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Abstract—In-memory-computing (IMC) has become an effi-
cient solution for implementing neural networks on hardware.
However, IMC platforms request weights in neural networks
to be programmed to exact values. This is a very demanding
task due to programming complexity, process variations, noise,
as well as thermal effects. Accordingly, new methods should
be introduced to counter such uncertainties. In this paper, we
first discuss a method to train neural networks statistically
with process variations modeled as correlated random variables.
The statistical effect is incorporated in the cost function during
training. Consequently, a neural network after statistical training
becomes robust to uncertainties. To deal with variations and
noise further, we also introduce a compensation method with
extra layers for neural networks. These extra layers are trained
offline again after the weights in the original neural network
are determined to enhance the inference accuracy. Finally, we
will discuss a method for testing the effect of process variations
in an optical acceleration platform for neural networks. This
optical platform uses Mach-Zehnder Interferometers (MZIs)
to implement the multiply-accumulate operations. However,
trigonometric functions in the transformation matrix of an MZI
make it very sensitive to process variations. To address this
problem, we apply a recursive test procedure to determine the
properties of MZIs inside an optical acceleration module, so that
process variations can be compensated accordingly to maintain
the inference accuracy of neural networks.

1. Introduction

Neural networks (NNs) have achieved breakthroughs in
different fields, e.g., image recognition [1] and language
processing [2]. Tens of millions of weights and hundreds of
millions of multiply-accumulate (MAC) operations are needed
in one neural network inference step. Von Neumann archi-
tecture based on CMOS technology is energy-inefficient in
implementing such operations due to the memory bottleneck.
The memory bottleneck results from the need to load/store
large weight matrices of NN layers and the intermediate
feature maps, leading to a large power consumption.

Analog in-memory-computing (IMC) platforms based on
emerging technologies have been introduced to address the
challenge above. In such platforms, MAC operations are
implemented by analog devices, which store the weights in
NNs based on their changeable/programmable properties. The
storage and computation of NNs happen in the same place,
which avoids weight movement and thus reduces the power
consumption significantly. Two examples of IMC platforms are
optical neural networks accelerators (ONNs) based on Mach-

Zehnder Interferometers (MZIs) [3], [4], and resistive RAM
(RRAM) crossbar accelerators [5], [6], [7], [8].

In ONNSs, computation is done by modulating phases of
light through MZIs. Multiplications and additions are imple-
mented by a grid-like layout connecting MZIs. In this archi-
tecture, a weight matrix from software training is decomposed
with singular value decomposition (SVD) and mapped to
phases of MZIs. In RRAM-based accelerators, matrix-vector
multiplication is executed by a crossbar based on Ohm’s law
and Kirchhoff’s current law. The weight matrix in NNs is
represented by the conductance values of RRAM cells in the
crossbar.

However, the inference accuracy of NN suffers from severe
degradation, when deployed on IMC accelerators, due to
manufacturing process variations and noise. The inference
accuracy of ONNs is susceptible to process variations and
thermal effects of MZIs because weights are represented
as trigonometric functions of phases in phase shifters. Ac-
cordingly, slight deviations of the phase values can cause a
large error in the represented weights. For RRAMs, varia-
tions of physical parameters, e.g., cross-section area, cause
deviations in their electrical properties [9]. Accordingly, when
programmed, the resulting conductance value of an RRAM
cell deviates from the target value. Consequently, weights in
NN are not reflected correctly, which causes a degradation in
the inference accuracy.

Previous work has tackled the accuracy degradation problem
due to weight variations in IMC. The approaches can be
classified into three categories: (I) modifying the NN training
to absorb the effect of variations [10], [11], [12], @ using ad-
ditional hardware computing units to enhance robustness and
counter the effect of the variations [13], [14], @) calibrating the
process variations and fine-tuning the elements storing weights
accordingly to restore inference accuracy [15].

In this paper, we present three different approaches from
each category to tackle process variations and enhance infer-
ence accuracy for IMC accelerators. The presented approaches
are demonstrated for RRAM, and ONN accelerators, namely:

o The process variations and noise of RRAM cells are

modeled as correlated random variables and incorporated
into weights of NNs during statistical training.

o NNs are trained with a modified Lipschitz constant reg-

ularization to suppress error. Then error compensation is
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Fig. 1: MZI and ONN. (a) The MZI structure. (b) The MZI
array for 4x4 multiplication [16].

introduced to the necessary locations to achieve a balance
between robustness and computational cost.

o Process variations of MZIs are calibrated by differential
testing. The phases of MZIs are then tuned according to
the obtained characteristic curves. Besides, online tuning
is used to improve inference accuracy further.

The rest of this paper is organized as follows: Section II
introduces the preliminaries for RRAM & ONN IMC and the
challenges imposed by process variations and noise. Section
III introduces three different frameworks tackling process
variations and noise, and then the conclusion is drawn in
Section IV.

II. Preliminaries

In this section, the computing mechanisms of RRAM, and
ONN based accelerators are introduced. Besides, the chal-
lenges of process variations and the accuracy degradation of
NNs, when deployed on IMC accelerators, are presented.

A. ONN Grid Architecture & Process Variations

An MZI is the basic computing unit for an ONN. As
Figure 1(a) shows, an MZI has two input ports and two output
ports and consists of two beam splitters and a phase shifter.
The phase value of the phase shifter ¢ is programmable by
modifying the temperature of the phase shifter through the
application of optical power. An MZI performs a 2x2 matrix
multiplication in (1), which transforms L§ and L§ to L{° and
LY, where ¢ denotes the complex representation of the light
signals, and 7' is the unitary transformation matrix [17].
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A large matrix can be implemented by a grid-like structure of
MZIs as shown in Figure 1(b) with a transformation matrix in

(3).
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To represent the weights in NNs, the phases ¢ of individual
MZIs are tuned by the application of optical power. However,
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Fig. 2: The applied power vs. the corresponding phase change
in five different MZIs under process variations [16].

due to process variations and thermal effects, the tuned value
deviates from the nominal one. Trigonometric functions in the
transformation matrix of an MZI make it very sensitive to
process variations. Figure 2(a) shows the curves representing
the relation between the applied power p and the tuned phase ¢
for five different MZIs [18]. Even for the same applied power,
the tuned phases are different for different MZIs.

Figure 2(b) shows the inference accuracy degradation for
ONNs under variations. The tested NN is LeNet-5 over
CIFAR10 dataset. The ONN becomes unusable even at small
variations levels which poses a challenge in applying ONNs
in practice.

B. RRAM Crossbar & Process Variations

Figure 3 shows the architecture of an RRAM crossbar. An
RRAM cell resides at each crossing point between horizon-
tal wordlines and vertical bitlines. Voltages are applied to
the wordlines representing an input vector. Conductances of
RRAM cells represent the weight matrix of NNs. Accordingly,
the accumulated currents over the bitlines represent the matrix-
vector multiplication result.

However, due to the process variations and noise, the
programmed conductance values of RRAM cells deviate from
the nominal values obtained from the software training. This
weight deviation leads to a degradation of the inference accu-
racy. Accordingly, the programmed conductance value written
to an RRAM cell is represented as a random distribution rather
than a deterministic value.

Figure 4 shows the inference accuracy degradation for
LeNet-5 and VGG16 on MNIST, CIFAR10, and CIFAR100
datasets. The RRAM conductance is assumed to follow the
lognormal distribution in (4) in this experiment, which is
widely adopted for RRAMs [11], [15], [10]. The x-axis
represents the standard deviation o which defines the level
of variations. The solid lines in the middle of the ranges
represent the mean values of the inference accuracy and the
ranges represent the standard deviation.
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Accordingly, the inference accuracy of IMC accelerators, both
on ONNs and RRAM crossbar, suffers from a large degrada-
tion. The degradation is caused by the inability to reflect the
weight matrices of the NN precisely. As a result, new methods
should be introduced to counter such uncertainties.
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Fig. 3: The RRAM crossbar [19].
III. Methods & Results

The effort to counter the effects of weight variations in
IMC accelerators is directed in three parallel aspects. The first
aspect is modifying software training of NNs to accommodate
for weight variations on IMC accelerators. However, such
approach works better for small variation levels and shallow
NNs. The second parallel aspect is the usage of additional
computations to compensate for weight uncertainties to re-
cover the inference accuracy. This aspect incurs additional
hardware cost which needs to be optimized. The last aspect is
the usage of a test procedure to determine the post-deployment
actual variations on chip and measure its values, so that these
variations can be calibrated and further compensated by fine-
tuning. In the following, we present three parallel approaches
covering the aforementioned aspects and the test results on
different IMC platforms.

A. Statistical Training under Weight Variations & Noise

Process variations include correlated local variations and
global variations. Noise results from imprecise programming
process. Process variations and noise should be modeled
mathematically to be incorporated in software training. A
comprehensive model is required to be developed and used for
statistical training of NN considering weight variations. This
model can be represented in a canonical form as follows:

N
wi:wi,o+zwi,k3k+wi,nNi )
k=1
where w; o is the nominal value of the NN weight, and w; is
the actual NN weight under variations. B is a set of indepen-
dent random variables shared between all weights, and w; j
are constant coefficients. N; represents an independent random
variable for each individual weight to represent individual
programming deviations and wy ,, is the coefficient.

In order to incorporate the model in (5) in software training,
the basic operations in NNs need to be modified. The basic
operations in NNs include multiplication, addition, activation
function and cost function. The following describes how these
operations are modified according to the canonical represen-
tation of weights.

Multiplication operation is now done between two terms in
a canonical form, namely a weight and an input feature. The
input feature is the computation result of previous layers, so it
is in the same form as (5). The multiplication is then executed
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Fig. 4: Inference accuracy degradation under variations in

RRAM crossbars [19].

as follows:
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In the result, only the first-order terms are kept. The
high-order terms are neglected to reduce complexity.
The term a;ow;nN;+a;,w;oN; is represented as
V/(@j,0w; n)%+(a;nw;0)2 Ny by combining the two random
variables into one Nj by matching the variances. Accordingly,
the result is in the canonical form. The Addition of two
operands in the canonical form can be described as:

N
arf—aj:(ai,o-i-aj,o)+Z(ai,k+aj,k)3k+\/a%,n-i-ainNk, (7N
k=1
where N, is the single random variable combining the addition
of the N;,IN; terms and matching the variances.

Non-linear differentiable activation functions are expanded
using Taylor series at the nominal value, a; 0, and the high-
order terms in the Taylor expansion are neglected to match
the canonical form. This approach is not suitable for non-
differentiable activation functions at some points, e.g., ReLU
at 0.

Accordingly, the NN output is represented in the canonical
form and is a distribution rather than a deterministic value. As
a result the loss function used to train the NN model needs to
be modified. The original cost function is as follows:

M
L= (~Yilog(¥;)—(1-Y;)log(1-Y3)) ®)

i=1

where M is the number of classes, )AQ is the true output from
the dataset, Y; is the i-th output of the NN. In statistical
training, Y; is represented as distribution in the canonical form.
So the goal is to push the distribution to be sharply around the
correct value Y;. This is done by pushing the mean value of Y;
to be near the correct output and punishing the distribution of
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com-

Y; when widely spread away from the correct value as follows:
M
L=Y (-YiPP(Y;<0.5)log(uy,)
i=1
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The statistical training is tested on RRAM based framework.
The standard deviations of the distribution of process vari-
ations and noise were set to 25% and 5% of the nominal
values [20], [21], respectively. 2000 chips were simulated and
tested with Monte Carlo simulations for 1-layer and 2-layer
fully-connected networks denoted as FC1, FC2. The results are
shown in shown in Figures 5,6. In the two figures, p and o are
the mean and standard deviation of the inference accuracy of
the simulated 2000 chips. The statistical training is denoted as
ST. Compared with traditional training DT and the VT method
[10], the robustness enhancement with ST is shown by the
higher mean inference accuracy and the narrower distribution.

B. Error Suppression & Compensation for IMC

The modification of the training method might be sufficient
to counter variations in shallow NNs. In deep NNs, the errors
in the computation caused by weight variations go through
deep erroneous layers causing severe accuracy degradation.

A framework is introduced combining a modified training
procedure and additional computation cost to enhance ro-
bustness of IMC for NNs. First, a modified Lipschitz regu-
larization prevents error amplification through erroneous NN
layers with deviated weights. Then error compensation layers
are introduced to correct erroneous feature maps at needed
locations decided by reinforcement learning (RL) to minimize
the additional overhead.

The Lipschitz constant defines how a difference in the input
of a function is amplified or suppressed in its output as follows:

|f(X1)—f(X2)|p§]€|X1—X2|p,VX17X2€X (10)

where ||, defines the p-distance between two vectors. The
smallest value of k£ holding the inequality in (10) is the
Lipschitz constant of f. For a composition of functions, the
Lipschitz constant of the overall function is upper bounded by
the multiplication of the Lipschitz constants of the individual
composing functions as follows:

f=(fiofi—i0...0f1)()
L) <kikir-hr.
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The function of an NN can be considered as a composition
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Fig. 7: Lipschitz constant regularization against variations
from a given layer to the last layer [19].

of the function of each layer, which includes a matrix-vector
multiplication and an activation function. Accordingly, the
concept of preventing the error amplification in the NN for-
ward path by limiting the Lipschitz constant of each layer can
be adopted. The Lipschitz constant of widely used activation
functions, e.g., ReLU, is bounded by 1. The problem is then
reduced to bound the Lipschitz constant of the matrix-vector
multiplication of each individual layer.

For the ith layer, assume the nominal input is x; and the
input x, is the one affected by variation in the first i—1
layers when deployed in IMC accelerator. The matrix-vector
computation of the ith layer can be written as f/=woe® x+b
where w is the nominal weight matrix, b is the bias vector, and
woe? incorporates the effect of variations into RRAM devices.
To restrict the error amplification, the Lipschitz constant of f;

need to be constrained as follows:
|woe9o(xle2)|p§k|x17X2|p (13)

|woe90(xle2)|p

(14)

|x1—X2|,

|woe?:(x1—xz) ’p
sup P —xal,

>:||woe"||ps1c, (15)

where ||[woe?||, cannot be reduced to a closed expression as
e? in (15) corresponds to a matrix of independent random
variables. As a result, p.0+3-0.0 is used as a bound estimate
f01'2€0. Since ¢’ follows a lognormal distribution, j1.0+3-0.0=
e +34/(e“” —1)e’”, in which o is the standard deviation of
0. (15) can be converted as follows:

[wllp<A, A= (16)

k
e +3y/ (e —1)e* ‘
The spectral norm L? of w, defined as the maximum singular
value of the matrix, is used to limit w in (16). Accordingly, a
regularization term is added to the loss function during training
to limit its maximum singular value by A as follows:

Loss=L.e+P* Z (| wiFw; — X212
wieEW

amn

where L. is the cross-entropy loss function, W is the set of
weight matrices of the NN, w; is the weight matrix of the ¢th
layer, and [ is a regularization hyperparameter. k is set to 1
to calculate A, so that errors will not be amplified.

To show the effect of error suppression during inference,
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variations are added to NNs, which were trained under Lip-
schitz regularization, from the ¢-th layer till the last layer
with 0=0.5. The result is shown in Figure 7. For each point,
250 samples were evaluated. The average and the standard
deviation of the inference accuracy are shown using the points
and the error ranges. It is clear that the regularization can
counter large variations in the late layers, but the inference
accuracy still remains sensitive to variations in the early layers.

In order to tackle this sensitivity to variations, light-weight
compensation layers are introduced in early layers. The idea is
inspired by the concept of error correction in communication
system introduced as early as in [23]. The error compensation
layer consists of two parts: a generator and a compensator. The
generator receives both the input and the output of the intended
compensated layer and then generates compensation data to
correct errors. The compensator receives the compensation
data and the original output of the layer and generates a
corrected output.

The structures of the generator and the compensator are
shown in Figure 8. The generator uses m 1x1x(I+n) filters,
where [ and n are the numbers of the input and output feature
maps in the intended compensated layer, respectively. The us-
age of 1x1 filters has two advantages. First, the computational
overhead is low. Second, the compensation data has the same
dimensions as the original output, so that the compensator also
uses 1x1 filters. The generator’s number of filters m represents
the number of output feature maps produced by the generator,
e.g., 3 in Figure 8. A larger m indicates more computational
overhead, but also a more potential robustness in the inference
accuracy. The compensator also uses n 1x1x(n+m) to gen-
erate the same number of feature maps as the original output.
m and the locations of compensation layers are determined
with Reinforcement Learning, as described in [19].

When inserted in the original NN, the compensation layers
are trained while keeping the backbone NN non-trainable and
all the layers in the original NN are subject to variations.

The proposed framework, denoted as CorrectNet, is eval-
vated over the VGG16 and LeNet-5 NNs against three dif-
ferent datasets, CIFAR100, CIFAR10 and MNIST under the
lognormal variation model in (4). The inference accuracy at
different variations levels and the computational overhead are
reported in Figure 9. The lines represent the average of the
inference accuracy of 250 simulated samples, and the ranges
represent the standard deviation of the inference accuracy.
Results demonstrate that the inference accuracy could be
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Fig. 9: Accuracy of CorrectNet under different variations [19].

recovered from as low as 1.69% to more than 95% of their
original accuracy, while hardware cost is low.

C. Variation Calibration and Online Tuning for IMC

The last parallel direction to counter process variations is
testing and calibration. This can be done through characteriz-
ing individual elements in IMC accelerator and then tuning the
weight accordingly. In the following, a calibration process to
extract characteristic curves of MZIs through the application
of differential test patterns in ONNSs is presented.

The testing procedure is illustrated in Figure 10, where a
grid-structure composed of 4 MZI columns is presented and
the column under test is assumed to be column 4. A test pattern
forming an identity matrix is applied and the output vectors are
stored. The stored output vectors represent the multiplication
of the transformation matrix and an identity matrix. In this
way, the actual transformation matrix M=T¢, Tc, T, T,
is obtained. Next, the phases of MZIs in the column under test
are modified by applying the same amount of power. After
that, the identity pattern is applied again to extract the new
transformation matrix M’. Since all the individual matrices of
each column is unitary, then M'M~!= 'C4Tai: ’04 Cu
This expression can be expanded using the column transfor-
mation matrix further as follows:

1 0 0]f1 o0 o 1 0 0
o, Te,=[0 Ty 0||0 T; 0|=|0 T;T; O
0 o 1jj0 o 1] |0 1
(18)
VN S 9 —¢
ie’=¢) | COS sin
T, Ti=e 2 ? 2, 19
670 _fsin‘%—_‘z’ cos% (19)

where Tg,T§ corresponds to the individual transformation
matrix of the MZI at each test case. Since M and M’ are
known, then the phase difference ¢'—¢ can be deduced by
matching elements of the matrix. By repeating the process
at given different optical power levels pj,p2,p3, and record-
ing the phase changes Ay, ,Ag,,Ag,, the most appropriate
characteristic curve can be determined according to Figure 2.
Using the matched characterization curves, for a given required
phase, the needed optical power of each individual MZI can be
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TABLE I: Results of ONNs with the proposed framework [16]
Acc. Software Training Acc. ONN_MZI

NN Dataset NN ONN m o
FCNN  MNIST 97.40% 97.13% 92.80% 0.6%
LeNet-5 Cifarl0 76.56% 75.91% 74.11% 0.26%

Aug.LeNet-5 Cifarl0 82.81% 82.08% 80.80% 0.22%

obtained accurately. To further improve the inference accuracy,
online tuning is performed after MZI phases are configured.
The online tuning is done for a specific number of iterations.
The online tuning is done based on randomized gradients
stored during the offline training. In each gradient sample,
a small amount of power change is applied to each individual
MZI, and the direction of this tuning is determined by the
gradient sample which achieves the highest inference accuracy.

The proposed framework is evaluated with 3 NNs: a 2-layer
fully connected NN, LeNet-5, and Augmented LeNet-5 with 4
convolutional layers and 3 fully connected layers. The tested
datasets are MNIST and CIFAR10. 100 samples were simu-
lated for each ONN. The average and the standard deviation of
the inference accuracy were evaluated. The process variations
were modeled as independent Gaussian distributions for each
MZI. 1000 characteristic curves were used to calibrate the
process variations. The results are shown in Table I, where
software training reports the accuracy of NNs when deployed
on a GPU, and ONN reports the accuracy without considering
variations, and the last two columns report the inference
accuracy with the proposed framework under variations. The
results show that the calibration and online tuning can recover
the inference accuracy under variations.

IV. Conclusion

Process variations and noise have been a problem hindering
the use of IMC platforms for implementing NNs efficiently
due to the inference accuracy degradation. We presented
three different frameworks to tackle this problem for two
different IMC platforms, namely, RRAM and ONN acceler-
ators. The frameworks cover three parallel enhancement di-
rections ranging from modified training procedure, additional
computational hardware, and online testing and calibration.
The presented frameworks show the potential to rescue the
inference accuracy of IMC accelerators to the accuracy after
software training.
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