18,
respectively, when compared to that of the dense baseline.
Moreover, CEST significantly outperforms SDGP and SRSTE
by 35.7% on average in terms of training speed.

ACKNOWLEDGMENT

This work was supported in part by the National Nat-
ural Science Foundation of China under Grant 62174084,
62104097, in part by the High-Level Personnel Project of
Jiangsu Province under Grant JSSCBS20210034, and in part
by Postgraduate Research & Practice Innovation Program of
Jiangsu Province under Grant No. 149.

REFERENCES

[1] A. Zhou et al., “Learning N:M Fine-grained Structured Sparse Neural
Networks from Scratch,” in ICLR, 2021.

[2] W. Sun et al., “DominoSearch: Find Layer-wise Fine-grained N:M Sparse
Schemes from Dense Neural Networks,” NeurIPS, 2021.

[3] I. Hubara et al., “Accelerated Sparse Neural Training: A Provable and
Efficient Method to Find N:M Transposable Masks,” NeurIPS, 2021.

[4] C. Fang et al., “An Algorithm–Hardware Co-optimized Framework for
Accelerating N:M Sparse Transformers,” TVLSI, 2022.

[5] B. McDanel et al., “Accelerating DNN Training with Structured Data
Gradient Pruning,” in ICPR, 2022.

[6] S. K. Venkataramanaiah et al., “FPGA-based Low-batch Training Accel-
erator for Modern CNNs Featuring High Bandwidth Memory,” in ICCAD,
2020.

[7] Y. Tang et al., “EF-Train: Enable Efficient On-device CNN Training on
FPGA Through Data Reshaping for Online Adaptation or Personaliza-
tion,” TODAES, 2022.

[8] K. He et al., “FeCaffe: FPGA-enabled Caffe with OpenCL for Deep
Learning Training and Inference on Intel Stratix 10,” in FPGA, 2020.

[9] Z. Liu et al., “An FPGA-based Processor for Training Convolutional
Neural Networks,” in FPT, 2017.

	Select a link below
	Return to Previous View
	Return to Main Menu

