
SCFI: State Machine Control-Flow Hardening
Against Fault Attacks

Pascal Nasahl*, Martin Unterguggenberger†*, Rishub Nagpal†*,
Robert Schilling*, David Schrammel*, Stefan Mangard†*

*Graz University of Technology
{firstname.lastname}@iaik.tugraz.at

†Lamarr Security Research

Abstract—Fault injection (FI) is a powerful attack methodology
allowing an adversary to entirely break the security of a target
device. As finite-state machines (FSMs) are fundamental hardware
building blocks responsible for controlling systems, inducing faults
into these controllers enables an adversary to hijack the execution
of the integrated circuit. A common defense strategy mitigating
these attacks is to manually instantiate FSMs multiple times
and detect faults using a majority voting logic. However, as
each additional FSM instance only provides security against one
additional induced fault, this approach scales poorly in a multi-
fault attack scenario.

In this paper, we present SCFI: a strong, probabilistic FSM
protection mechanism ensuring that control-flow deviations from
the intended control-flow are detected even in the presence of
multiple faults. At its core, SCFI consists of a hardened next-
state function absorbing the execution history as well as the
FSM’s control signals to derive the next state. When either the
absorbed inputs, the state registers, or the function itself are
affected by faults, SCFI triggers an error with no detection latency.
We integrate SCFI into a synthesis tool capable of automatically
hardening arbitrary unprotected FSMs without user interaction
and open-source the tool. Our evaluation shows that SCFI provides
strong protection guarantees with a better area-time product than
FSMs protected using classical redundancy-based approaches.
Finally, we formally verify the resilience of the protected state
machines using a pre-silicon fault analysis tool.

Index Terms—Fault Attacks, Finite-State Machines, Control-
Flow Integrity

I. INTRODUCTION

Fault attacks are active, physical attacks that allow an adver-
sary to manipulate the execution of a digital circuit. In these
attacks, one or multiple faults are injected into certain gates,
wires, or registers of a logical hardware block. The effects of
these faults, which comprise transient bit-flips or permanent
stuck-at effects, manipulate the execution of the hardware block
and an adversary can exploit this malfunctional behavior [7].
Finite-state machines (FSMs) are lucrative fault targets, as these
fundamental hardware blocks are responsible of controlling
systems and their datapaths. By hijacking the execution flow
of the FSM using faults, an adversary can manipulate the FSM
to enter states which cannot be reached from the current state.
Hence, due to the severity of these attacks, security-sensitive
state machines need dedicated protection against faults.

A common fault defense strategy is to encode the FSM
states such that they are separated with a certain Hamming

This project has received funding from the Austrian Research Promotion
Agency (FFG) via the AWARE project (grant number 41091245).

Distance [1] [4], [22]. However, this can only mitigate attackers
aiming to induce faults into the state registers. Other defense
strategies [20] introduce monitors which check whether the
conducted state transition is in the list of valid state transi-
tions. Leveugle et al. [13] dynamically verifies that the state
transitions stay within the intended execution flow, which is de-
termined during synthesis using the control-flow graph (CFG)
of the FSM. There, on each state transition, a signature is de-
rived, and a monitor checks whether the signature matches the
predetermined signature of the CFG. However, faults induced
either into the next-state logic or into the FSM’s control signals
still enable adversaries to redirect the control-flow within the
bounds of the CFG. Moreover, the fault detection latency of
monitor-based schemes is high and the error coverage is often
insufficient [24].

Redundantly instantiating the next-state logic and comparing
the resulting states typically requires manual effort by the
RTL designer. Moreover, this approach requires an additional
redundant next-state logic for each additional fault protection
layer. Hence, the area overhead of redundancy-based protection
mechanisms scales poorly, especially when considering multi-
fault attacks, e.g., quadruple laser fault injection [19].

Contribution

In this paper, we introduce SCFI, a scalable mitigation
approach probabilistically protecting the control-flow of finite-
state machines against multi-fault attacks. SCFI ensures that
any control-flow deviation from the intended control-flow is
detected with a high probability by substituting the unprotected
next-state logic of the controller with a fault-hardened next-
state logic. Internally, this hardened logic absorbs the control
signals and the execution history and only generates a valid
next state when these inputs are not tampered by faults. When
either the control signals, the current state (i.e., the execution
history), or the next-state logic itself is targeted by faults, the
logic ensures that these faults corrupt the next state output
to a degree which can be detected. To ensure this behavior,
SCFI uses a lightweight diffusion layer, which is based on a
maximum distance separable (MDS) matrix multiplication. We
integrate SCFI into the Yosys synthesis suite to automatically
protect arbitrary FSMs against fault attacks without any user
interaction and open-source1 the modified toolchain. In order to

1https://extgit.iaik.tugraz.at/sesys/scfi

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

evaluate the area and timing overhead, we synthesized several
FSMs used in an industry-driven open-source project with our
modified synthesis suite. Our comparison with a redundancy-
based protection approach of the FSM’s next-state logic shows
that SCFI scales better in terms of area-time product for
different fault protection levels than classical redundancy-based
protection approaches. Finally, we utilize a pre-silicon fault
analysis tool to formally verify the fault resiliency of the
hardened FSMs.

II. BACKGROUND

This section provides fundamental background on fault at-
tacks and finite-state machines required for the subsequent
chapters.

A. Fault Attacks

Fault attacks are commonly used to break the security of
embedded devices. In these physical attacks, one or multiple
faults are induced into the circuit, causing several side effects
at the electrical level. These electrical effects comprise timing
violations and other disturbances [12] and they influence the
execution of the target. By exploiting the effects of a fault,
an adversary is capable of hijacking the control-flow of soft-
ware [5], [6], [23], bypassing security measures, such as secure-
boot [10], [14], or extracting secret keys used by cryptographic
primitives [3], [15].

Originally, fault attacks were pure physical attacks requiring
an adversary to have physical access to the target device. To
induce a fault, attackers interrupt the supply voltage or the clock
signal, decapsulate the chip and shoot with a laser directly into
the die, or use electromagnetic pulses [17]. However, recent
publications, such as Plundervolt [8], CLKSCREW [9], or
VoltJockey [2], demonstrated that faults also could be induced
remotely in software, increasing the attack surface of fault
attacks even more.

In general, a fault f ∈ F is described using the set K =
{e, s, t} where e is the effect of a fault, s the spatial, and t the
temporal dimension of the fault. Typically, the fault effect e
comprises transient, i.e., bit-flips, or stuck-at effects. The spatial
s and temporal t dimensions of a fault describe where (which
gate or wire) and when (which clock cycle) a fault is induced.
The set F consists of all possible fault combinations and an
adversary typically can inject up to a certain number of faults
into the circuit.

B. Finite-State Machines

Finite-state machines (FSMs) are sequential circuits respon-
sible for controlling systems and their datapaths. Internally, an
FSM maintains a finite set of states, and a state-transition into
the next state that is controlled by the input signals, i.e., the
control signals and the current state. The outputs of a Mealy-
type FSM are defined by the current state and the input signals,
and the outputs of a Moore-type FSM only depend on the
current state.

As depicted in Fig. 1, an FSM is described using the 5-
tuple {S,X, Y, φ, λ}. The |S| states of an FSM are represented
as a s-bit symbol S, where the size s needs to be at least

n

s

Output
Logic λ

Next-State
Logic ϕ

Inputs X Outputs Y
m

St
at

e
R

eg
is

te
r

SC SN

Fig. 1. General structure of a state machine.

s = dlog2(|S|)e bits to comprise the entire state space.
Furthermore, the FSM consists of n-bit control signals X and
m-bit output signals Y . The FSM uses the next-state function
SN = φ(X,SC) to derive the next state SN from the current
state SC and the control signals X . For a Mealy machine, the
output Y depends on the current state SC and the input signals
X and is described using the output function Y = λ(X,SC).
The execution-flow of an FSM can be described using a directed

x2/y2

S0

S1 S2

S3

x0/y0 x1/y1

x3/y3

x5/y5x4/y4

reset

Fig. 2. Control-flow graph of an FSM.

graph, as shown in Fig. 2. This graph, which is also called
a control-flow graph (CFG), comprises all valid transitions
t ∈ CFG the FSM can perform. A valid transition is defined
by the valid {SC , X} pairs and the next-state function φ.

III. THREAT MODEL

We consider a powerful adversary capable of injecting N−1
faults in different clock cycles and at different locations into the
device under attack. These faults can be induced independently
of the used fault methodology, i.e., we consider local and
remote injecting techniques. Similar to related work, we model
the impact of a fault as a transient, i.e., a bit-flip, or a
permanent, i.e., a stuck-at, effect. The spatial dimension of the
induced fault comprises wires as well as combinational and
sequential elements of the logic.

A. Attacker Description

Within this threat model, an attacker aims to hijack the
execution-flow of a security-sensitive state machine in the
circuit. Based on the general description of a state machine
provided in Section II-B, the adversary can achieve this goal
by inducing faults into the next-state logic. A fault into the
next-state logic allows an adversary to hijack the execution
flow of the FSM and to indirectly change the output signals.

!

!

Valid

Invalid

Valid

Invalid

X, Sc SN

ϕFH

ϕ'FH

ϕFH

Fig. 3. Mapping of valid and invalid input tuples to a valid or invalid next
state.

This fault target can be modeled using the modified next-state
logic SN = φ(SC , X, FN), where FN describes one or multiple
faults. Based on this formula, an adversary can induce faults
into different fault targets (FT):
FT1 State Registers: A fault into the state registers allows the
adversary to arbitrarily redirect the control-flow of the FSM
inside t ∈ CFG or outside t /∈ CFG the control-flow graph.
For the CFG in Fig. 2, the adversary could flip bits in the state
registers to directly jump from S0 to S3.

FT2 Control Signals: By inducing bit-flips into the control
signals, the adversary can manipulate the control-flow of the
FSM within the borders of the CFG. For example, a fault into
the control signal x0 or into the comparison logic can hijack
the execution S0 → S1 to S0 → S2 in Fig. 2.

FT3 Next-State Logic: When directly targeting the logic of the
next-state function, the adversary can arbitrarily redirect the
control-flow of the FSM within or outside the CFG.

B. Goal - Fault Secure FSM

In order to comprehensively protect the control-flow of finite-
state machines against fault attacks, dedicated fault countermea-
sures must consider all fault targets FT1, FT2, and FT3. The
goal is that a fault-protected controller FSMF influenced by
faults detects any control-flow deviations from the control-flow
of an identical copy FSMF̄ which is not affected by faults,
i.e., φF (S,X, FN) =? φF̄ (S,X, 0).

IV. DESIGN

To comprehensively protect finite-state machines against
control-flow hijacks, with SCFI, we maintain the integrity of
the control-flow by introducing a fault-hardened next-state logic
φFH . This hardened next-state logic prevents that a fault into
FT1, FT2, or FT3 enables the adversary to redirect the control-
flow inside or outside the boundaries of the CFG. This function
φFH is internally constructed using a multi-input signature
register (MISR) and it links the entire execution history in a
compressed format to detect control-flow deviations. To enter
the next valid state, the execution history as well as the control
signals need to be genuine. As shown in Fig. 3, φFH maps a
valid tuple {X,SC}, which includes the execution history in
SC , into a valid next state SN . When an adversary induces
faults into FT1...FT3, i.e., either into the tuple {X,SC} or
into the φFH logic, φFH forces the FSM into a non-escapable
terminal error state. Fig. 4 depicts the transformation of an
unprotected next-state logic of an example FSM into a protected
version. The unprotected FSM is susceptible to faults, as a

un iq ue c a s e (SC)
S0 : b e g i n

SN = S0 ;
i f (x0)
SN = S1 ;

e l s e i f (x1)
SN = S2 ;

end
S1 : b e g i n

SN = S1 ;
i f (x2)
SN = S3 ;

end

un iq ue c a s e (SC)
S0 : b e g i n

SN = φFH(SC,X) ;
end
S1 : b e g i n

SN = φFH(SC,X) ;
end
ERROR: b e g i n

SN = ERROR;
end
d e f a u l t : b e g i n

f s m a l e r t = e r r s i g n a l ;
SN = ERROR;

end

Fig. 4. Unprotected and protected next-state logic of an example FSM.

single fault into the state registers, the comparison logic, or the
control signals can change the execution-flow of the FSM. SCFI
closes these attack vectors by deriving the next state using φFH .
If the current state, the control signals, or the next-state logic is
tampered with a fault, φFH produces an invalid state and enters
the non-escapable default error state. To achieve this protection
degree, the next-state function and its inputs and outputs need
to fulfill requirements R1 to R3:
R1 Encoded Control Signals: All control signals X are
encoded to Xe. The encoding needs to guarantee that the
attacker needs at least N bit-flips to manipulate a valid control-
signal codeword to another valid codeword.

R2 Encoded States: All states S are encoded to se-bit states
Se. Similar to the control signals, the encoding needs to
guarantee a minimum Hamming Distance between valid states
of N .

R3 Hardened Next-State Function: The hardened next-state
function φFH generates an encoded next state SNe fulfilling
R2 for each encoded control signal and encoded current state
tuple {SCe, Xe} (R3.1). Moreover, φFH needs to ensure that
up to N − 1 bit-flips into its circuit or into the input space
affect the output in such a way, that the faults can be detected,
i.e., an invalid state SNe is generated (R3.2).

Due to requirement R3, the state derived in different paths
merging at some point also produces different encoded states.
For example, the path S1 → S3 in Fig. 2 derives a different state
than the path S2 → S3. As maintaining different state symbols
for a single state is costly, we add an additional requirement:
R4 Collision Capability: The hardened next-state function
needs to produce the same encoded next state for differ-
ent paths using a modifier, i.e., φFH(SC1e, X1e,Mod1) ==
φFH(SC2e, X2e,Mod2) for SC1e 6= SC2e and X1e 6= X2e.
The modifiers Mod1 and Mod2 are used to produce a state
collision.

In the following section, we discuss one possible selection for
the hardened next-state function.

A. Selection of the Hardened Next-State Function

In SCFI, the hardened next-state function φFH is based on a
lightweight diffusion function used in cryptographic primitives.

!

!

...Xe

SCe1

Xe1

l

1

Modkl

1

M·L1

M·Lk

...

SNe0

l

1

...
1

SNek

State
Register

sk

mk

SCek

Xek

Mod1 mk

sk

sk

Mix Diffusion Unmix

sk

e

e

SC SN

Er
ro

r
Lo

gi
c

L1

Lk

l

Fig. 5. SCFI hardened next-state function.

This function φFH , as shown in Fig. 5, maps the input
space consisting of the encoded control signals Xe (R1), the
encoded current state SCe (R2), and the modifier Mod (R4)
to a next encoded state SNe (R3.1). The properties of the
underlying diffusion function imply that any fault at the input
space or within the logic maximally affect the output, thereby
substantially decreasing the probability of a successful fault
attack and probabilistically fulfilling (R3.2). Overall, SCFI’s
hardened next-state function consists of three layers:

a) Mix Layer: In this layer, the input triple is split into k
l-bit vectors L. For this, the encoded current state, the encoded
control signals, and the modifier are split into k shares and each
share is placed into the vectors, as shown in Fig. 5.

b) Diffusion Layer: Then, in the diffusion layer, the vec-
tors L are absorbed by k diffusion functions. These functions
conduct a linear transformation D(L) =M ·L which is a matrix
multiplication of vector L with matrix M in a specific field.
This transformation, depending on the choice of matrix M ,
yields a strong diffusion. Ideal choices of this matrix are called
maximum distance separable (MDS) matrices, maximizing the
diffusion property. Hence, by choosing such an ideal MDS
matrix, a fault at the input or within the function maximally
propagates to the output, destroying the next state with a high
probability (R3.2).

c) Unmix Layer: The output of the diffusion layer is
stored into k l-bit vectors. The concatenation of the first
se/k = sk-bits of each output vector results in the encoded
next state SNe (R3.1). As the size k · l of the output space is
larger than the size se of the encoded state, k · l − se bits are
free, providing the collision property (R4). Additionally, SCFI
uses, depending on the required fault security, the e topmost
free bits of each output vector as error detection bits E. Here,
by choosing a corresponding modifier Mod, φFH sets these
bits to a predefined value, i.e., 1. In the error logic, the logical
AND of SNe and E infects the next state when a fault-induced
error happens.

V. IMPLEMENTATION

We open-source a modified version of the Yosys [18] open
synthesis suite capable of automatically protecting arbitrary

α
α

α

Sc, X, Mod

SN, E

Fig. 6. Internal structure of the MDS matrix multiplication [16]. All elements
operate on 1-bytes each.

FSMs with SCFI. The protection can be enabled globally or
selectively for the unprotected FSMs in the design flow with
a certain fault protection level N . Our implementation adds
a new Yosys pass to the suite operating in between of other
optimization passes before the design is mapped to the logic
gate level. Note that the RTL designer only needs to manually
encode the control signals with a Hamming Distance of N -bits
in the modules driving these signals.

A. Next-State Logic

First, our custom FSM protection pass identifies the unpro-
tected FSM by utilizing the existing Yosys FSM passes. Then,
the FSM’s state variables are re-encoded so that the Hamming
Distance between these variables is N . Afterwards, our pass
extracts the CFG of the FSM and stores the current state, the
next state, and the control signals for each control-flow edge.
With this information, the modifier Mod for state transition is
determined, satisfying the equation MDS(SCe, Xe,Mod) =
SNe.

For the MDS diffusion function, we use a lightweight
construction with a minimal gate count proposed by Duval et
al. [16]. As shown in Fig. 6, this function splits the 32-bit input
space into 4 8-bit chunks, performs the matrix multiplication,
and returns 4 8-bit vectors which form the 32-bit output. In
SCFI, we selected the M 8, 3

4, 6 [16] MDS matrix operating in the
field F2[α] with α = X8+X2+1. This particular matrix has a
low XOR count with a slightly larger logical depth compared to
other matrices in the 4×4 category. We note that the choice of
MDS matrix can be changed according to design requirements,
i.e., area or timing constraints.

Input
Pattern

Matching

Xe

SCe Modifier
Selection

Xeactive

M
ix

D
iff

us
io

n

U
nm

ix

Modactive

1
2

3
4 5

A
N

D

6SNe

E

SNe

Fig. 7. The next-state logic hardening pass.

Having the modifiers, our pass describes the logic of the
next-state function in the internal Yosys register-transfer level
intermediate language (RTLIL). As depicted in Fig. 7, first 1 ,

!

!

the active control signal Xeactive
is determined by performing

a pattern match of the control signal and the current state
SCe. Then, using this signal and SCe, the modifier for this
input is selected 2 . In the mix layer 3 , the wires of the
triple {SCe, Xeactive

,Modactive} are distributed to the k 32-
bit input MDS diffusion functions. These lightweight diffusion
functions 4 consist of only XOR gates. In the unmix layer 5 ,
the next state SNe is concatenated and the error bits E are
selected. By connecting SNe and E using AND gates 6 , a
fault infectively destroys the next state.

VI. EVALUATION

To evaluate the effectiveness of SCFI in terms of area, timing,
and security when protecting security-sensitive FSMs of an
industry-driven project, we integrate our custom Yosys pass
into the design flow of the OpenTitan [21] secure element. This
chip, which is entirely open-source, acts as a secure root-of-
trust and provides a key storage and cryptographic accelerators.

A. Area Overhead

In order to evaluate the area overhead introduced by SCFI,
we analyzed unprotected (i), manually protected (ii), and au-
tomatically protected (iii) FSMs. As the reference (i) for our
evaluation, we selected several FSMs of OpenTitan and syn-
thesized the entire corresponding module with Yosys using the
open-source Nangate45 standard cell library. For the manually
protected (ii) FSMs, we encoded the control signals with a
Hamming Distance of N -bits and instantiated the next-state
logic of the FSM N times. To detect control-flow hijacks
triggered by faults, we designed a small error logic monitoring
the state registers of the redundant FSMs and raising an error
signal when one or more state values mismatch. Finally, we
automatically protected (iii) the reference (i) FSMs by calling
the SCFI Yosys pass in the design flow. Similar to the manually
protected (ii) FSMs, we encoded the control signals with a
HD of N -bits and configured SCFI that at least N faults
are required to hijack the FSM. Table I illustrates the area
overheads for the three configurations for different FSMs and
different protection levels N ranging from 2 to 4. For the
manual redundancy approach, the geometric mean of the area
overhead is 17.5% for N = 2, 42.9% for N = 3, and
67.6% for N = 4. In comparison, the geometric mean area
overhead for the FSMs protected with SCFI is 9.6% for N = 2,
21.8% for N = 3, and 27.1% for N = 4. Note that for

TABLE I
AREA OVERHEAD FOR PROTECTING DIFFERENT FSMS USING

REDUNDANCY OR SCFI.

Unprotected Redundancy SCFI
Area [GE] Area [%] Area [%]

Protection Level 2 3 4 2 3 4
adc ctrl fsm 1019 38 76 121 14 27 42
aes control 632 13 44 77 6 22 32
i2c fsm 2729 38 70 109 20 21 27
ibex controller 537 29 75 122 13 34 43
ibex lsu 933 10 21 32 2 13 16
otbn controller 2857 1 4 5 5 5 6
pwrmgr fsm 301 89 184 334 33 71 84
Geometric Mean 17.5 42.9 67.6 9.6 21.8 27.1

3300 3600 3900 4200 4500 4800 5100 5400 5700 6000
Clock Period [ps]

0.72
0.80
0.88
0.96
1.04
1.12
1.20
1.28
1.36
1.44

Ar
ea

 [k
GE

]

Redundancy N=3
SCFI N=3
Base

Fig. 8. Area-time product for the adc_ctrl_fsm module in different
configurations.

smaller input spaces {SCe, Xe,Mod} the area overhead for
SCFI could be higher than for a redundancy approach (cf.
otbn_controller in Table I) as SCFI needs to instantiate
a MDS matrix with a 32-bit input.

B. Timing Overhead

SCFI affects the timing of the next-state logic by introducing
the fault-hardened next-state function φFH . However, the tim-
ing overhead is minimal, as the logical depth of φFH comprises
four XOR layers for the MDS multiplication and an AND layer
for the error masking. We successfully synthesized all modules
in all configurations depicted in Table I for OpenTitan’s target
frequency of 125MHz with Yosys and the open-source standard
cell library.

Fig. 8 illustrates the area-time (AT) product for the un-
modified, the redundancy-protected, and the SCFI-hardenend
adc_ctrl_fsm module. In this plot, we increased the clock
period from 3200 ps to 6000 ps and measured the area in kGE
of the design synthesized by Cadence Genus and a proprietary
cell library. For this experiment, we switched from Yosys to
the Cadence synthesis suite as Yosys and the internally utilized
yosys-abc tool only provides basic area and time optimization
functionality. As shown in Fig. 8, Cadence was able to meet
the timing for a maximum frequency of 312MHz for the
base design, 308MHz for the design using redundancy, and
294MHz for SCFI. However, this slightly decreased frequency
is typically not problematic, as the critical path of a design is
usually not in an FSM. Moreover, as depicted, SCFI achieves a
better AT product for protecting the next-state logic of the FSM
in the adc_ctrl_fsm module than the redundancy approach.

C. Security Evaluation

By encoding the control signals and the state variable, an
adversary cannot hijack the state machine by inducing faults
into fault targets FT1 and FT2. As the input pattern matching
logic 1 of φFH operates on these encoded signals, the attacker
needs to induce N faults into this block to manipulate the
active, encoded control signal. While a fault into the modifier
selection block 2 , which consists of multiplexers, could select
a different modifier, the attacker cannot exploit this injected
fault. More specifically, a fault would yield a combination
of control signal, state, and modifier which creates a non-
valid next state. Internally, the mix layer 3 consists of a
rewiring of the encoded control signals, the state, as well as
the modifier. Hence, this layer can resist up to N − 1 faults.
The idea of the diffusion layer 4 is that a small change

!

!

at the input causes a significant change at the output, i.e.,
the avalanche effect. To achieve this property, SCFI internally
uses MDS matrix multiplication yielding optimal diffusion
guarantees. These MDS matrices propagate a bit-flip in a
single input byte to all four output bytes, i.e., they have a
branch number of 5. Hence, one or multiple bit-flips into the
input triple {SCe, Xeactive,Modactive

} propagate through this
function affecting multiple output bits. By effecting the next
state SCe or the error bits E, an invalid state is generated
in the unmix 5 and error 6 layer and the FSM enters
the default error state. Precisely, there are only |SNe| + |E|
valid output states; an attacker who induces N faults on the
next-state function inputs, {X,SC}, would have a success
probability of P = |SNe|+|E|

k·232−(|SNe|+|E|)
. However, considering that

|SCe| + |E| << k · 232−(|SNe|+|E|), the success probability
is very small. For attacks within the next-state function, the
MDS property of the diffusion layer ensures that the success
probability still remains quite low, albeit it is higher than the
previous case. As shown in Fig. 6 depicting the construction of
the MDS matrix, faults in the first three XOR layers propagate
to at least two output bytes. Although a fault at the last layer
only affects one output byte, all valid output states SN are still
encoded with a Hamming Distance of N , requiring that the
adversary needs to induce N bit-flips.

D. Formal Security Analysis

We formally analyzed the resilience of the diffusion layer
consisting of the MDS matrix multiplication by utilizing
SYNFI [11], a recently introduced pre-silicon fault analysis
tool operating at the netlist. For the analysis, we synthesized
an FSM with 14 state transitions and configured SCFI with a
protection level of 2 bits (HD). We used SYNFI to analyze
whether it is possible to hijack one of the state transitions and
enter another next state using faults. In total, we injected 7644
single bit-flips exhaustively into all available gates in the MDS
matrix multiplication and 32 (0.42%) of these faults enable an
adversary to hijack the execution-flow of the FSM.

Note that analyzing the resilience of FSMs against faults
is also necessary when using other protection approaches. For
example, when redundantly instantiating the next-state logic
to mitigate faults, a synthesis tool aiming to meet timing and
area constraints could weaken the security when optimizing the
design.

VII. LIMITATION & FUTURE WORK

A potential future work could extend SCFI to adapt the
MDS matrix size to the size of the {SC , X,Mod} input
triple to further improve the area-time product. In addition,
the formal analysis could be integrated into the Yosys pass to
increase security guarantees of SCFI. Finally, a future work
could investigate how SCFI could be extended to also provide
protection for the output logic.

A limitation of the current prototype implementation is that
the selector signals of the MUXes used in the input pattern
matching logic 1 are 1-bit signals. This would allow an
adversary to redirect the control-flow within the bounds of the

CFG. To mitigate this attack vector, an updated version of the
SCFI Yosys pass could introduce encoded selector signals.

VIII. CONCLUSION

In this paper, we presented SCFI, a methodology capable
of protecting the control-flow of finite-state machines against
fault attacks. SCFI substitutes the next-state logic of FSMs with
a fault-hardened function only deriving a next valid state in a
fault-free scenario. We integrated SCFI into the Yosys synthesis
suite and open-sourced our modified toolchain. Our evaluation
shows that the area overhead for FSMs protected with SCFI is
lower than for traditional protection approaches.

REFERENCES

[1] K. Akdemir, H. Ghaith, and B. Sundar, “Non-linear Error Detection for
Finite State Machines,” WISA, 2009.

[2] P. Qiu, D. Wang, Y. Lyu, and G. Qu, “VoltJockey: Breaching TrustZone by
Software-Controlled Voltage Manipulation over Multi-core Frequencies,”
CCS, 2019.

[3] E. Biham, and A. Shamir, “Differential Fault Analysis of Secret Key
Cryptosystems,” CRYPTO, 1993.

[4] M. Choudhury, D. Forte, and S. Tajik, “A Pragmatic Approach for
Encoding Laser Fault Injection Resistant FSMs,” DATE, 2021.

[5] N. Timmers, and C. Mune, “Escalating Privileges in Linux Using Voltage
Fault Injection,” FDTC, 2017.

[6] N. Timmers, A. Spruyt, and M. Witteman, “Controlling PC on ARM
Using Fault Injection,” FDTC, 2016.

[7] I. Verbauwhede, D. Karaklajic, and J. Karaklajic, “The Fault Attack
Jungle - A Classification Model to Guide You,” FDTC, 2011.

[8] K. Murdock, D. Oswald, J. Bulck, D. Gruss, and F. Piessens, “Plunder-
volt: Software-based Fault Injection Attacks against Intel SGX,” S&P,
2020.

[9] A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: Exposing the
Perils of Security-Oblivious Energy Management,” Usenix, 2017.

[10] A. Cui, and R. Housley, “BADFET: Defeating Modern Secure Boot Using
Second-Order Pulsed Electromagnetic Fault Injection,” WOOT, 2017.

[11] P. Nasahl et al., “SYNFI: Pre-Silicon Fault Analysis of an Open-Source
Secure Element,” TCHES, 2022.

[12] J. Brockmann, P. Sasdrich, and T. Guneysu, “Revisiting Fault Adversary
Models - Hardware Faults in Theory and Practice,” IACR Cryptol. ePrint
Arch., 2021.

[13] J. Leveugle, and G. Saucier, “Optimized Synthesis of Concurrently
Checked Controllers,” IEEE Trans. Computers, 1990.

[14] A. Vasselle, H. Thiebeauld, Q. Maouhoub, A. Morisset, and S. Ermeneux,
“Laser-Induced Fault Injection on Smartphone Bypassing the Secure
Boot-Extended Version,” IEEE Trans. Computers, 2020.

[15] C. Dobraunig, M. Eichlseder, T. Korak, and S. Mangard, “SIFA: Ex-
ploiting Ineffective Fault Inductions on Symmetric Cryptography,” CHES,
2018.

[16] S. Duval, and G. Leurent, “MDS Matrices with Lightweight Circuits,”
IACR Trans. Symmetric Cryptol., 2018.

[17] D. Karaklajic, J. Schmidt, and I. Verbauwhede, “Hardware Designer’s
Guide to Fault Attacks,” IEEE Trans. Very Large Scale Integr. Syst.,
2013.

[18] C. Wolf, “Yosys Open SYnthesis Suite,” https://yosyshq.net/yosys, 2022.
[19] ALPhANOV, “PILAS - Advanced Laser Injection for Security

Analyses,” https://www.alphanov.com/en/collaborative-projects/
pilas-advanced-laser-injection-security-analyses, 2022.

[20] GL. Djordjevic, TR. Stankovic, and MK. Stojcev, “Concurrent Error
Detection in FSMs using Transition Checking Technique,” TELSIKS,
2005.

[21] S. Johnson, D. Rizzo, P. Ranganathan, J. McCune, and R. Ho, “Titan:
enabling a transparent silicon root of trust for Cloud,” Hot Chips, 2018.

[22] C. Muhtadi, T. Shahin, and F. Domenic, “SPARSE: Spatially Aware LFI
Resilient State Machine Encoding,” HASP, 2021.

[23] P. Nasahl, and N. Timmers, “Attacking AUTOSAR using Software and
Hardware Attacks,” escar USA, 2019.

[24] R. Rochet, R. Leveugle, and G. Saucier, “Efficiency comparison of
Signature Monitoring Schemes for FSMs,” ASP-DAC, 1995.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

