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Abstract— This paper presents new kinds of image sensors based on 
TFS (Time to First Spike) pixels and DVS (Dynamic Vision Sensor) 
pixels, which take advantage of non-uniform sampling and 
redundancy suppression to reduce the data throughput. The DVS 
pixels only detect a luminance variation, while TFS pixels quantized 
luminance by measuring the required time to cross a threshold. Such 
image sensors output requests through an Address Event 
Representation (AER), which helps to reduce the data stream The 
resulting event bitstream is composed by time, position, polarity, and 
magnitude information. Such a bitstream offers new possibilities for 
image processing such as event-by-event object tracking. In 
particular, we propose some processing to cluster events, filter noise 
and extract other useful features, such as a velocity estimation. 
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I. CONTEXT AND EMERGENCE OF EVENT-BASED IMAGERS 
 

Thanks to the enhanced technological processes, CMOS 
image sensors have supplanted the Charge Coupled Devices 
(CCD). This step has opened the door to Active Pixel Sensors 
(APS) and, later on, Smart Imagers. Hence, new kinds of 
imagers has emerged embedding pre-processing or dedicated 
functions, such as bio-inspired retina [1]. Moreover, plenty of 
studies show a constant improvement of the CMOS Image 
Sensor (IS) performances, in term of image quality but rarely in 
term of power consumption. Indeed, the ever-growing size of 
image sensors and the superior frame rate make the throughput 
ever higher and drastically increase the power. As power is 
today a leitmotiv for embedded applications, the systems 
embedding cameras such as smartphones, sport cams are 
particularly concerned. Although, the power efficiency of the 
CMOS image sensors has been enhanced during the last two 
decades, the standard reading architecture of image sensors is 
eventually a key of the extra-power consumption. Indeed, image 
sensor systems require an analog-to-digital converter (ADC), 
which is currently an important consuming part and often the 
most. Therefore, many studies are focused on the A-to-D 
conversion power reduction, based on dedicated low-power 
ADCs or a unique ADC for the entire sensor [2][3][4]. In 
addition, the standard IS readout method consists in reading the 
entire image at a constant frame rate. Consequently, this 
approach limits the reading speed especially for high resolution 
sensor. Besides, frame reading induces spatial and temporal 
redundant data. Indeed, the same pixel luminance in time and 
inside the matrix generates a lot of redundant information in the 
IS bitstream. Therefore, reducing redundancy in the IS bitstream 

is probably one of the most efficient techniques for mitigating 
power in CMOS IS. This induces studies like in [5]. The 
asynchronous and event-based Image Sensors are very 
promising alternatives to lower the IS energy consumption. 
Several asynchronous architectures have been already studied 
[6][7][8]. Nevertheless, many low-power approaches remain 
conventional synchronous designs and maintain the need of an 
ADC. For event-based IS, an arbiter is often required in order to 
manage the communications between the pixels and the reading 
system. As the event-based IS usually employ a Time-to-Digital 
Converter (TDC), the delay introduced by an arbiter makes the 
time measurement inaccurate. Moreover, the arbiter architecture 
is not easily scalable. In order to overcome this issue, arbiterless 
event-driven IS [9] have also been designed.  

To summarize, event-driven IS are able to offer low-power 
energy consumption and a reduced bitstream by only reading the 
relevant pixels, thanks to their temporal and/or spatial 
redundancy suppression. They do no longer use an ADC but 
preferably a TDC for digitizing the luminance. The 
asynchronous readout system architecture imposes a different 
usage of the IS bitstream. Therefore, using event-based IS 
requires to adapt the processing algorithm in order to fully 
benefit from this reduced bitstream. In this paper, after 
describing the pixel structures and the readout architecture, 
some processing, taking advantage of such bitstreams, are 
presented. Two examples are given in the sequel, one related to 
image segmentation and a second on an event-based clustering. 

II. EVENT-DRIVEN IMAGE SENSORS 
 

In this section, we present the concept of event-driven IS and 
start by explaining the pixel functioning for different IS system, 
which is required to understand the construction of the reading 
sequence of event-driven IS. 

 

A. The Dynamic Vision Sensor Pixel 
The Dynamic Vision Sensor (DVS) pixel only reacts to a 

luminance variation. Its implementation principle is presented 
in Figure 1. This pixel uses a switched capacitor circuit to 
compute the signal derivative in time, i.e. the voltage difference 
between two successive samples of the photodetector voltage, 
Vp. This difference is then compared to two thresholds to 
generate an ON or an OFF event according to the polarity of the 
slope of Vp. 
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Figure 1: DVS pixel schematic 

A positive change yields an ON event and a negative change 
to an OFF event (see Figure 2). In [10] and [11], the triplet (Xe; 
Ye; Pe) represents an event where Xe and Ye are the pixel 
coordinates in the matrix and Pe is the event polarity (ON or 
OFF event). The DVS pixel events are only generated when 
there is a sufficient luminance change and a periodic signal for 
triggering the reset switch.  

 
Figure 2: ON and OFF event generation 

B. The Time-to-First-Spike Pixel  
The time-to-first-spike (TFS) is a bio-inspired concept and 

relies on letting the pixel decide when the information is relevant 
or not. Once significant information is retrieved, the latter is sent 
and later on processed by the reading system. This technique is 
implemented in the pixel thanks to a 1-level crossing sampling 
scheme. The unique threshold voltage can also act as an 
adaption voltage to the light conditions [8]. That allows the TFS 
pixels to sense in a wide dynamic range. Finally, this technique 
is equivalent to transform a classical analog pixel into an event 
detector as seen on Figure 3.  

 

 
Figure 3: Schematic of a TFS pixel 

 
The TFS pixel has the same functioning phases of a classical 

pixel. Firstly, the reset phase, which sets all the pixels to the 
same initial voltage. Secondly, the integration phase, where the 
pixel photogenerated current integrates the reset voltage. 
Finally, the pixel information is extracted by the readout system. 

On one hand, for a classical IS, the duration of the integration 
phase is predefined and set for all the pixels. The duration of this 
phase is also known as the integration time. After this phase, a 
final phase triggers the readout system that accesses every pixel 
in order to extract its information represented by a voltage across 
the pixel photodiode. This voltage is later on digitized through 
an analog to digital converter. On the other hand, for an event-
driven IS, the TFS pixels determine the duration of the 
integration phase according to the photogenerated current. In 
other words, each pixel has its own integration time. 
Furthermore, for a TFS  pixel, the information is not expressed 
by a voltage but by a time representing the pixel integration 
time. Therefore, the ADC is replaced by a Time-to-Digital 
Converter (TDC), which measures the time between two 
successive integrations. In this case, replacing the ADC, which 
is often the most consuming device in the IS system, reduces the 
power consumption of the system. Notice that the beginning and 
the end of the integration phase is controlled by the TFS pixel 
itself. Once an event is detected, the TFS pixel sends requests 
(ColReq and RowReq give the pixel position in the matrix) 
towards the readout system, which timestamps the integration 
time. This latter encodes the pixel luminance. After receiving 
the pixel request, the readout system acknowledges the TFS 
pixel, which is authorized to reset and start another integration 
process. The functional diagram of the TFS pixel is presented in 
Figure 4. 
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Figure 4: Diagram of a TFS pixel under two different luminosity. Vref is the 
voltage reference and Vph is the photodiode voltage. Tint is the integration 
time and the time between the reset and the request. 

C. Triggering a TFS pixel by a DVS pixel 
In order to reduce further the bitstream throughput, it is 

possible to trigger TFS pixels, which are able to grab the 
luminance, by a set of DVS pixels. Thus, kernels including a 
DVS pixel triggering several TFS pixels have been proposed 
and designed by [9]. These latter also designed a hybrid pixel 
combining the two functions: detection of a luminance change 
and luminance measurement.  

D.     The Event-driven Readout System 
 

In event-driven IS, the readout system manages the 
communications between the event-driven pixels, the TDC and 
the memory. The readout system resets the image sensor, 
receives the reading requests coming from the pixels and 
attributes an integration time to each active pixel. Based on the 
integration time, the digital readout produces an image. The 
Figure 5 gives the overview of an event-based IS readout 
applied to a TFS pixel matrix. With DVS pixels, the readout is 
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similar but only the luminance change is detected and the Time 
Stamping Block is any more required.  

 
Figure 5: Architecture of an event-based imager 

  As each TFS pixel manages its own integration and reading 
phases, the readout may receive simultaneous requests from 
several pixels. Most of the event-based readout architectures in 
the literature use arbiters to manage the parallel requests. 
However, the arbitration technique suffers from many 
disadvantages like timing errors, fixed priority management, 
non-determinism and a complex arbitration circuitry, which is 
not easily scalable. In order to overcome these limitations, a 
parallel reading of the Address-Event Representation (AER) is 
sufficient to discard the arbitration tree. As nothing is free, the 
arbiter suppression imposes a post-reading phase to check if the 
pixels have really fired [8]. This protocol parallelizes the reading 
of pixel requests and adopts a deterministic functioning unlike 
the arbitrated reading technique. As seen on Figure 5, the 
asynchronous reading protocol is implemented by the Request 
Processing Block. This block simultaneously collects all the 
addresses of the active pixels and records their instants of 
occurrence thanks to the time stamping block. The calculation 
of the pixel integration time is done afterwards, which allows a 
fast and immediate reading. As already mentioned, the TFS 
pixel information is encoded by the elapsed time during the 
integration phase, i.e. the time difference between the pixel reset 
and the instant when the pixel voltage crosses the predefined 
sampling level.  

It is noticeable that the spatial redundancy of the IS output 
dataflow is drastically reduced. This point is somehow difficult 
to understand because each pixel resets after the requests have 
been acknowledged, making the reset instant of the pixels 
completely asynchronous. Nevertheless, it exists a particular 
usage, which helps understanding this point. Indeed, there is a 
dedicated mode forcing a global pixel reset. That way, all the 
pixels reset at the same time and only the pixels having the same 
luminance send requests during the same TDC period. 

Therefore, the complete image reading is made in a number of 
TDC periods equals to the number of pixel luminance levels. 
This is shown on Figure 6. The brightest pixel P1,1 (value 255) 
is firing first, follows by the pixels P1,0, P0,1, P2,1, P1,2 (value 127), 
later by the pixels P0,0, P2,2 (value 63) and  finally by the pixels 
P0,2, P2,0 (value 1). 

   

 
Figure 6: Time stamping and spatial redundancy cancelation 

In order to appreciate the huge compression obtained by such 
a sensor, a comparison is given with the number of readings for 
a standard frame IS. This number is for a standard imager N x 
M, where N is the number of columns and M the number of 
rows. All the pixels are read individually. For a TFS imager, a 
complete frame reading is obtained once all the luminance 
values have been read. This means that the AER protocol is able 
to read several pixels in one TDC period. An event-based IS 
Readout Rate (ISRR) can be defined in % as the ratio 

𝐼𝑆𝑅𝑅 = 100. ቀ
௅

ெ.ே
ቁ, where L is the number of luminance levels. 

ISSR is 100% for a standard IS (all the pixels must be read). For 
an event-driven IS, the readout rate depends on the image itself 
but is usually two orders of magnitude less. In Figure 7, an 
example is given with a readout rate modulated by the number 
of image gray levels. This excellent readout rate has to be 
mitigated in practice for a real architecture because it does not 
take into account the effects of the arbitration tree or the 
verification phase when no arbiter is used. Nevertheless, the 
advantage of this approach remains important in term of 
throughput. 

 
Figure 7: readout rate obtained with an event-based reading 
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E. Advanced Asynchronous Vision Image Sensors  
The bitstream grabbed from a TFS matrix drastically reduces 

the data throughput because the spatial redundancies are 
cancelled. This helps a lot lowering the IS power consumption. 
Indeed, less data means less computing, less storage and less 
data transmission. As suggested previously, this can further be 
enhanced by a partial activation of the TFS bitstream thanks to 
the addition of DVS pixels triggering TFS pixels. The temporal 
redundancy is defined as the same pixel value in two 
consecutive video frames at the same location. The difference 
between a standard camera bitstream and a DVS bitstream is 
seen on Figure 8. A lot of pixels do not have a sufficient 
luminance variation for generating a request, even in such a 
dynamic video scene.  The threshold for detecting a luminance 
variation is also a parameter for controlling the IS bitstream 
throughput.   

 
Figure 8: a standard image and its DVS  counterpart 

 Therefore, if a pixel or a small matrix of TFS pixels  are 
activated by a DVS pixel, the throughput of the IS bitstream will 
drop again. Indeed, the data coming from the IS will become 
sparse. All these refinement are favorable to power reduction 
but at the price of an increased complexity, a degraded image 
quality and a reduced fill factor. Nevertheless, this increases the 
number of freedom degrees for finding an optimal architecture 
combining DVS and TFS pixels as shown on Figure 9.  

  
Figure 9: different kernels combining DVS and TFS pixels in an IS 

 The kernel (f) corresponds to a hybrid pixel combining the 
DVS and TFS functionalities. The DVS pixel does not have a 
photodiode and exploit the average photocurrent of the four 
surrounding TFS pixels. The layout of the kernel (f) is given on 
Figure 10. 

 

  
Figure 10: Kernel (f) layout 

F. Summary and Evolution of event-based IS 
The researches in event-based cameras originally pushed by 

academic laboratories have allowed the development of IS 
testchips and the creation of innovative startups such as 
IniVation [12], Insightness, CelePixel [7] and Prophesee [6]. It 
is also noticeable that Samsung has also developed a DVS 
sensor. Now the competition tends to improve the event-driven 
IS design. Indeed, it is important to reduce the pixel size and the 
data stream in order to reduce price and power consumption. 
The next steps are already paved by integrating image-
preprocessing unit inside the chip or in the package. Moreover, 
the research trends are oriented to the development of dedicated 
processing able to take advantage of such imagers. 

III. APPLICATION  TO IMAGE SEGMENTATION 
 

In order to optimize the performances of an image processing 
system, the best approach is to consider the tight relation 
between IS and image processing. These latter are 
complementary. Therefore, the bitstream produced by the event-
driven IS must be compliant with the image processing 
algorithms, especially when computing in real-time. Here, 
image segmentation is given as an almost trivial example. Image 
segmentation is the process of dividing any digital image into 
several sections also known as segments. The main purpose of 
the image segmentation is to break down and simplify the image 
content. The segmentation is later on used and analyzed to single 
out certain objects and lines within the image. Thus, the process 
of image segmentation is widely spread in applications like 
medical imaging, object detection, video surveillance and 
machine vision.  

Like many image processing algorithms, image segmentation 
is energy consuming. However, the image segmentation does 
not required extra memory accesses with event-driven IS. 
Indeed, we take advantage of the spatial redundancy 
cancelation. By opening time-windows during the image 
acquisition thanks to the request processing block (see Figure 5), 
it is possible to extract images corresponding to one or several 
time stamped values. This is nothing else than an image 
segmentation. Moreover, the number of luminance levels can be 
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modulated by controlling the TDC period and depth in the Time 
Stamping Block. In other words, decreasing the gray level 
number reduces the image sensor dataflow and vice versa. As 
we can see in Figure 11, the original image has been segmented 
by reducing first the dataflow (less  gray levels) and  windowing 
the bitstream in time for only keeping 3 gray levels. 

 
Figure 11: (a) Original image, (b) Image with a reduced number of gray 
levels, (c) Segmented image with only 3 levels of luminance 

IV. Application to Clustering 

As seen in the previous section, the nature of event data 
stream provides intrinsic advantages: temporal sparsity and low 
throughput. Contrary to frame-based sensors, the meager 
amount of events is enough to process the dynamics of the 
scene. In order to leverage these assets, adapted spatio-temporal 
algorithms must be specifically developed. Similarly, to [13], an 
event-based object-tracking algorithm is considered as a second 
example. The typical envisioned application is a low-power 
embedded system with low- computational resources exploiting 
a stationary sensor filming a moderate scene activity.  

 
A. Processing Events 

As several data representations are possible, the most suitable 
for tracking an object is probably an event-by-event processing. 
The data content of such events is the address (the pixel 
position), the timestamp and the polarity (sign of the brightness 
variation), this is a typical bitstream coming from an IS with 
DVS and TFS capabilities. Each event is independently 
processed before being dumped. Since the sensor is motionless, 
the scene background does not generate events. Only the objects 
in movement do, which makes an intrinsic object segmentation 
from the background. When an object moves in front of the 
camera, it produces events on the regions where the luminance 
is changing, generally the edges. The object edge polarity 
depends on its direction and the luminances of the object and 
background. Assuming that the object speed and size do not vary 
too quickly and that the events on the moving edges are closely 
correlated in time and space, the tracking is possible. Thus, by 
grouping said events into features, we can extract clusters from 
the edges. 
 

B. Event-by-event Clustering 
The purpose of event-by-event clustering is to track objects 

with similar attributes directly from the incoming event stream. 
This offers a lightweight solution for preprocessing, such as the 
definition of regions of interest and a simple method for object 
tracking. The clustering algorithm is composed of an event 
update method and a filtering method that removes clusters, 

which do not correspond to active objects in the scene (i.e. noise 
or inactive objects).  

The core of these methods has been introduced by 
Litzenberger et al. [14] and can be resumed as follows. For each 
incoming event, the closest cluster is searched. If the event is 
close enough (i.e. is in the influence area of the cluster), the 
attributes of the cluster are adjusted with the new information 
from the event. This change is calculated using a mean-shift 
approach where the weighted previous value is mixed to the 
event value. If no cluster is found, a new cluster is created from 
the event. Furthermore, a periodical filtering is done based on 
the cluster activity to remove insignificant clusters. The result 
of the algorithm is a list of clusters where each of them  
corresponds to a region of interest in the scene. 

Typically, a cluster is defined by its position, its size and its 
activity. The activity is derived from the time difference 
between events of the same cluster. Some improvements 
propose a decaying value such that clusters that are not activated 
anymore are filtered out. Besides, new solutions for cluster 
velocity event-based estimation can be suggested. The event 
polarity is helpful for determining the direction of the movement 
according to the edge contrast and the speed magnitude is 
proportional to the amount of events. 

 
Figure 12: Clustering results on one frame 

C. New Trends in Event-Based Image Processing 
The representation of the event data may vary for different 

applications. Furthermore, the definition of an event can be 
adapted to the IS and the processing to be done [14]. 

For instance, TFS pixels allows recovering an intensity 
(grayscale) value for each event. Therefore, events contain a 
magnitude value that is locally retrieved and can be exploited 
for further purpose [15]. Other possibilities for chromatic 
sensors could also be imagined to add coloration features in the 
processing as color is natural for human eyes. This can be 
achieved with separate event streams for color channels (see 
Marcireau et al. [16] or with enriched events with a color 
attribute [17]. Lastly, different kind of events depending on the 
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scene changing characteristics can be exploited, in particular 
events indicating the color change as proposed in [18]. These 
chromatic events could enlarge the filtering options and expand 
the possible tasks for example to classification.  

 
V. CONCLUSION AND PERSPECTIVES  

After researches on retinas made with an analog approach in 
the 90’s, the first strategies for digital retinas have appeared with 
the Dynamic Vision Sensors twenty years ago. The paper starts 
from a comprehensive overview of the pixels used in such 
imagers and especially the DVS pixels, which cancel the 
temporal redundancy. Then, the TFS pixels are described and 
the way for suppressing the spatial redundancies, when coupled 
to a dedicated readout, is explained. The digital IS architecture 
and the readout system are detailed in order to have a clear 
understanding of their advantages and limitations. The bitstream 
construction is a key for benefiting of event-driven IS in term of 
data stream, low-throughput and low-power consumption. The 
text is illustrated by several figures for the sake of clarity.  

Then, the integration of preprocessing is envisioned to show 
the tight relations between the IS bitstream and the image 
processing algorithms, which should be rethought accordingly 
to the event nature of the data stream. A first trivial example 
related to image segmentation is given. In that case, the 
bitstream is particularly well suited for segmentation. The 
approach shows the efficiency of event-driven IS to implement 
an almost cost-free image segmentation. Moreover, the 
segmentation is done concurrently to the reading of the image. 
Then, a more complex clustering algorithm is presented.  It is 
shown that the event-based clustering mostly relies on the sensor 
upstream and the targeted applications downstream. The design 
of the sensor as well as the algorithm should be coordinated in 
order to benefit from the event-based approach.  

Therefore, the future IS should not developed without taking 
into account the final applications. The tendency is clearly to 
make dedicated image systems able to take advantage of the data 
stream sparsity produced by the event-based imagers. That way, 
it is possible to design specific IS for targeting characteristics 
such as low-throughput, low-power, speed, 3D imaging, motion 
detection or clustering.     
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