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Abstract—Neuromorphic event-based cameras can unlock the
true potential of bio-plausible sensing systems that mimic our
human perception. However, efficient spatiotemporal processing
algorithms must enable their low-power, low-latency, real-world
application. In this talk, we highlight our recent efforts in
this direction. Specifically, we talk about how brain-inspired
algorithms such as spiking neural networks (SNNs) can ap-
proximate spatiotemporal sequences efficiently without requiring
complex recurrent structures. Next, we discuss their event-driven
formulation for training and inference that can achieve real-
time throughput on existing commercial hardware. We also show
how a brain-inspired recurrent SNN can be modeled to perform
on event-camera data. Finally, we will talk about the potential
application of associative memory structures to efficiently build
representation for event-based perception.

Index Terms—event-based camera, brain-inspired, efficient,
spiking neural network

I. INTRODUCTION

Event-based cameras can strongly benefit the future of
real-time machine vision applications such as robotics, and
autonomous driving [1], [2] owing to their ultra-low power,
high dynamic range, high temporal resolution, and low latency.
The current state-of-the-art convolutional and recurrent neural
network-based methods, originally developed for frame-based
cameras, have demonstrated good perception accuracy on
event cameras [3]. However, these methods rely on temporal
aggregation of the events to create a frame-like dense rep-
resentation as input, thereby discarding the inherent sparsity
of event data and resulting in high computational costs.
Recent works have explored event-based processing methods
for object recognition to exploit data sparsity. These methods
adopt event-based processing to lower computational costs but
do not achieve similar performance compared to the dense
representation-based methods. This necessitates computation-
ally efficient algorithms that exploit sparsity and achieve high
accuracy. To solve these problems, we discuss the feasibility
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of using biologically plausible brain-inspired SNNs, which are
highly energy efficient compared to standard DNNs and take
the input as discrete spikes, making them ideal for event-
based data processing. Instead of capturing static frames and
transmitting them discretized in time, spiking-based models
use the continuous spike streams produced by the event sensors
at each pixel location.

This work briefly discusses the recent developments in
brain-inspired processing methods for event-based perception.
Specifically, we discuss the learning capabilities of a heteroge-
neous feedforward [4] and heterogeneous recurrent SNN mod-
els [5] and their superior performance on event-based datasets.
We also discuss the improvements in model robustness, per-
formance, and efficiency due to the heterogeneity in the hyper-
parameters. To meet the high-speed processing requirement of
the event-camera data, we discuss an event-driven SNN learn-
ing and inference framework [6] that enables near-real-time
processing performance on commercial GPU hardware. Fur-
thermore, we discuss the recent developments in brain-inspired
event-camera data processing methods alternative to the SNNs.
Specifically, we explore a novel memory-augmented rep-
resentation learning framework for asynchronous and effi-
cient event-based perception–EventFormer [7], which learns
to store, retrieve and update its memory representation in the
latent form of higher-order spatiotemporal dynamics of the
events. The rest of the paper is structured as follows: Section
II discusses the existing works on SNN-based event-data
processing. Section III discusses the potential application of
heterogeneous neurons in diverse SNN architectures, followed
by their near-real-time processing in section IV. Finally, we
discuss the brain-inspired associative memory-based event-
processing in section V and conclude the study with a brief
discussion in section VI.

2023 Design, Automation & Test in Europe Conference (DATE 2023) – Focus Session	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



II. SPIKING NEURAL NETWORKS FOR EVENT-BASED
PERCEPTION

The use of Neuromorphic hardware offers energy-efficient
and low-latency processing for event-based signals. Event
cameras capture rapid brightness changes, and neuromorphic
processors consume much less energy and have lower latency
than traditional von Neumann architectures. To fully utilize
the potential of these systems, we need to adopt an event-
based processing approach where events are directly passed
between the event-based sensor and the neuromorphic proces-
sor running an event-based algorithm without any intermediate
processing or accumulation. With the increasing importance
of low-power devices in a real-world environment, such as
medical robots [8], self-driving cars [9], and drones [10],
more energy-efficient neural networks are required. How-
ever, conventional Artificial Neural Networks (ANNs) incur
a substantial computational cost. Whereas SNNs can emulate
the functionality of a biological neuron by processing visual
information with binary events, resulting in highly low-power
implementation on neuromorphic hardware [11], [12]. There-
fore, learning in SNNs is an emerging research topic since
the asynchronous and binary event has different characteristics
than the conventional float activation value of ANNs. An
event-based camera is a suitable visual input sensor for SNNs
to build efficient neuromorphic systems for real-world applica-
tions. The individual pixel of the event camera generates asyn-
chronous events following the change of luminance. This bio-
plausible visual sensor has the advantage of high processing
speed, low energy consumption, and less blurring effect than
a conventional frame-based camera [13]. However, training
deep SNNs with spike events from an event camera remains
challenging. The main reason is that Leaky-Integrate-and-Fire
(LIF) neurons in SNNs diminish spike activation in deeper
layers. The sparsity in event data limits the depth of SNNs.
Most of the previous training algorithms for SNNs focus on
frame-based static images [14], [15] where they convert a static
image into a binary spike train across multiple time steps.
Therefore SNNs learn temporal dynamics from the given spike
data. Hence, She et al. [16] focus on improving the spike-
based backpropagation method in which SNNs are trained
from asynchronous event data directly. SNNs can operate
directly on the event data instead of aggregating them, and
recent works use the concept of time surfaces [17]. Escobar et
al. [18] proposed a feed-forward SNN for action recognition
using the mean firing rate of every neuron and synchrony
between neuronal firing. Other recent works [19], [20] have
used shallow SNNs to learn human action recognition using
a gradient descent-based learning mechanism by encoding
the trajectories of the joints as spike trains. Recent research
learned video activities with limited examples using this idea
of reservoir computing [21], [5]. Again, recurrent networks
of spiking neurons can be trained to achieve competitive
performance compared to DNN-based recurrent neural net-
works. Demin et al. [22] showed that using recurrence could
reduce the number of layers in SNN models and potentially

form various functional network structures. Zhang et al. [23]
proposed a spike-train level recurrent SNN backpropagation
method to train the deep RSNNs, which achieves excellent
performance in image and speech classification tasks. On the
other hand, Wang et al. [24] used the recurrent LIF neuron
model with the dynamic pre-synaptic currents and trained by
the BP based on surrogate gradient. However, such supervised
learning algorithms require a massive amount of labeled
training data for good performance. Unsupervised learning
methods, such as STDP, have shown great generalization and
trainability properties [15]. Previous works have used STDP
for training the recurrent spiking networks [25]. Several other
works have used a reservoir-based computing strategy, as
described above. Liquid State Machines [26], equipped with
unsupervised learning models like STDP [27], and BCM [28]
have also shown promising results.

III. HETEROGENEITY IN SPIKING NEURAL NETWORKS

Inspired by the biological observations, recent empirical
studies showed potential for improving SNN performance with
heterogeneous neuron dynamics [29], [4]. Current literature
primarily looks into how heterogeneity in neuronal timescales
improves the model performance. They do not study how het-
erogeneity can be leveraged to design sparse neural networks.
All these models use a uniform parameter distribution for
spiking neuron parameters and their learning dynamics. There
has been little research leveraging heterogeneity in the model
parameters and their effect on performance and generalization.
Recently, Perez-Nieves et al. [30] introduced heterogeneity
in the neuron time constants and showed this improves the
model’s performance in the classification task and makes the
model robust to hyperparameter tuning. She et al. [31] also
used a similar heterogeneity in the model parameters of a
feedforward spiking network and showed it could classify
temporal sequences. Again, modeling heterogeneity in the
brain cortical networks, Zeldenrust et al. derived a class of
RSNNs that tracks a continuously varying input online [32].
Chakraborty et al. [33] showed that heterogeneity among
the neuronal dynamics improves the memory capacity of the
model while heterogeneity in the synaptic dynamics reduces
the spiking activation of neurons and maintains memory
capacity. Hence, a heterogeneous model has a lesser firing
rate than its homogeneous counterpart.

A. Feedforward Network with Heterogeneous Neurons

A dynamical system of spiking neurons with only feedfor-
ward connections can classify spatiotemporal patterns with-
out recurrent connections. The theoretical construct of a
feedforward SNN for approximating a temporal sequence is
not well explored, making optimizing SNN architectures for
learning complex spatiotemporal patterns challenging. She et
al. [4] presented a theoretical framework for analyzing and
improving the ability of feedforward SNNs to approximate
complex spatiotemporal patterns. The authors demonstrated
that a feedforward SNN with one neuron per layer and skip-
layer connections could approximate the mapping function

 



Fig. 1: (a) The network with BPTT training, each multi-
neuron-dynamic layer contains a set of neuron dynamics from
d1 to dm. (b) The network with STDP training. Figure sourced
from [31] with the author’s permission.

between input and output spike trains on a compact domain.
Heterogeneous neurons with different dynamics and skip-
layer connections have been found to increase the number
of memory pathways in a feedforward SNN and, thus, im-
prove the SNN’s ability to represent arbitrary sequences. The
authors proposed a dual-search-space Bayesian optimization
process to optimize the architecture and parameters of the
SNN, considering heterogeneity and skip-layer connections,
to improve the learning and classification of spatiotemporal
patterns. The experimental studies on feedforward SNN for
spatiotemporal classifications showed that the basic design
principles for improving sequence approximation could be
adopted to optimize SNN architectures and improve perfor-
mance for spatiotemporal classification tasks. The complete
flowchart of the method is illustrated in Fig. 1.

B. RSNNs with Heterogeneous Neurons and Synapses

Although recent SNNs trained with supervised backpropa-
gation show classification accuracy comparable to deep net-
works, the performance of unsupervised learning-based SNNs
still needs to improve. Chakraborty et al. [5] developed a
heterogeneous recurrent SNN (HRSNN) for spatiotemporal
classification of video activity recognition tasks on event-
based datasets (DVS128 Gesture). HRSNN has heterogeneity
in both the LIF neuron parameters and STDP dynamics,
which improves the performance and enables the development
of smaller models with sparse connections and less training
data. The authors adopted unsupervised STDP learning to
train the network, which resulted in a similar performance

Fig. 2: Flowchart for the input processing and model training.
Figure sourced from [5] with the author’s permission

Models Accuracy

DNN
RG-CNN [34] 97.2
PointNet [35] 95.3

I3D [36] 96.5
Homogeneous SNN

(Supervised) Liu et al [37] 92.7

Homogeneous SNN
(Supervised)

ConvLSNN [38] 97.1
DECOLLE [39] 97.5

BPTT-Homogeneous
Recurrent SNN [4] 97.1

Heterogeneous SNN
(Supervised)

Perez et al. [30] 82.9
BPTT- Feedforward

Heterogeneous SNN [4] 98.0

BPTT-Recurrent
Heterogeneous SNN [5] 98.1

Homogeneous SNN
(Unsupervised)

GRN-BCM [40] 77.2
CMA-ES [41] 89.3

Heterogeneous SNN
(Unsupervised)

STDP-Feedforward
Heterogeneous SNN [4] 96.6

Recurrent
Homogeneous SNN [5] 90.3

Recurrent
Heterogeneous SNN [5] 96.5

TABLE I: Table shows the performance and model complexity
for DNN and Supervised and Unsupervised SNN models.
Table sourced from [4], [5] with the authors’ permission.

to state-of-the-art supervised SNNs but with fewer neurons
and connections and less training data. The study contributes
to the understanding of why heterogeneity in both neuronal
and synaptic parameters can lead to improved performance
and smaller models with less training data. It is noteworthy
that heterogeneity is a property of the human brain, thereby
making it biologically plausible.

C. Results

Incorporating heterogeneity is beneficial for designing high-
performance feedforward SNNs (with heterogeneity in only
neuronal parameters) and recurrent SNNs (with heterogeneity
in both neuronal and synaptic parameters) for classifying com-
plex spatiotemporal datasets for action recognition tasks. The
input processing and model training flowchart is shown in Fig.
2. The performance of these models on event-based datasets
(DVS-Gesture 128) is shown in Tab. I. The Table shows that
the heterogeneous HRSNN model has a much lesser average
neuronal activation than the homogeneous RSNN and the other
unsupervised SNN models. Thus, we conclude that while the
model with heterogeneity in only neuronal dynamics improves
the model performance, heterogeneity in both neuronal and
synaptic dynamics induces sparse activation and sparse coding
of information.

IV. NEAR-REAL-TIME INFERENCE WITH
HETEROGENEOUS NEURONS

Our discussion so far primarily focused on the recent
developments in sequence modeling capability, superior unsu-
pervised and spike-efficient learning capacity of the SNNs with

 



heterogeneous neuronal dynamics [5], [31], [33]. One major
challenge to their practical application is the high-speed pro-
cessing requirement of the SNNs to match the high temporal
resolution of the event cameras. On modern GPU hardware,
existing specialized software tools such as ParallelSpikeSim
[16] and BindsNet [42] have 103 frames per second processing
capability, whereas typical event-camera can generate 105

events per second [43]. These existing frameworks leverage
discrete-time formulation of the SNN processing, where a
global update to all the neurons of the network occurs at
each time step. Such formulation results in lower throughput
for highly sparse event-camera data since the processing
speed is constrained by the time-step resolution, not the event
rate. SPEED is an alternate and effective solution to this
challenge, event-driven learning, and inference framework for
event-camera data [6]. Unlike discrete-time formulation, which
suffers from inefficiency due to the lower neuronal activation
inside the network, the event-driven neuron simulation updates
only those that receive an input signal. This is achieved by
recording the exact timestamp of the past inactive, update, and
spike occurrence and the corresponding membrane potential
of each neuron. Only one neuron in layer n − 1 spikes, and
the corresponding three post-synaptic neurons in layer n are
updated. One of these three neurons’ potential exceeds the
threshold voltage and initiates the update of the next three
neurons in layer n + 1. The rest of the inactive neurons
in the network does not concur any additional computation.
Event-driven unsupervised learning is achieved by introducing
a checker function for all the pre and post-synaptic neurons
connected to the spiked neurons to keep track of the time
difference between the current time and the last spike time,
which is a crucial component of the STDP-based learning. The
number of such checker functions is typically small, thanks
to the convolution structure of the popular networks. We use
a layer-wise learning mechanism that allows the framework
to update the neurons layer by layer. This enables initiation
of either LTP or LTD depending on the synaptic type (pre
or post) of the source neuron. Fig. 3 shows the event-driven
SNN processing described in the paper, and Table II shows
the quantitative efficacy of the proposed method. On high-
performance hardware (AMD), a 6× and 167× throughput
improvement in learning and inference can be observed, re-
spectively, which is almost similar to the low-power hardware
(Intel) benchmark (6.3× in learning and 170× in inference). For
the GPU benchmark, although the improvement is relatively
smaller (3.5× in learning and 8.2× in inference), we achieve
near real-time processing performance with an inference speed
of 35320 events/second.

V. ASSOCIATIVE MEMORY: BRAIN-INSPIRED
ALTERNATIVE PARADIGM FOR EVENT-BASED PERCEPTION

While SNNs have shown remarkable efficiency in event-
camera data processing, they still lag behind the modern
dense architectures (CNN and Graph Networks) in terms of
algorithmic performance (accuracy). This is mostly due to
the lack of exact and accurate differentiability of the spiking

Fig. 3: Event-driven SNN processing where each neuron is
connected to three neurons in the next layer. (a) The update
occurs only to those neurons receiving input. (b) Event-driven
STDP learning only for those neurons connected to the spiked
neuron. Figure sourced from [7] with the author’s permission.

Single Threaded
(Intel i5-4278U)

Discrete-time
Simulation

Event-driven
Simulation

Learning Throughput 26 events/s 164 events/s
Inference Throughput 32 events/s 5424 events/s
Single Threaded (AMD Ryzen 5600X)
Learning Throughput 46 events/s 274 events/s
Inference Throughput 55 events/s 9216 events/s
GPU Parallel (NVIDIA RTX 2080Ti)
Learning Throughput 3224 events/s 11351 events/s
Inference Throughput 4325 events/s 35320 events/s

TABLE II: Processing speed comparison of discrete-time and
event-driven SNN simulation across diverse hardware plat-
forms. Table sourced from [4] with the authors permission.

operations coupled with the complex and highly sensitive
hyperparameter space. On the other hand, modern network
architectures require either temporal aggregation or redundant
computation (storing and processing past events) to process
event-camera data. More specifically, methods that employ
convolution-based operations require temporal aggregation of
the events to create a frame-like representation and adopt
existing CNN-architectures (originally designed for frame-
based data) for processing, which suffers from low-throughput,
and synchronous operation [3]. Recent works have explored
sparse alternatives to convolution, such as a graph neural
network-based approach that represents incoming events in
a spatiotemporal graph and point-cloud-based method [35]
that leverage PointNet-like architecture by treating events as a
spatiotemporal point cloud. Despite their computational effi-
ciency, they still suffer from redundant computation resulting
from storing and re-processing past events every time a new
event occurs. This is illustrated in Fig. 4. Unlike these meth-
ods, the human brains can much more efficiently perceive by
combining the immediate sensory inputs, and the past stored
patterns in the memory [44], [45]. Associative memory in the
human brain can efficiently store and retrieve such patterns
that highly correlate with sensory input. Efficient processing
for Event-based perception also requires a similar computing
paradigm that can leverage the benefits of artificial associative
memory to compute and store relevant representations from

 



Fig. 4: (a) Event-based perception algorithms. (b) Existing
methods for processing event-camera data. (c) EventFormer
with an associative memory to correlate with past events.
Figure sourced from [7] with the authors’ permission.

the past. An event can be triggered at any pixel location
depending on the object’s motion and scene dynamics. The
key algorithmic challenge is that a single event independently
does not represent useful perception unless properly correlated
with past events across space and time. As events are triggered
asynchronously, an event-based processing algorithm must
generate and maintain a higher-order representation from the
events and efficiently update that representation for each new
event to properly correlate a new event with the past events
across both space and time (Fig. 4 (a)). This necessitates
recursive processing with internal memory to store useful
information from past events. To address this challenge, we
discuss the recently proposed associative memory-augmented
event-representation learning framework [7], inspired by the
human-brain memory model. We maintain a spatiotemporal
representation associated with past events, occurring at various
pixels as the hidden states of an Associative Memory. This
enables shifting the spatiotemporal correlation from input to
the compact latent space, thereby reducing computation by
an order of magnitude. EventFormer encodes the positional
coordinates of the incoming event streams into a higher-
dimensional embedding space using a positional encoder,
followed by their higher-order interaction by computing self-
attention among the positional embeddings. Next, it retrieves
the past representation stored in the memory using a query-
key-based association. A recurrent module takes these past
states and combines them with the present states to produce
a refined representation and writes it back to the memory
for future reference. A task-specific head operates directly
on this memory representation and learns to perform the
target task (classification). Table III shows the competitive
performance of EventFormer on the NCaltech101 dataset.
Thanks to its latent-space spatiotemporal processing capabil-
ity, EventFormer achieves higher performance (accuracy and
compute efficiency) than the existing frame-based and sparse
methods.

VI. CONCLUSION

This work briefly overviews our recent efforts in devel-
oping brain-inspired spatiotemporal processing paradigms for
efficient event-based perception. We discussed how a simple
feedforward SNN could approximate complex spatiotemporal
sequences without using any recurrent structure. Our work

Methods Representation Acc. MFlops/ev
H-First [46] Spike 0.054 -

Gabor-SNN [47] Spike 0.284 -
HOTS [48] Time-Surface 0.210 54.0
HATS [49] Time-Surface 0.642 4.3
DART [50] Time-Surface 0.664 -
EST [51] Event-Histogram 0.817 4150

Matrix-LSTM [52] Event-Histogram 0.843 1580
YOLE [53] Voxel-Grid 0.702 3659
AsyNet [54] Voxel-Grid 0.745 202
EvS-S [55] Graph 0.761 11.5

AEGNN [56] Graph 0.668 0.369
EventFormer [7] Set 0.848 0.048

TABLE III: Performance comparison on NCaltech101 dataset.
Table sourced from [7] with the authors’ permission.

on event-driven processing makes it possible to achieve near-
real-time performance on event-camera data processing using
SNNs. We show that heterogeneous neuronal dynamics can
enhance the processing capability of the SNNs to enable
them to achieve better performance. Finally, we provide an
alternate formulation for event-based processing leveraging
an associative memory structure by efficiently correlating
with past events. These advancements require further research
to develop more compute-efficient processing algorithms for
event-based perception.
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