
Scalable Spintronics-based Bayesian Neural
Network for Uncertainty Estimation

Soyed Tuhin Ahmed‡‡†, Kamal Danouchi‡, Michael Hefenbrock§, Guillaume Prenat‡, Lorena Anghel‡,
Mehdi B. Tahoori†

†Karlsruhe Institute of Technology, Karlsruhe, Germany, ‡‡corresponding author, email: soyed.ahmed@kit.edu
‡Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, and IRIG-Spintec, Grenoble, France

§RevoAI GmbH, Karlsruhe, Germany

Abstract—Typical neural networks are incapable of effectively
estimating prediction uncertainty, leading to overconfident pre-
dictions. Estimating uncertainty is crucial for safety-critical tasks
such as autonomous vehicle driving and medical diagnosis and
treatment. Bayesian Neural Networks (BayNNs), which combine
the capabilities of neural networks and Bayesian inference, are an
effective approach for uncertainty estimation. However, BayNNs
are computationally demanding and necessitate substantial mem-
ory resources. Computation-in-memory (CiM) architectures uti-
lizing emerging resistive non-volatile memories such as Spin-
Orbit Torque (SOT) have been proposed to increase the resource
efficiency of traditional neural networks. However, training
scalable and efficient BayNNs and implementing them in the
CiM architecture presents its own challenges. In this paper, we
propose a scalable Bayesian NN framework via Subset-Parameter
inference and its Spintronic-based CiM implementation. Our
method is evaluated on large datasets and topologies to show
that it can achieve comparable accuracy while still being able
to estimate uncertainty efficiently at up to 70× lower power
consumption and 158.7× lower storage memory requirements.

I. INTRODUCTION

Deep learning is a subfield of artificial intelligence that uses
several types of neural networks (NNs) to learn from data,
identify patterns, and make predictions with high accuracy [1].
In numerous disciplines, including computer vision, natural
language processing, and speech-to-text applications, deep
learning algorithms can attain cutting-edge performance. Con-
sequently, they are readily deployed in diverse environments
and applications, including safety-critical applications where
incorrect prediction could lead to harm to humans or other
critical failures.

Conventional neural networks can only provide output
prediction and lack the ability to accurately convey predic-
tion uncertainty due to their deterministic parameters and
neuron activations, resulting in overconfident predictions [2].
Factoring uncertainty in prediction allows the user to make
more informed decisions for a task. Uncertainty estimation
is important in a variety of situations, such as in safety-
critical tasks, e.g., autonomous vehicles, medical diagnosis
and treatment, industrial robotics, and financial systems. It
allows accurate assessment of the risk associated with a given
prediction, which is important for a trustworthy deep learning
system.

In the literature, there are several methods for uncertainty
estimation, such as Bayesian Neural Networks (BayNNs).

BayNNs are probabilistic models that combine the power of
neural networks with Bayesian inference. The model assigns
probability distributions over its parameters, called prior distri-
butions, to learn posterior distribution during training as data
points are observed. The uncertainty of the model’s predictions
can be obtained from the posterior predictive distribution.

Despite the capabilities of NNs, they usually need a huge
amount of parameters, and also they are traditionally imple-
mented in an inefficient von Neumann architecture. Conse-
quently, memory and computation demands are high, making
it difficult to meet the high-performance requirement of real-
time applications or deploy them to edge devices with limited
resources such as microcontrollers and smartphones. The
resource demand is exacerbated for BayNNs as they naturally
require more computational and memory resources compared
to traditional neural networks.

To reduce the computational demands of conventional NNs,
hardware and algorithmic approaches have been proposed [3]–
[6]. From a hardware perspective, several specialized hardware
accelerators are proposed to accelerate the most common
operations in NNs, Matrix-Vector Multiplications (MVM) [7].
In particular, analog Computation in-Memory (CiM) archi-
tectures with emerging resistive non-volatile memories are
promising solutions [8]. CiM architectures enable MVM op-
erations to be executed within the memory arrays where the
model parameters already reside, hence reducing the need for
costly data movement. Also, compared to other NVM tech-
nology, Magnetic Random Access Memory (MRAM) stands
out the most thanks to its nanosecond latency, high endurance
(1012 cycles), and low switching energy (10 fJ) [8]. Therefore,
implementing BayNNs in an MRAM-based CiM architecture
leads to a highly efficient solution that combines the benefits
of all in a single package.

However, there are several challenges associated with
the BayNNs and their CiM implementation. Conventional
BayNNs are 32-bit full-precision, but NVM has limited stable
conductance states that can represent the parameters of a
model. Also, the true posterior of BayNNs is computationally
intractable and must be approximated. Common approxima-
tion methods such as variational inference, and ensembles are
computationally intensive and require significant computing
resources, see Section IV-C, making them difficult to use in
real-time applications. Also, during inference time, prediction

2023 Design, Automation & Test in Europe Conference (DATE 2023) – Focus Session	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

requires drawing samples from the posterior. Implementing
posterior distributions with an NVM-based crossbar array may
not be feasible or require crossbar structure changes. Conse-
quently, a direct implementation of conventional BayNNs to
CiM architecture is not feasible.

In this paper, we propose a scalable Bayesian neural net-
work framework based on subset parameter inference. In
our approach, only a small subset of overall parameters are
defined as probabilistic parameters and the remainder, i.e.,
synaptic weights remain deterministic. The subset parameter is
strategically selected so that the cost associated with Bayesian
inference becomes negligible. That is to say, they can be
implemented in CiM design without requiring modification
to the common crossbar structure. In addition, we propose
a design-space exploration that enables low-cost and fast
sampling from the posterior distribution for Bayesian infer-
ence. Furthermore, we constructed a comprehensive flow from
the training algorithm to CiM hardware implementation for
our Bayesian approach. Consequently, our proposed subset
parameter inference is capable of overcoming the challenges
associated with BayNN and CiM implementations, while yet
achieving equivalent performance and can estimate uncertainty
for out-of-distribution data. Our approach is evaluated on large
benchmark datasets and topologies.

The remainder of the paper is structured as follows: Sec-
tion II outlines the background of our work. The algorithmic
and hardware specifics for subset-parameter-based Bayesian
Neural Networks are introduced in Section III. Section IV
then demonstrates the evaluation of our proposed method, and
Section V summarizes the paper.

II. BACKGROUND

A. Bayesian NNs

Bayesian NNs consider the parameter vector θ as a random
variable (instead of a fixed vector) with a distribution p(θ).
In the Bayesian sense, learning then relates to estimating the
posterior distribution θ ∼ p(θ | D) given the data D. With
the help of p(θ | D), the posterior distribution for y∗ (given
a test point x∗) can be obtained through

p(y∗ | x∗,D) =

∫
p(y∗ | x∗,θ) p(θ | D) dθ.

Hence, the Bayesian approach allows a richer representation
of the uncertainty of the prediction, as it takes the uncertainty
in the estimation of θ into account.

Unfortunately, training Bayesian NNs, that is, inferring
p(θ | D), is not as straightforward as maximizing a likelihood
(conventioan NNs). Additionally, p(θ | D) usually cannot be
obtained in closed form, but can only be approximated. Com-
mon approximation techniques are with simpler distributions
via the Laplace approximation or variational inference. For
variational inference, a so-called variational distribution qω(θ)
with parameters ω is chosen to substitute the intractable p(θ |
D). The parameters ω of qω(θ) are thereby chosen to reduce
the mismatch between qω(θ) and p(θ | D) via minimizing
the Kullback-Leibler divergence KL (qω(θ) ∥ p(θ | D)) with

respect to ω, see [9]. The specific parametric form of qω(θ)
is usually taken to be a Gaussian distribution with a di-
agonal covariance matrix for its computational convenience,
and ω = {µω,σω} thus relates to the mean and diagonal
(variances) of the covariance matrix.

When a variational distribution qω(θ) was found this way,
the distribution of y∗ for given x∗ can be approximated by
Monte Carlo estimation using T samples, as

p(y∗ | x∗,D) ≈ 1

T

T∑
t=1

p
(
y∗ | x∗,θ(t)

)
with θ(t) ∼ qω(θ). (1)

Note that many of the above concepts cannot be directly
mapped to CIM-based hardware architectures. Specifically,
values of parameters such as θ have to be considered quan-
tized, and only specific choices of qω(θ), from which θ can
be sampled, can efficiently be realized. The following thus
proposes a CiM-based architecture-friendly realization.

B. Quantization Methods

Typically, NNs have 32-bit full-precision weights and acti-
vations. Quantization is a model compression technique that
reduces the bit-width of weights and activation to as low as
binary. It allows for deploying NNs on resource-constrained
devices and for improving the performance of real-time ap-
plications. Binarized NN (BNN) replaces MVM operation
with XNOR and bit-count operation [6]. Consequently, the
model can be compressed by up to 32× and the computational
requirement can be reduced by up to 32×. Also, since MRAM
has limited stable conductance states that can represent the
parameters of a model, quantizing model parameters allows
direct implementation of NNs to a CiM architecture. Binariz-
ing a Bayesian NN can lead to an extremely efficient solution
that can offset its inherent high cost. As a result, in this paper,
we apply the Bayesian paradigm with variational approxima-
tion to a BNN. However, applying variational distribution to
binary (+1, −1) weights is challenging and can be costly. To
circumvent this, we propose a subset parameter inference.

C. Uncertainty in Deep Learning

NNs can perform well in ideal settings but tend to be
overconfident when faced with uncertain situations, such as
out-of-distribution (OOD) data. OOD data refers to the input
data that is distinct from the distribution of the training data
and does not belong to any of the classes observed during
training. A trustworthy deep learning system should provide
reliable uncertainty estimates when faced with OOD data.
Ideally, the NN should "reject" or refrain from making a
prediction when uncertain, allowing for human intervention
in the decision-making process, referred to as "human-in-the-
loop."

D. Spintronics Device

MRAM has gained significant attention for its potential
use in CiM architectures [10]. The Magnetic Tunnel Junction

(MTJ) is the basic compound of MRAM devices, consisting of
two ferromagnetic layers separated by a thin oxide layer. One
of the layers has a pinned magnetization orientation, while
the other one, called the free layer, can have its magnetization
reversed. The freely magnetized layer can be reversed mainly
through two writing mechanisms: Spin Transfer Torque (STT)
and Spin-Orbit Torque (SOT). When the magnetizations of the
two ferromagnetic layers are aligned in the same direction,
the MTJ is in a low resistance state, called the parallel state
(RP). On the other hand, when the ferromagnetic layers have
opposite magnetization, the MTJ is in the anti-parallel (RAP)
state and exhibits a high resistance value.

STT-MRAM has common read and write paths and the
resistance value is determined by the direction of the cur-
rent passing through the device. When the reading current
is increased, the stability of the STT-MRAM is degraded,
which leads to a higher error rate. The SOT-MRAM separates
read and write paths, and thus the reading reliability can be
improved significantly. This three-terminals device is made up
of an MTJ placed on a heavy metal layer.

In the traditional crossbar design, analog computation is
achieved through a parallel reading of all the bit cells. The
separated read and write paths of the SOT-MRAM allow a
higher resistance without impacting the reliability of the device
and increase switching speed without affecting the endurance.
Recently, a new technique was proposed to stack multiple
MTJs on the same substrate to emulate a multi-value cell
[11]. This new method is based on the combination of voltage
control magnetic anisotropy effect (VCMA) and SOT effect,
also known as Voltage-Gated SOT (VG-SOT). The VCMA
effect utilizes an electric field to change the anisotropy at
the interface of the ferromagnet and the oxide barrier layer,
this effect is controlled by the voltage across the MTJ, which
decreases the switching barrier and eases the writing at a given
SOT current. VG-SOT allows switching the device at lower
currents while maintaining the subnanosecond switching of
SOT-MRAM. Furthermore, VG-SOT can also allow a multi-
pillar configuration of SOT MRAM, where the VCMA effect
can act as an MTJ selector [11].

E. Related Works

1) Uncertainty Estimation: In the literature, several
stochastic and Bayesian approaches for uncertainty estimation
in deep learning exist. Dropout-based approaches, e.g., MC-
Dropout [12], and MC-DropConncet [13] are among the
most prevalent techniques for estimating uncertainty. Those
approaches randomly drop either neurons or weights and use
weight decay regularization. However, modern NN topologies
do not employ dropout as a regularization method, instead,
various normalization methods, e.g., batch normalization is
more commonly used. Also, the Dropout rates require careful
calibration, otherwise, the accuracy degrades. Therefore, work
in [14] proposed MC-Batchnorm, also has some drawbacks.
This method involves passing a random subset of the training
data through the neural network and recalculating the batch
statistics. The disadvantage of this strategy is that the training

datasets must be stored in the hardware. In addition, processing
each mini-batch necessitates a significant amount of matrix-
vector multiplication operations.

2) Hardware resources: In terms of material implementa-
tion, many studies have proposed the deployment of Bayesian
networks on dedicated architectures. The work in [15], pro-
posed an FPGA implementation with a novel activation func-
tion. The proposed implementation is able to achieve a good
uncertainty estimate with only one forward pass through a
NN. Such an approach may be effective for small NN, but not
be suitable for larger models. In [16], the authors proposed a
CiM implementation where the variance parameter is stored
in a crossbar and the probability distribution sampling is done
using several stochastic resistive (RRAM) devices. Despite the
low power consumption of the RRAM devices, their imple-
mentation may suffer from inaccuracies due to inconsistent
mean and variance estimation. Work in [17], [18] suggested
using different crossbar arrays to represent the mean and
variance with MRAM technology. However, the representation
of variance and mean parameters using crossbars requires a
considerable amount of pre-processing to correctly map and
quantize the mean and variance into the array. In [5], [19], the
concept of MC-dropout is exploited for Bayesian inference
using STT-MRAM devices.

Our study aims at overcoming the aforementioned issues
by implementing a stochastic quantized scale parameter with
a binary deterministic weight in crossbar structures. To this
end, we combine the utilization of the inherent stochasticity
and the deterministic behavior of SOT-MRAM devices.

III. BAYESIAN NEURAL NETWORK VIA SUB-PARAMETER
INFERENCE

A. Problem Definition

In a NN, the weight matrices of convolutional and fully
connected layers consume the most storage memory, as they
are utilized to calculate the dot product between the input and
weights. For example, in ResNet-18 topology, weight matrices
consume 80.90% of total parameters while biases 16.61% and
other parameters consume 2.39%. In Bayesian NNs, since the
approximate variational distribution qω(θ) with parameters ω,
is applied to the weight matrices, the memory consumption
increases significantly.

On the other hand, higher computational complexity comes
from the need for sampling from qω(θ) during Bayesian
inference. Also, the implementation of variational distribution
p(y∗ | x∗,D) with the CiM-based hardware accelerators can
be challenging and may require changes to the normal memory
structure. Furthermore, due to the limited stable states of
MRAM devices, quantization of mean and variance is needed.
Consequently, hardware implementations in a conventional
way can differ considerably from the trained model.

B. Bayesian Subset Parameter Inference

In this paper, we propose an efficient Bayesian NN
framework with both deterministic and stochastic parameters.
Specifically, the larger parameter sub-group, e.g., weights and

biases of linear and convolutional layers are deterministic,
while a specific small parameter group, the scale parameter, is
considered a random variable that follows a probability distri-
bution. As a result, the memory and computational complexity
are drastically reduced compared to conventional BayNNs and
adaptation is CiM-hardware friendly.

For our approach, we consider the following approximation
of the signature weighted sum computation of an input vector
x with a weight matrix W as

xW ≈ sign(x) sign(W)⊙ s, (2)

where s is a vector of learnable parameters representing
scale and sign(·) is to be considered elementwise. Since
we are considering Bayesian Binary Neural Networks, the
activations x and weights W are binarized {+1,−1} with
sign function. In contrast, the entries of the scaling vector s
are typically considered 32-bit (float) values, but we apply
further approximation for CiM implementation.

For learning, distinct treatment is applied to the two-
parameter groups. Specifically, we apply a Bayesian treatment
to learning s via variational inference and learn a distribution
qω(s), while the rest of the parameters, which we denote by
θ in the following (e.g., the weights W for each layer), are
learned via a (classical) maximum likelihood approach. The
overall training objective is defined as

max
θ,ω

p(D | θ)− λ ·KL (qω(s) ∥ p(s | D)) , (3)

where λ denotes a hyper-parameter that is to be set. Note that
this objective cannot be directly optimized since the KL term
is intractable and therefore replaced with the evidence lower
bound (ELBO) approximation, which provides a lower bound
on the KL [20].

Due to the hardware constraints, we consider several ap-
proximations. Specifically, the parameters θ need to be bina-
rized, while samples from qω(s) are also quantized. To enable
gradient-based learning, quantizations are only considered in
forward passes (during training and inference), whereas they
are disregarded while computing gradients. This is generally
known as the straight-through (gradient) estimator [6].

To efficiently implement the Bayesian NN in a CiM-
architecture, we take a set S = {s(n) ∼ qω(s) | n =
1, · · · , N} of N samples from qω(s). These samples are then
mapped to a specific crossbar array. In operation, a stochastic
sampler is used to sample one of the crossbars in each forward
pass. Consequently, the distribution q(s) = Choose(S) that se-
lects samples from S uniformly, approximates the distribution
of the (quantized) samples from the variational distribution
qω(s).

Hence, through the CiM-hardware, the distribution of y∗

given x∗ is approximated as

p(y∗ | x∗,D) ≈ 1

T

∑
t

p
(
y∗ | x∗,θ, s(t)

)
with s(t) ∼ q(s) = Choose(S). (4)

R
e

ad
d

e
co

d
e

r

W
ri

te
d

e
co

d
e

r

BL conditioning circuit
ADC

SL
co

n
d

it
io

n
in

g
ci

rc
u

itRWL

WWL

BL

…
SL

VDD GND

VDDGND

SET RESET

SA

re
f

VDD GND

VDDGND

SET RESET

SA

re
f

…

Scale crossbar

Average

ADC

RNG

R
e

ad
d

e
co

d
e

r

W
ri

te
d

e
co

d
e

r

BL conditioning circuit
ADC

SL
co

n
d

it
io

n
in

g
ci

rc
u

itRWL

WWL

BL

…
SL

Weights crossbar

Digital comparator

Fig. 1: Proposed spintronic architecture.

Fig. 2: Proposed multi-value SOT bit-cell.

Note that the parameters θ (e.g., weights) are considered
deterministic, while the learned distribution of the scales s
is used to express the uncertainty in the predictions.

C. Hardware implementation

1) Bayesian Inference Architecture: To implement the pro-
posed Bayesian inference, a new CiM architecture is pro-
posed according to the functionality of equation (2). The
architecture consists of two crossbars per layer, one maps the
Bayesian scale and the other the weights. The scale crossbar
is implemented using a multi-level device that stores the
quantized parameters. Also, a stochastic spintronic device is
used to allow the random selection of the different devices
in each forward pass based on equation (4). Each crossbar is
equipped with two decoders, one for reading and the other for
writing. Decoders allow for the selection of multiple devices
for reading and writing operations. The stochastic sampler is
connected to the different signals of the reading decoder of
the scale crossbar. The MVM operation in a crossbar array is
achieved by activating multiple wordlines in parallel. At the
output of the crossbar, the current is sensed and converted to
a digital signal with a flash analog-to-digital converter (ADC).
The results of the scale and weights crossbar are multiplied
layer-wise, and we apply a sign function with comparators, as
depicted in Figure 1. The model prediction are accumulated
for T Monte-Carlo runs with the Adder ACcumulator (AAC).

2) Scale crossbar: To quantitatively represent the param-
eters required for our proposed BayNN approach, we have
implemented a multi-level device composed of multiple MTJs
placed on a single SOT track. To allow for reliable reading
and writing of the cell, four MTJs were used. Each multi-level
device is able to store up to five levels of conductance (eg:
4AP, 3AP-1P, 2AP-2P, 1AP-3P, 4P). To achieve a wider range
of conductance levels and parameter representation, several of
these multi-value cells can be used in tandem. As mentioned

earlier, this device exploits both the VCMA and SOT effects
for the writing process. The parallel MTJs share the same top
and bottom electrodes. Thus, only two access transistors are
needed for read and write operations, as in the conventional
SOT device, see Figure 2. Consequently, the cell becomes
denser, and hardware resource efficiency improves. The access
transistors are controlled by a Write Word-Line (WWL) and
a Read Word-Line (RWL). At a given SOT current, the RWL
signal can vary to program individual MTJs or multiple MTJs
at a time.

3) Weights crossbar: For the crossbar that encodes weights,
we decided to implement binary synapses with SOT technol-
ogy, where the resistance state of the device (RP and RAP)
represents the binary value (+1, −1). The current sum due
to the activation of multiple cells will be compared to a
reference. The reference serves as an activation function for
the deterministic crossbar array.

4) Stochastic SOT device: By utilizing the stochastic be-
havior of SOT devices as a random number generator (RNG),
we were able to introduce the desired random sampling. Two
CMOS drivers were used to generate the bidirectional current
across the heavy metal to switch between RP and RAP states.
To attain a given probability with the stochastic device, "SET"
and "RESET" operations were repeated to program the MTJ.
After a "SET" operation, the MTJ is sensed to evaluate its
state, and then "RESET". As a result, the successive "SET"
and "RESET" operations generate a stochastic bitstream.

IV. EXPERIMENTAL RESULT

A. Simulation Setup

The predictive performance of the proposed method is eval-
uated on MNIST, Fashion-MINST, and CIFAR-10 benchmark
in-distribution datasets on MLP, LeNet, and VGG based on
[13] topologies. Weights and activation BayNNs are binarized
according to [3] and the proposed Bayesian scale is quantized
to 4-bit using the algorithm proposed in [4]. A value of 0.001
is used for the hyperparameter λ in Equation 3.

B. Algorithmic Evaluation

1) Predictive Performance: For MLP on MNIST, our re-
sults depicted in Table I show that the proposed subset
parameter inference performs comparably to State-Of-The-Art
(SOTA) full-precision Bayesian methods with only a 0.51%
difference in accuracy. Similarly, inference accuracy is com-
parable, i.e., within 0.68% of full-precision and binary point
estimate NNs. Generally, point estimate methods outperform
Bayesian methods, therefore, the difference is slightly greater
in comparison.

Furthermore, the inference accuracy of the proposed method
on CNN topologies on Fashion-MNIST and CIFAR-10 is
still comparable to SOTA Bayesian methods as depicted in
Tables II and III. Specifically, the inference accuracy of
Fashion-MNIST is 0.01% and CIFAR-10 is 2.54% lower in
the worst case. Since CIFAR-10 is a much harder dataset,
the difference is larger for our proposed method. However,
when our proposed method is compared with SOTA binary

TABLE I: Predictive Performance of MNIST dataset on four-
layer MLP in comparison to related Bayesian and point
estimate methods. The superscript ∗ represents methods that
are point estimates.

Method Bit-width (W/A) Inference Accuracy
FP (ReLU)∗ 32/32 98.78%
FP (Tanh)∗ 32/32 98.39%

MC-Dropout 32/32 98.61%
IR-Net∗ 1/1 98.26%

Proposed 1/1 98.10%

TABLE II: Illustration of the proposed method’s prediction
performance on the Fashion-MNIST dataset using the LeNet-
5 CNN topology, compared to Bayesian and point estimate
approaches with varied bit-widths of weights and activation
(W/A). The superscript ∗ denotes point estimates methods.

Method Bit-width (W/A) Inference Accuracy
FP (ReLU)∗ 32/32 92.01%
FP (Tanh)∗ 32/32 91.78%

MC-Dropout 32/32 91.71%
Deep Ensemble 32/32 91.68%

IR-Net∗ 1/1 91.71%
Proposed 1/1 92.0%

method, our method slightly can improve the accuracy, e.g.,
by 0.62% for VGG. Due to the fact that binary activation is
an approximation of Tanh activation, the performance of our
proposed method is closer to a full-precision model with Tanh
activation but with ReLU activation the difference is slightly
greater.

2) Uncertainty Estimation: Typically, we assume that the
distributions of training and test data are identical. However,
when the distributions of training and test data differ, e.g.,
when the test data is rotated or corrupted with noise, we expect
the uncertainty of the model or of the prediction to be high.
We have performed two experiments with varying intensity
for dataset shift. In one case, we continuously rotated the
image by 7 degrees in 12 steps, and in the other case, we
added random uniform noise with increasing intensity. It can
be seen in Figure 3 that the inference accuracy decrease and
the negative log-likelihood (NLL) increase. NLL is a standard
method for estimating uncertainty, and a well-trained model
typically has a low NLL score. A higher NLL score than a
predefined threshold, e.g., mean NLL on test data, indicates
OOD data. We can detect up to 64.34% of OOD data with
this approach.

C. Analysis of Hardware Implementation

The energy consumption of the proposed architecture is pre-
sented in Table IV and is compared with the related works. The
multiplier, the AAC block, and comparators were synthesized
with Synopsys Design Compiler using the TSMC 40nm PDK.
The crossbar and the stochastic device were then simulated on
Spice. Additionally, the design was scaled up using the CiM
version of NVSIM, and we evaluated the energy consumption
on a LeNet-5 and small VGG topology. For each topology, we
performed T=10 forward passes on the MNIST dataset. Energy

Fig. 3: Evaluation of out-of-distribution performance on
Fashion-MNIST dataset. The images are rotated, and uniform
noise is added to shift the distribution.
TABLE III: Prediction performance of our method is com-
pared to Bayesian and point estimate approaches utilizing
the CIFAR-10 dataset and different bit-widths of weights and
activation (W/A). ∗ denotes point estimation methods.

Topology Method Bit-width (W/A) Inference Accuracy

VGG

FP (Tanh)∗ 32/32 91.23%
FP (ReLU)∗ 32/32 93.31%
MC-Dropout 32/32 92.79%

IR-Net∗ 1/1 89.96%
Proposed 1/1 90.62%

ResNet-18

FP (Tanh)∗ 32/32 91.33%
FP (ReLU)∗ 32/32 93.77%
MC-Dropout 32/32 93.44%

IR-Net∗ 1/1 91.5%
Proposed 1/1 90.5%

consumption of 0.30 µJ is reported with LeNet-5 topology
and 2.00 µJ with the small VGG topology. The proposed
architecture is 70× more energy efficient when compared with
FPGA implementation [15], 31× better when compared to
RRAM [16], and 2.63× better when compared to an MTJ-
based crossbar [17]. All studies were evaluated on the MNIST
dataset but on different topologies, LeNet-5 in our case, while
other studies were only evaluated on two linear layers.

In terms of memory consumption, compared to SOTA
methods for uncertainty estimation, our proposed method
requires 63.49× lower storage memory compared to variation
inference approximation [9], 158.78× lower storage memory
compared to the ensemble approach (with 5 ensembles) [21],
and 31.76× lower storage memory compared to Dropout-
based [12] approximation. Furthermore, even compared to 1-
bit binary NNs with point estimate parameters, our proposed
BayNN requires is ∼ 1% lower storage. Since we quantize the
scale, our method is even lower than SOTA binary NNs which
have 32-bit scales. Furthermore, We assumed one bit-cell is
required for each bit of parameter storage. Variables of the
model are not taken into account.

V. CONCLUSION

In this paper, we present a low-cost and scalable Bayesian
neural network framework suitable for CiM hardware. Our

TABLE IV: Energy comparison with SOTA implementation

Method Implementation Energy (µJ/Image)
H.Awano et al. [15] FPGA 21.09
A. Malhotra [16] RRAM 9.30
K.Yang et al. [17] Domain wall-MTJ 0.79
Proposed implementation SOT-MRAM 0.30

method deals with larger groups of parameters in a deter-
ministic method and Bayesian processing is only applied to a
specific group of parameters, scale. A novel CiM architecture
with two separate crossbars per layer is presented for the
Bayesian inference. One crossbar stores deterministic weights,
while the second array stores the Bayesian scale. A multilevel
SOT-based bitcell is designed to map quantized Bayesian scale
parameters. Furthermore, the stochastic behavior of the MTJ
is harnessed to implement sampling from the posterior distri-
bution of the variational distribution. Our proposed Bayesian
NN is rigorously examined for its prediction performance
and uncertainty quantification. We show that the prediction
performance is comparable to SOTA methods with different
bit-widths. Furthermore, the energy consumption and memory
requirement were evaluated on large topologies. Compared
to SOTA Bayesian implementation, the energy consumption
is 70× smaller than CMOS-based implementation and 31×
smaller than RRAM-based implementation. Storage Memory
requirement is up to 158.78× lower.

REFERENCES

[1] I. Goodfellow et al., Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[2] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep
learning for computer vision?” NeurIPS, vol. 30, 2017.

[3] H. Qin et al., “Forward and backward information retention for accurate
binary neural networks,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 2250–2259.

[4] J. Choi et al., “Pact: Parameterized clipping activation for quantized
neural networks,” arXiv preprint arXiv:1805.06085, 2018.

[5] S. T. Ahmed et al., “SpinDrop: Dropout-Based Bayesian Binary Neural
Networks with spintronic Implementation,” To appear at IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 2023.

[6] I. Hubara et al., “Binarized neural networks,” NeurIPS, vol. 29, 2016.
[7] A. Reuther et al., “Ai accelerator survey and trends,” in IEEE HPEC,

2021.
[8] B. Dieny et al., “Opportunities and challenges for spintronics in the

microelectronics industry,” Nature Electronics, vol. 3, no. 8, Aug. 2020.
[9] C. Blundell et al., “Weight uncertainty in neural network,” in ICML.

PMLR, 2015.
[10] S. Jung et al., “A crossbar array of magnetoresistive memory devices

for in-memory computing,” Nature, vol. 601, no. 7892, 2022.
[11] J. Doevenspeck et al., “Multi-pillar SOT-MRAM for Accurate Analog

in-Memory DNN Inference,” in 2021 Symposium on VLSI Technology,
2021.

[12] Y. Gal et al., “Dropout as a bayesian approximation: Representing model
uncertainty in deep learning.” PMLR, 2016.

[13] A. Mobiny et al., “Dropconnect is effective in modeling uncertainty of
bayesian deep networks,” Scientific reports, 2021.

[14] M. Teye et al., “Bayesian uncertainty estimation for batch normalized
deep networks,” in ICML. PMLR, 2018.

[15] H. Awano et al., “BYNQNet: Bayesian Neural Network with Quadratic
Activations for Sampling-Free Uncertainty Estimation on FPGA,” in
DATE, 2020.

[16] A. Malhotra et al., “Exploiting Oxide Based Resistive RAM Variability
for Bayesian Neural Network Hardware Design,” IEEE TNANO, 2020.

[17] K. Yang et al., “All-Spin Bayesian Neural Networks,” IEEE T-ED, 2020.
[18] A. Lu et al., “An Algorithm-Hardware Co-Design for Bayesian Neural

Network Utilizing SOT-MRAM’s Inherent Stochasticity,” IEEE-JXCDC,
2022.

[19] S. T. Ahmed et al., “Binary bayesian neural networks for efficient
uncertainty estimation leveraging inherent stochasticity of spintronic
devices,” in IEEE/ACM NANOARCH, 2022.

[20] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[21] B. Lakshminarayanan et al., “Simple and scalable predictive uncertainty
estimation using deep ensembles,” NeurIPS, 2017.

	Select a link below
	Return to Previous View
	Return to Main Menu

