
Minimizing Communication Conflicts in Network-On-Chip
Based Processing-In-Memory Architecture

Hanbo Sun1, Tongxin Xie1, Zhenhua Zhu1, Guohao Dai2, Huazhong Yang1, Yu Wang1†
1 Department of Electronic Engineering, BNRist, Tsinghua University, Beijing, China

2 Qing Yuan Research Institute, Shanghai Jiao Tong University, Shanghai, China

Abstract—Deep Neural Networks (DNNs) have made signifi-
cant breakthroughs in various fields. However, their enormous
computations and parameters seriously hinder their applications.
Emerging Processing-In-Memory (PIM) architectures provide ex-
tremely high energy efficiency to accelerate DNN computing.
Moreover, Network-on-Chip (NoC) based PIM architectures sig-
nificantly improve the scalability of PIM architectures. However,
the contradiction between high communication and limited NoC
bandwidth introduces severe communication conflicts. Existing
work neglects the impact of communication conflicts. On the
one hand, neglecting communication conflicts leads to the lack of
precise performance estimations in the mapping process, making it
hard to find optimal results. On the other hand, communication
conflicts cause low NoC bandwidth utilization in the schedule
process. And there is over 70% latency gap in existing work caused
by communication conflicts. This paper proposes communication
conflict optimized mapping and schedule strategies for NoC-
based PIM architectures. The proposed mapping strategy con-
structs communication conflict graphs to model communication
conflicts. Based on this constructed graph, we adopt a Graph
Neural Network (GNN) as a precise performance estimator. Our
schedule strategy predefines the communication priority and NoC
communication behavior tables for target DNN workloads. In this
way, it can improve the NoC bandwidth utilization effectively.
Compared with existing work, for typical classification DNNs on
the CIFAR and ImageNet datasets, the proposed strategies reduce
78% latency and improve the throughput by 3.33× on average
with negligible deployment and hardware overhead. Experimental
results also show that our strategies decrease the average gap to
ideal cases without communication conflicts from 80.7% and 70%
to 12.3% and 1.26% for latency and throughput, respectively.

I. INTRODUCTION
In recent years, Deep Neural Networks (DNNs) have made

breakthroughs in various fields, such as computer vision [1]
and natural language processing [2]. However, DNNs introduce
massive amounts of computations and parameters, making
DNN computing both time and energy consuming.

Based on the emerging Non-Volatile Memories (NVMs),
researchers have proposed Processing-In-Memory (PIM) archi-
tectures to accelerate DNN computing [3] [4]. PIM architec-
tures perform in-situ Matrix-Vector-Multiplications (MVMs) in
the memory, avoiding redundant data movement. Therefore,
PIM architectures can improve energy efficiency by three orders
of magnitude over GPU and CMOS ASIC solutions and show
great potential to accelerate DNN computing [3] [4].

The basic computing components in PIM architectures are
called as Processing Elements (PEs). Each PE is composed
of crossbars, i.e., NVM cells organized in an array form,
and peripheral circuits. Limited by the crossbar size, multiple
PEs are needed to deploy DNNs. For instance, the param-
eter amounts of VGG-8 [5] and ResNet-18 [6] are around
9.3 × 106 and 1.4 × 107, respectively. And for typical PEs
with four 256× 256 crossbars, 61 and 120 PEs are required to

†: Corresponding author (yu-wang@tsinghua.edu.cn)

0%

20%

40%

60%

80%

100%

1 10

Throughput w/o comm. conflicts

Throughput with comm. conflicts

NoC Bandwidth / (Gb/s)

N
or

m
al

iz
ed

th
ro

ug
hp

ut

Typical
8 Gb/s

over 70% gap

Fig. 1. Comparison of the throughput with and w/o communication conflicts
of ResNet-18 [6] on the CIFAR [9] dataset under different NoC bandwidth.
The hardware is the typical NoC-based PIM architecture in MNSIM 2.0 [10].

deploy them. To manage the computations and communication
among hundreds of PEs, Network-On-Chip (NoC) based PIM
architectures [7] have been proposed. Compared with Point-to-
Point interconnect based PIM architectures, NoC-based PIM
architectures can achieve better scalability and realize up to
14.94× throughput improvement [8].

However, communication conflicts [11] have become the
critical bottleneck in NoC-based PIM architectures. In NoC-
based PIM architectures, different PEs perform computations in
parallel, generating output data to be transmitted concurrently.
Therefore, communication requests from different PEs are
highly concurrent. For example, the number of communication
requests at the same time can reach up to 101 and 192
for VGG-8 and ResNet-18, respectively. Highly concurrent
communication requests bring severe communication conflicts.
Communication conflicts block the data movement and harm
the latency and throughput. As shown in Figure 1, we compare
the realistic throughput with the throughput without communi-
cation conflicts. The ideal cases without communication con-
flicts suppose that all communication requests can be executed
immediately. Figure 1 shows communication conflicts reduce
the throughput by over 70% under the typical NoC bandwidth.

The flow of deploying DNNs in NoC-based PIM archi-
tectures consists of mapping and schedule processes. The
mapping process assigns different parts of DNN workloads
to different PEs offline. The schedule process assigns com-
munication resources, e.g., the NoC communication path, to
communication tasks during runtime. Researchers have de-
signed several mapping and schedule strategies for NoC-based
PIM architectures [12]–[16]. However, communication conflicts
make existing mapping and schedule strategies ineffective. On
the one hand, in the mapping process, communication conflicts
make it difficult to estimate performance, e.g., the latency and
throughput. And the lack of precise performance estimations
makes it hard to find optimal results. For example, existing
mapping strategies adopt total communication cost, i.e., the sum
of communication amount multiplied by the communication

2023 Design, Automation & Test in Europe Conference (DATE 2023) – Best Paper Award Candidate	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



distance, to estimate the latency [15] [16]. And according to
our experimental results, the correlation coefficient between the
total communication cost and realistic latency is lower than 0.1.
Therefore, the optimal total communication cost does not mean
the optimal latency, causing around 35% latency increment.

On the other hand, in the schedule process, strict data
dependencies of DNNs cause severe communication band-
width underutilization. The computations and communication
of DNNs must execute in the algorithm-specific order to ensure
correct results. The algorithm-specific order results in strict
data dependencies among PEs. Communication conflicts and
strict data dependencies block the subsequent computations.
Thus, the subsequent computations can not produce new data
to be transmitted, wasting communication resources. We find
that over 56% communication resources have a NoC bandwidth
utilization rate lower than 10%, and the average NoC bandwidth
utilization rate is only 11%.

To tackle these problems, we propose communication con-
flict optimized mapping and schedule strategies for NoC-based
PIM architectures. The main contributions of this paper contain:

• In the mapping process, we introduce communication
conflict graphs to model communication conflicts. Fur-
thermore, we construct a Graph Neural Network (GNN)
based latency and throughput estimator. The GNN based
estimator raises the correlation coefficient between the
estimated performance and the realistic performance from
0.01 to 0.78.

• In the schedule process, we propose a workload balance
arbiter and a behavior table based NoC routing algorithm
in the schedule process. The corresponding router structure
is also designed to support multi-communication pipeline
execution. Therefore, our schedule strategy improves the
average NoC bandwidth utilization rate from 11.2% to
53.5% (∼4.78×).

• Extensive experimental results show that, for typical clas-
sification DNNs on the CIFAR [9] and ImageNet [1]
datasets, the proposed mapping and schedule strategies
can reduce 78% latency and improve throughput by 3.33×
on average. Compared with the ideal cases without com-
munication conflicts, the proposed strategies reduce the
average gaps from 80.7% and 70% to 12% and 1.26% for
the latency and throughput, respectively.

II. BACKGROUND

A. DNN Representation
We use Directed Acyclic Graphs (DAGs) to represent DNNs.

In DAGs, each vertex vi denotes a DNN operation, e.g., the
convolutional or linear operation. And the edge from vi to vj
represents the data flow from the operation vi to the operation
vj . The operations and data flows must be executed in the
algorithm-specific order to produce the right results.

B. NoC-based PIM Architecture
As shown in the right part of Figure 2, NoC-based PIM

architectures contain multiple PEs, Network Interfaces (NIs),
routers, and interconnection wires among routers. And each
PE has a private NI and a bound router. In NoC-based PIM

Target NN

Conv 1

Conv 2

FC

Node 1 Node 2

Application Node Graph

𝑃𝐸!
NI

Node 3Node 4

𝑃𝐸"
NI

𝑃𝐸#
NI

𝑃𝐸$
NI

𝑃𝐸%
NI

𝑃𝐸&
NI

𝑃𝐸'
NI

𝑃𝐸(
NI

𝑃𝐸)
NI

Node 5

Node 6 Node 7

Conv 1

Conv 2

FC

NoC based PIM architecture
Router

Fig. 2. Basic mapping flow of deploying DNNs in PIM architectures.

architectures, we can express computation resources as follows:
CR = {PE1, PE2 · · · , PEM} (1)

where M denotes the total number of PEs.
C. Related Work

Krishnan et al. [12] and Mandal et al. [13] reconfigure
NoC topology to relieve communication conflicts. They design
different customized hardware for different target DNNs. How-
ever, customized designs need a long production period and are
difficult to adapt to the rapidly evolving DNNs.

MNSIM 2.0 [10] and Krishnan et al. [8] utilize workload-
independent mapping and schedule methods for general NoC-
based PIM architectures, e.g., row-by-row mapping. And Zhou
et al. [14], Liu et al. [15], and Ji et al. [16] propose workload-
aware mapping and schedule strategies. Liu et al. [15] utilizes a
heuristic algorithm to find optimal mapping results, and Zhou et
al. [14] generate computation and communication instructions
to schedule computations and communication among different
PEs. However, these mapping and schedule strategies lack
consideration of communication conflicts, leading to the lack
of precise performance estimations in the mapping process
and low NoC bandwidth utilization in the schedule process.
Maqsood et al. [11] perform workload balancing on NoC
links to reduce communication conflicts. However, they do not
consider global communication conflicts.

III. MAPPING STRATEGY
A. Fundamental Mapping Flow

Figure 2 shows the basic mapping flow of deploying DNNs
in NoC-based PIM architectures. The mapping flow consists
of three main components: target DNNs as the input, mapping
results in PIM architectures as the output, and Application Node
Graphs (ANGs) as the Intermediate Representation (IR).

For specified NoC-based PIM architectures, each PE’s stor-
age and computation capability are invariant. For DNNs, the
number of parameters and computations changes with different
hyperparameters, e.g., different kernel sizes. To address this
contradiction, we introduce ANGs as the IR between operations
and PEs. Each node in ANGs is a part of an operation and
can be deployed in a PE. And edges correspond to the data
dependencies among nodes. The mapping process is converted
to assigning nodes in ANGs to PEs in PIM architectures:

Mapping(ANG, {PEi}) = {ni→PEk|ni ∈ ANG} (2)
In this paper, we propose a communication conflict optimized

mapping strategy for NoC-based PIM architectures, which is
shown in Figure 3. Our mapping strategy consists of a GNN
based estimator to precisely estimate latency and throughput
and a node grouping algorithm to reduce the search space
size. Besides, we adopt a heuristic algorithm [17] to search
for optimal mapping results.

!

!



Mapping strategy

X1

X2

X3 X4
Edge:

communication 
conflicts

between vertices

Vertex:
Communication

features,
i.e., distance

G
N
N

Latency
estimation

Node group based
Population

Selection, mutation
& crossover

GNN based
estimator

Layer i

Layer i+1

N1 N3

N2 N4

N5 N6

N7

Search space: 𝟏𝟎𝟏𝟒𝟑

N1 N3

N2 N4

N5 N6

N7

Search space: 𝟏𝟎𝟑𝟖

Node 
group 

1

Node 
group 

2

Fig. 3. Proposed mapping strategy.

1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4

0.985 0.99 0.995 1

R
ea
lis
tic
la
te
nc
y
/m
s

Normalized total communication cost

1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4

0.85 0.9 0.95 1

R
ea
lis
tic
La
te
nc
y
/m
s

Normalized GNN based estimation

Optimal point
found by [15]

Optimal point found by Ours
& Realistic optimal point

(a) (b)

Realistic optimal point

Fig. 4. Correlation comparison of (a) total communication cost and (b) GNN
based estimation results with realistic results in VGG-8 mapping results.

B. GNN based Estimator
As mentioned in Section I, the lack of precise performance

estimations makes it hard to find optimal results. For instance,
existing mapping methods [8] [15] adopt the total commu-
nication cost as the latency and throughput estimation. As
shown in Figure 4 (a), the x-axis denotes the normalized total
communication cost and the y-axis stands for the realistic
latency. These mapping methods will find the “red” point as
the “optimal” result. And there is ∼35% latency gap between
the found optimal point and the realistic optimal point.

Poor performance estimation is caused by neglecting com-
munication conflicts. As shown in Table I, neglecting commu-
nication conflicts decreases the correlation coefficient from 0.67
to 0.24 for the Multi Layer Perceptron (MLP) based estimator.
Communication conflicts mean different communication tasks
requesting the same communication resources. In other words,
communication conflicts denote the relationship of the compe-
tition for the bandwidth among different communication tasks.
This kind of relationship is sparse, which is unsuitable to be
characterized by the dense form, e.g., vectors and matrices.
For sparse relationships, graphs have been widely used as
the data structure [18]. Inspired by this, we adopt graphs to
model communication conflicts, named communication conflict
graphs.

In communication conflict graphs, each vertex stands for
one communication task, and vertex features consist of com-
munication data amounts, communication distance, and other
essential information about this communication task. As for
the edges in communication conflict graphs, if and only if
there are communication conflicts between the ith and the
jth communication tasks, i.e., vi and vj , there will be a
corresponding edge ei,j between vi and vj .

Afterward, we set up a Graph Neural Network (GNN)
based estimator [18]. As shown in Table I, owing to the
communication conflict graphs, the GNN based estimator can

TABLE I
CORRELATION COEFFICIENT UNDER DIFFERENT ESTIMATION METHODS

Estimation Total MLP w/o MLP with GNN
Method comm. cost comm. conflicts comm. conflicts estimator

Correlation coef. 0.01 0.24 0.67 0.78

effectively handle communication conflict information, and
obtains the best correlation coefficient. Compared with vector
inputs with communication conflicts in MLP estimators, the
communication conflict graphs further improve the correlation
coefficient by around 11%. Figure 4 (b) shows that the GNN
based estimator can find the realistic “optimal” point.

C. Node Grouping Algorithm
As shown in Figure 2, every node in ANGs can be assigned

to any PE in the PIM array, leading to vast search space in
the mapping process. For instance, when mapping 61 nodes
of VGG-8 in a 16×16 PE array, the search space size reaches
3.3 × 10143. A vast search space leads to a long search time
and makes it hard to find optimal mapping results.

To narrow the search space, we propose a node grouping
algorithm. The node grouping algorithm narrows the search
space by decreasing the number of searchable variables. In
our algorithm, we introduce node groups, and each node
group refers to a set of nodes whose relative positions can
be determined. We only need to assign positions to each node
group in our algorithm. Since the number of node groups is
much smaller than all nodes, the node grouping algorithm can
significantly reduce the search space size. Experimental results
show that our algorithm can reduce the search space size from
3.3×10143 to 2.5×1038. Besides, the heuristic algorithm with
the node grouping algorithm needs only one-third of iterations
to acquire comparable mapping results.

To determine node groups in ANGs, we partition and group
all nodes based on the communication amount among nodes.
Firstly, we count the communication amount between every two
nodes and sort them in descending order. Secondly, we analyze
every two nodes: If neither node is in existing node groups,
these two nodes construct a new node group. And if only
one node is in existing node groups, this node group adds the
other node. Finally, for each node group, the relative positions
are determined by minimizing the communication distance of
every two nodes inside the node group. The node grouping
algorithm splits the node position assignment into two stages:
relative position assignment inside node groups and node group
position assignment. By partitioning node groups based on
the communication amounts, the node group algorithm ensures
stable mapping results to a large extent.

Algorithm 1 shows the details of the proposed mapping
algorithm. The inputs are the hardware description and ANGs,
and the outputs are the mapping results. The proposed mapping
algorithm consists of three main stages. In the first stage, node
groups are constructed in the traversal of the sorted list of
ANGs (line 1∼8). Secondly, we initialize random mapping
results based on the node groups, named MappingResults.
Then, for each mapping candidate in the MappingResults,
we get the hardware performance as Target, and the input

!

!



Algorithm 1: Pseudocode of our mapping strategy.
Input: Hardware: CR = {PE1, PE2 · · · , PEM};

Application Node Graph: ANG = G(N,E).
Output: MappingResults = Mapping(ANG,CR)

1 Partition nodes into groups:
2 Sort edges List = Sort(E(vi, vj));
3 for E(vi, vj) ∈ List do
4 if neither in existing node groups then
5 Construct new node group;
6 else if one in existing node groups then
7 Add the other to this node group;
8 end
9 Train the GNN based estimator:

10 Random init. based on node groups MappingResults;
11 for MappingCand ∈ MappingResults do
12 Target = performance of MappingCand;
13 Input = input graph of MappingCand;
14 Train(GNN,Target, Input);
15 end
16 Heuristic search with specified node groups and GNN;

communication conflict graph as Input, based on the simula-
tion results. Afterward, we train the GNN based estimator with
the Target and the Input (line 14). Finally, a heuristic search
is performed to find optimal mapping results (line 16).

IV. SCHEDULE STRATEGY
As mentioned in Section I, the communication conflicts and

strict data dependencies of DNNs cause severe NoC bandwidth
underutilization. To enhance the bandwidth utilization, we
propose a communication conflict optimized schedule strategy,
consisting of a workload balance arbiter and a behavior table
based NoC routing algorithm.

A. Workload Balance Arbiter
Arbiters are devices that arbitrate communication requests

when a communication conflict happens. Existing arbiters
contain fixed priority arbiters [19] and dynamic adaptive ar-
biters [20]. The fixed priority arbiters are easy to implement but
lead to low NoC bandwidth utilization. The dynamic adaptive
arbiters improve the NoC bandwidth utilization by changing
priority dynamically, but may cause some data not to reach
target PEs, e.g., live lock. Moreover, both fixed priority and
dynamic adaptive arbiters lack considerations of strict data
dependencies of DNNs, making communication conflicts block
the subsequent computations. As a result, the subsequent com-
putations can not produce new data, wasting communication
bandwidth resources.

To address this problem, we propose a workload balance
arbiter to consider the strict data dependencies of DNNs.
The workload balance arbiter assigns the priority based on
the transmission rate of communication tasks, which can be
described as follows:

Priority =
Datatotal
Datatrans

(3)

where Datatotal and Datatrans denote the amount of total data
and transferred data of communication tasks, respectively. The

Communication A Communication B Communication C Communication D

(a) (b)

0%

20%

40%

60%

80%

100%

0 1 2 3

C
om
m
un
ic
at
io
n
co
m
pl
et
io
n
ra
te

Time / ms

0%

20%

40%

60%

80%

100%

0 0.5 1 1.5 2 2.5

C
om
m
un
ic
at
io
n
co
m
pl
et
io
n
ra
te

Time / ms

3.41 2.45 (30%↓)

Fig. 5. Execution process of the same communication tasks under (a) a fixed
priority arbiter and (b) the proposed workload balance arbiter.

more data has been transferred, the lower priority is assigned
to the communication task. Considering that data dependencies
occur in a near proportion of different communication tasks,
our schedule method can process communication-heavy tasks
efficiently. As shown in Figure 5, the workload balance arbiter
enables communication tasks to be executed in pipeline mode.
Experimental results show that, for typical classification DNNs
on the CIFAR and ImageNet datasets, the workload balance
arbiter reduces the average latency by around 30%.

B. Behavior Table based Routing Algorithm
Besides the workload balance arbiter, we propose a behavior

table based NoC routing algorithm. The behavior table based
NoC routing algorithm plugs a behavior table into each router.
The data in the behavior table is in the following form:

[O1, O2 · · · , OK ], Oi : Starti → Endi (4)

where Oi denotes the ith operation data in the behavior
table, and Starti and Endi represent the source and target
orientation, respectively. Source and target orientations are in
North, South, West, East, and the PE. For example, O1 : PE →
North means the first operation is transferring data generated
by this PE to the adjacent north router. Appropriate behavior
tables can realize high NoC bandwidth utilization and perform
DNN workloads efficiently.

To generate behavior tables for one communication task, we
propose an extended Dijkstra algorithm [21] as follows:

Path(S,T,G)=

{
None if Dis(D(S,T,G))>R*M(S,T)
D(S,T,G) if Dis(D(S,T,G))≤R*M(S,T)

(5)

where D(S, T,G) returns the path that the Dijkstra algorithm
finds from S as the source vertex to T as the target vertex in
graph G. Dis(·) denotes the function to get the distance of the
path. M(S, T ) denotes the Manhattan distance from S to T ,
and R represents the hyperparameter in our algorithm. When
the path given by the Dijkstra algorithm is too long (the first
line in Equation 5), we choose to wait for a shorter path rather
than spend a long communication time. G is initialized by the
NoC topology, and the edge denotes the link among routers.
Then according to the communication start time, we perform
the extended Dijkstra algorithm for every communication task.
When any communication tasks start or end, we update the
edges of the graph G, i.e., removing or adding corresponding
edges. Finally, we obtain all the data in all behavior tables.

As shown in Figure 6, the proposed routing algorithm
can consistently achieve lower latency than the XY routing
algorithm [22]. Compared with 1 and 10, R = 2 ensures

!

!



72%

49%
62%

69%
57%

42% 44% 47%

0%

20%

40%

60%

80%

100%

Baseline R = 1 R = 2 R = 5 R = 10

N
or

m
al

iz
ed

la
te

nc
y

VGG-8 ResNet-18100%

Fig. 6. Latency under different R values in the proposed extended Dijkstra
routing algorithm, and the baseline is the XY routing algorithm.

Fetcher

Data Buffer

Behavior table
Buffer

Operation
Comparator

Data
Transfer Unit

Data
packet

Priority

Flag

&Enable

Input
Priority

Output

Input

Fig. 7. Router structure design to support the proposed schedule strategy.

full exploration of the communication path, avoids too long
communication paths, and achieves the lowest latency.

Our schedule strategy can maximize the communication
parallelism with satisfying the strict data dependencies. Ex-
perimental results show our schedule strategy improves the
average NoC bandwidth utilization rate from 11.2% to 53.5%.
Considering the inherent workload imbalance among differ-
ent operations of DNNs [23], there is an upper bound for
the NoC bandwidth utilization. In the ideal scenario without
communication conflicts, the NoC bandwidth utilization rate
reaches 54.3%. And our schedule strategy has only a 0.8%
NoC bandwidth utilization rate gap.

C. Router Structure Design
To support the proposed workload balance arbiter and the

behavior table based NoC routing algorithm, we design a
corresponding router structure as shown in Figure 7. The router
is performed in Store And Forward (SAF) mode [24], and all
transfer data should be stored in the data buffer first. Then,
the Fetcher gets data from the data buffer based on the
operations in the behavior table. The Fetcher produces three
outputs: the flag for data validity, the data priority, and the data
packet. Afterward, the Comparator compares the data priority
with input priorities. To ensure the data validity, we set the
transmission enable signal as the AND output of the flag and
the Comparator output. Finally, the Data Transfer Unit
distributes data to target ports for data transmission.

V. EXPERIMENTAL RESULTS
A. Experiment Setup

We select AlexNet [25], VGG-8 [5], ResNet-18 [6], and
VGG-16 on the CIFAR [9] and ImageNet [1] datasets as target
DNNs. Networks on the CIFAR-10 and CIFAR-100 datasets
only differ in the output dimensions of the last layer. Therefore
the impact of differences on communication can be ignored,
and we perform experiments only on the CIFAR-10 datasets.
In the mapping process, besides our strategy, we select mapping
methods proposed by MNSIM 2.0 [10] and Krishnan et al. [8]
as the baseline mapping strategies. Besides, we adopt the map-
ping method in Liu et al. [15] as the control group of heuristic
mapping algorithms. Moreover, in the schedule process, we

utilize the XY routing algorithm [22] as the baseline schedule
strategy. As for the hardware, we follow Multi-Precision [7] to
construct PEs with four 256×256 crossbars and assign default
values to other hardware hyperparameters. The target PIM
architecture contains a 16×16 PE array in 2D-Mesh topology,
with the typical NoC bandwidth in MNSIM 2.0 [10], i.e., 8
Gb/s. All experimental results are performed by the MNSIM
2.0 [10] in Intel® Xeon® E-5 2630 processors.

B. Comparison of Mapping and Schedule Strategies
Figure 8 shows the latency of AlexNet, VGG-8, ResNet-

18, and VGG-16 on the CIFAR and ImageNet datasets under
different mapping and schedule strategies. Compared with the
baseline mapping methods proposed by MNSIM 2.0 and Krish-
nan et al., the proposed mapping strategy reduces the latency
by around 76% on average. And compared with the typical
heuristic mapping method [15], our strategy still decreases the
average latency by ∼56%. Furthermore, the proposed schedule
strategy reduces the latency by around 60% on average over the
XY [22] schedule method. Combining the proposed mapping
and schedule strategies, we can always acquire the lowest
latency, which is around 78% on average lower than the
baseline strategies proposed by MNSIM 2.0 and Krishnan et al.
Moreover, we evaluate our strategies’ gap to the latency without
communication conflicts. Experimental results in Figure 8 show
the average gap is only 12%. In addition, the average latency
gap on the ImageNet dataset is 6%, which means that our
strategies can alleviate communication conflicts in complicated
scenarios effectively.

Throughput comparison results are shown in Figure 9.
Compared with the baseline mapping methods proposed by
MNSIM 2.0 and Krishnan et al., the proposed mapping strategy
improves the throughput by around 3.29× on average. Be-
sides, our mapping strategy enhances the average throughput
by 2.57× over the typical heuristic mapping strategy [15].
Moreover, the proposed schedule strategy improves throughput
to the XY schedule method by around 1.78× on average. Our
strategies always reach the highest throughput, around 3.33×
on average higher than the baseline strategies. And compared
with throughput without communication conflicts, the average
gap of our strategies is only 1.26%.

As shown in Figure 10, we compare the throughput of VGG-
8 on the ImageNet dataset under different NoC bandwidth
and different strategies. Our strategies significantly reduce the
demand for NoC bandwidth and only need around 20% NoC
bandwidth of baseline mapping and schedule methods [10] [15]
to approach the throughput upper bound (6 Gb/s vs. 30 Gb/s).
Even when the throughput reaches the upper bound (30 Gb/s),
the proposed strategies can reduce the average communication
energy consumption by 68.6% on variant DNNs and datasets.

C. Overhead of Mapping and Schedule Strategies
Table II shows the average overhead in search time con-

sumption, hardware area, and energy cost of our mapping and
schedule strategies on variant networks and datasets. In the
mapping process, introducing the GNN based estimator brings
about 11% search time consumption overhead. The reason for
such low overhead is that the input communication conflict

!

!



2.9 
4.3 3.9 

5.6 5.1 5.1 

6.9 

4.5 4.78 

0

2

4

6

8

AlexNet@CIFAR VGG-8@CIFAR ResNet-18@CIFAR VGG-16@CIFAR AlexNet@ImageNet VGG-8@ImageNet ResNet-18@ImageNet VGG-16@ImageNet Geo. Mean

La
te
nc
y
sp
ee
du
p

MNSIM 2.0+XY Krishnan et al.+XY Liu et al.+XY Ours+XY MNSIM 2.0+Ours Krishnan et al.+Ours Liu et al.+Ours Ours+Ours W/o comm. conflicts (upper bound)

Fig. 8. Latency comparison under different mapping and schedule strategies on variant networks and datasets.

3.4 3.6 

2.8 
3.2 3.0 

4.0 

3.2 3.4 3.33 

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

AlexNet@CIFAR VGG-8@CIFAR ResNet-18@CIFAR VGG-16@CIFAR AlexNet@ImageNet VGG-8@ImageNet ResNet-18@ImageNet VGG-16@ImageNet Geo. Mean

Th
ro
ug
hp
ut
sp
pe
ed
up

MNSIM 2.0+XY Krishnan et al.+XY Liu et al.+XY Ours+XY MNSIM 2.0+Ours Krishnan et al.+Ours Liu et al.+Ours Ours+Ours W/o comm. conflicts (upper bound)

Fig. 9. Throughput comparison under different mapping and schedule strategies on variant networks and datasets.

0
4
8
12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

Th
ro
ug
hp
ut
/F
PS

NoC Bandwidth / (Gb/s)

MNSIM 2.0+XY

Liu et al.+XY

Ours

Fig. 10. Throughput of VGG-8@ImageNet under different NoC bandwidth.
TABLE II

SEARCH TIME, HARDWARE AREA, AND ENERGY COST OVERHEAD OF OUR
MAPPING AND SCHEDULE STRATEGIES

Module Search time/s Area/mm2 Energy/mJ

GNN estimator+behavior table 16.67 2.8 0.16
(Proportion in the total) (11%) (0.24%) (0.16%)

Total of ours 151.4 1131.7 100.96

graph has only several dozen vertices, and the GNN based
estimator needs only 1.67 ms to perform single inference.
And in the schedule process, our schedule strategy plugs the
behavior table into routers, with an additional area and energy
overhead of 0.24% and 0.16%, respectively.

VI. CONCLUSIONS
Communication conflicts become the critical bottleneck in

NoC-based PIM architectures, harming the latency and through-
put. We also find that only exactly modeling the communication
conflicts can reach the hardware performance upper bound. This
paper proposes communication conflict optimized mapping and
schedule strategies to model and minimize communication
conflicts. Our strategies leverage the GNN based estimator
and the behavior table based routing algorithm to improve
hardware performance. Compared with existing work, our
strategies reduce 78% latency and improve the throughput by
3.33× on average with negligible deployment and hardware
overhead. Besides, the proposed strategies reduce the average
gap to the ideal cases without communication conflicts from
80.7% and 70% to 12% and 1.26% for latency and throughput,
respectively.

VII. ACKNOWLEDGEMENT
This work was supported by National Natural Science

Foundation of China (No. 61832007, 62104128, U19B2019,
U21B2031), Tsinghua University Initiative Scientific Research
Program, Beijing National Research Center for Information

Science and Technology (BNRist), and Tsinghua EE Xilinx
AI Research Fund.

REFERENCES

[1] J. Deng et al., “Imagenet: A large-scale hierarchical image database,” in
CVPR, 2009.

[2] A. Vaswani et al., “Attention is all you need,” NeurIPS, 2017.
[3] P. Chi et al., “Prime: A novel processing-in-memory architecture for neu-

ral network computation in reram-based main memory,” ACM SIGARCH
Computer Architecture News, 2016.

[4] M. Cheng et al., “Time: A training-in-memory architecture for memristor-
based deep neural networks,” in DAC, 2017.

[5] K. Simonyan et al., “Very deep convolutional networks for large-scale
image recognition,” arXiv, 2014.

[6] K. He et al., “Deep residual learning for image recognition,” in CVPR,
2016.

[7] Z. Zhu et al., “A configurable multi-precision cnn computing framework
based on single bit rram,” in DAC, 2019.

[8] G. Krishnan et al., “Impact of on-chip interconnect on in-memory
acceleration of deep neural networks,” JETC, 2021.

[9] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” 2009.

[10] Z. Zhu et al., “Mnsim 2.0: A behavior-level modeling tool for memristor-
based neuromorphic computing systems,” in GVLSI, 2020.

[11] T. Maqsood et al., “Congestion-aware core mapping for network-on-chip
based systems using betweenness centrality,” FUTURE GENER COMP
SY, 2018.

[12] G. Krishnan et al., “Interconnect-aware area and energy optimization for
in-memory acceleration of dnns,” IEEE D&T, 2020.

[13] S. K. Mandal et al., “A latency-optimized reconfigurable noc for in-
memory acceleration of dnns,” IEEE J EM SEL TOP C, 2020.

[14] K. Zhou et al., “Domino: A tailored network-on-chip architecture to
enable highly localized inter-and intra-memory dnn computing,” arXiv,
2021.

[15] J. Liu et al., “A novel scheme to map convolutional networks to network-
on-chip with computing-in-memory nodes,” in ISOCC, 2020.

[16] Y. Ji et al., “Fpsa: A full system stack solution for reconfigurable reram-
based nn accelerator architecture,” in ASPLOS, 2019.

[17] K. Deb et al., “A fast elitist non-dominated sorting genetic algorithm for
multi-objective optimization: Nsga-ii,” in PPSN, 2000.

[18] T. N. Kipf et al., “Semi-supervised classification with graph convolutional
networks,” arXiv, 2016.

[19] D. U. Becker, Efficient microarchitecture for network-on-chip routers,
2012.

[20] Y. Liu et al., “A dynamic adaptive arbiter for network-on-chip,” Informa-
cije MIDEM, 2013.

[21] J. A. Bondy et al., Graph theory with applications. Macmillan London,
1976.

[22] W. Zhang et al., “Comparison research between xy and odd-even routing
algorithm of a 2-dimension 3x3 mesh topology network-on-chip,” in WRI
GCIS, 2009.

[23] K. Guo et al., “Rram based buffer design for energy efficient cnn
accelerator,” in ISVLSI, 2018.

[24] K. Jetly, “Experimental comparison of store-and-forward and wormhole
noc routers for fpga’s,” 2013.

[25] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” Communications of the ACM, 2017.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


