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Abstract—Since neuromorphic event-based pixels and cameras
were first proposed, the technology has greatly advanced such
that there now exists several industrial sensors, processors and
toolchains. This has also paved the way for a blossoming new
branch of AI dedicated to processing the event-based data these
sensors generate. However, there is still much debate about which
of these approaches can best harness the inherent sparsity, low-
latency and fine spatiotemporal structure of event-data to obtain
better performance and do so using the least time and energy.
The latter is of particular importance since these algorithms will
typically be employed near or inside of the sensor at the edge
where the power supply may be heavily constrained. The two
predominant methods to process visual events - convolutional
and spiking neural networks - are fundamentally opposed in
principle. The former converts events into static 2D frames such
that they are compatible with 2D convolutions, while the latter
computes in an event-driven fashion naturally compatible with
the raw data. We review this dichotomy by studying recent
algorithmic and hardware advances of both approaches. We
conclude with a perspective on an emerging alternative approach
whereby events are transformed into a graph data structure and
thereafter processed using techniques from the domain of graph
neural networks. Despite promising early results, algorithmic and
hardware innovations are required before this approach can be
applied close or within the Event-based sensor.

Index Terms—Event-camera, Edge AI, neuromorphic comput-
ing

I. INTRODUCTION

Since the late 1980’s several pioneering works have applied

the analogue properties of transistors to mimic mechanisms

such as transient gain adaptation, filtering and lateral gating

studied in the early stages of mammalian and insect visual

systems [1]–[3]. A similar line of work has also explored active

pixel sensing concepts where pixels integrate extra functionality

to locally calculate temporal pixel intensity differences [4]. This

principle was used to generate a quantity referred to as an

event [5], signalling a local relative luminosity change at a

pixel. Naturally, these two lines of research were combined [6]

and have since given rise to what we know today as event-

cameras (also often referred to as dynamic vision sensors and

silicon retinas). Relative to frame-based imaging, whereby pixel

arrays record light intensity periodically, event-based cameras

produce a sparse stream of events - each comprising an XY

pixel address, a timestamp and a polarity - generated by contrast

features moving across the field of view of a pixel. Crucially,
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this permits event-cameras to capture an unprecedentedly fine

spatiotemporal structure of motion that is lost in-between

traditional static frames.

Once generated, events are typically communicated from

the camera, using a time-multiplexed protocol called Address-

Event Representation (AER) [7], to another system that will

then use this information in a concrete application. However,

what this system should be and what algorithm will be com-

piled onto are still very much open questions. This is in large

part owed to the fact that the format of event-data differs sig-

nificantly from - as well as offers unique opportunities relative

to - the static frames that computer vision algorithms and

hardware have evolved alongside. Owing to their low-power

operation, ranging from hundreds of microwatts to some tens

of millwatts, data-driven massively compressed output (relative

to frames), and their high temporal resolution (i.e., low-latency

operation), event-cameras have significant potential in edge

computer vision and artificial intelligence applications based on

fast moving and highly dynamic visual scenes. Of course high-

framerate cameras exist with similar, sometimes even superior,

temporal performance, however they would require energy and

memory budgets significantly higher than for event-cameras [8]

and are not compatible with real-time operation at-the-edge.

A particularly exciting forward-looking goal is a multi-layer

3D-integrated smart imager chip whereby the event-camera is

tightly integrated with an AI co-processor that can operate very

effectively near the data-generating pixels. With the addition

of an extra layer to a given 2-layer BSI imager, it would be

possible to integrate AI capabilities, and in that case, specific

AI acceleration adapted to event-based processing, to achieve

in-sensor processing [9].

Historically there are two schools of thought for applying

neural networks to event-based visual data: Convolutional Neu-

ral Networks (CNNs) and Spiking Neural Networks (SNNs).

While CNNs convert events into static 2D frames, SNNs

compute in an event-driven fashion similar to the sensor.

While somewhat opposed, dedicated hardware implementations

of both approaches harness model sparsity to compute more

efficiently. In this article we briefly review recent advances in

event-cameras in section II before addressing the convolutional

versus spiking neural network dichotomy in detail in section

III. In section IV we give some perspectives on an promising

new alternative based on graph neural networks and conclude

with a discussion in section V.
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II. TRENDS IN EVENT-CAMERA TECHNOLOGIES

Event-camera technologies have rapidly undergone industri-

alization during the last decade. At the time of writing, there are

four large players in the market: Prophesee [10], Samsung [11],

Sony [10], and Omnivision [12] in addition to a host of smaller

to medium sized start-ups and academic institutions [6], [13]–

[15]. As a result, event-cameras have witnessed aggressive pixel

pitch and array size scaling as observed in Fig.1. In particular,

the incorporation of backside illuminated (BSI) processes and

3D wafer-stacking has permitted a considerable gain in the

pixel fill factor - going from around one fifth to more than

three quarters of the total area utilization - and pixel sizes

starting to approach the range of conventional global-shutter

pixels (≤5µm) [10], [11]. Steady improvements in throughput

of the array readout systems, reaching the GEPS (gigaevents

per second) range, allow to conserve the temporal precision

of the pixel events at increasing array sizes [10]. The dual

active and event pixel paradigm [13], [16] (i.e., allowing events

and image data to be recorded simultaneously) has recently

gained momentum again. While further miniaturization may

become increasingly problematic, owing to the complexity of

event-pixel circuits, alternatives based on emerging nanodevices

could provide alternative solutions. For example, perovskite

nanowires [17] and capacitors [18] as well as 2D hetrostructures

[19] have been demonstrated, at array level, to generate events

upon local illuminance changes - relying on device physics

instead of active circuits.

High-resolution sensors can have side effects, as illustrated in

[20]. Even though event sensors generate inherently sparse data,

high rates can occur, in particular when the camera undergoes

egomotion. Therefore the development of mitigation strategies

such as in-sensor down-sampling [21], electronically foveated

event-pixels [22] or centre surround [23] may be required. It

remains to be seen what factors (i.e., further latency reduction,

reduced power consumption, finer contrast sensitivity, greater

dynamic range) may be the next key drivers in the development

of the technology - these choices will most likely depend on

which event-based computing paradigm begins to gain traction

in real-world industrial scenarios.

III. THE CNN VS. SNN DICHOTOMY

A promising and flexible solution for processing event-data is

through the data-driven approach of neural networks - whereby

the parameters that define how the model processes input are

defined using a training procedure and a set of data. These

parameters may either be learned off-chip (i.e., on a GPU

server) and then transferred to the hardware system executing

the model calculations near the event-camera. Otherwise they

can be learned directly on-chip which promises to be essential

in envisaged auto-adaptive systems capable of continually up-

dating their operation to track data distribution changes and the

emergence of new classes and objects of interest.

A. Spiking neural networks

The most natural approach for processing event data would

immediately appear to be that of SNNs. They have their roots

Fig. 1. Pixel size and array size trends over the decade for event-cameras.

in early research conducted in the mid-twentieth century based

on the giant descending axon of the squid [24]. Neurons are

modelled as integrating a weighted sum of their inputs into a

dynamic state variable which often decays with a certain time

constant. Neuron models can contain up to four differential

equations, depending on the level of realism required by the

designer. The Leaky-Integrate-and-Fire (LIF) neuron uses one

equation to model the behaviour of the membrane potential

of the neuron - corresponding to a simple resistor-capacitor

circuit (Fig.2) and is the model of choice for most SNNs. Its

simple mechanisms can derive mathematical equivalence with

non-spiking neurons, are easy to implement in effective learning

frameworks and offer lighter hardware implementations. SNN

architectures most often take the form of multiple layers of LIF

neurons whose neuron state variables are updated periodically

with a certain timestep granularity (typically milliseconds).

Owing to their bio-inspired origins, the capability of SNNs to

solve problems using hand-tuned coincidence detection archi-

tectures [25], [26] and to perform bio-inspired Hebbian learning

[27] have been investigated. Although it has been extended to

reinforcement learning [28], and in limited cases to supervised

learning [29], modern SNNs are most often trained using the

surrogate gradient method [30] (Fig.2). Here, the derivative of

the spiking activation (a delta function that is zero everywhere

besides at the spiking threshold) is replaced with a smooth

function that approximates it. Loss functions based on the

membrane potential [30], firing activity [31], time-to-first-spike

[32] or temporal difference [33] of a population of neurons in

the network output layer are often used. While these approaches

may be satisfactory for off-chip learning scenarios, surrogate

gradient backpropagation is an unrealistic algorithm for on-chip

learning due to the prohibitive amount of memory that would

be required to store the activity of all neurons over a potentially

large number of timesteps. Approaches such as eligibility-

propagation [34] and event-based random feedback alignment

[31] are more realistic solutions whereby gradients can be

approximated using neuron state variables without resorting

to backpropagation. Other approaches also exist for off-chip
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learning where SNNs are obtained through the conversion of

a pre-trained neural network with continuous-valued outputs.

Non-spiking neural networks are generally easier to train and

scale better to more complex architectures such that event-

cameras may be used not only for classification, but also

for event-based segmentation and detection [35]. In order to

achieve this, the activity of a spiking neuron is used as an

approximation of a continuous value which can be achieved

through a variety of encoding formats - most commonly rate-

coding [36]. Although, this can result in excessively active

neurons and unevenness error (when actual firing rate does

not match the approximated value due to stimulation order).

Conversion based on temporal-difference coding [37] or even

by interpreting spikes as bits of digital words [38] can lead

to sparser network activities. To facilitate this conversion, the

non-spiking neurons are constrained to a low-precision integer

number and trained using the straight-through estimator [39].

The sparse and event-driven nature of SNNs offers unique

opportunities for innovative hardware design privileging low-

power and low-latency operation. Furthermore, relative to neu-

ral networks with continuous valued neurons, SNNs avoid

computing multiplications when evaluating weighted summa-

tions and instead relying on additions which require around

four times less energy [40]. SNN accelerators, also referred

to as neuromorphic processors, often group neurons in time-

multiplexed cores. These SNN cores [41] are typically com-

posed of separate neuron and synapse modules. Each contain a

memory hierarchy (i.e., SRAM, standard cell memory and reg-

ister files) which store information on the state of neurons and

synapses and special purpose arithmetic logic units to calculate

the evolving state variables of neurons and synapses. In such

approaches memory accesses dominate energy consumption -

as high as 99% of the total [42]. As a result, the fact that SNNs

rely mainly on addition operations, instead of multiplication, is

largely irrelevant. In the distributed core approach [43], each

neuron and synapse in a neural network model are compiled

onto a dedicated region of the chip - in the most extreme

case with a one-to-one correspondence with physical circuits on

the silicon. Principally this allows for the computing elements

and the memory to be brought as close together as possible

- ultimately reducing the cost of frequent memory access -

although this typically degrades neuron density and results in

a bigger silicon area and a higher cost for equivalent models.

While digital hardware will typically update the weighted sums

that are fed into the neurons in an event-driven fashion, the

update procedure for neuron state variables and for generating

neurons spikes is most often a clocked process that is triggered

at regular intervals. While event-based state updates have been

studied [44], they generally require more memory accesses,

higher complexity calculations that ultimately leads to a less

efficient implementation [42] and poor scalability. Digital neu-

romorphic processors arguably do not optimally exploit the

event-based nature of the spiking neuron. Rather, analogue

neuromorphic processors seem to be better adapted for seamless

event-based operation [45]–[47]. Like early event-cameras, the

objective is to harness the raw physical properties of transistors

to mimic neuron and synaptic dynamical processes like leaky-

integration, post-synaptic potentials, refractory behaviours and

spike-frequency adaptation [48]. Crucially, unlike in the digital

approach, time implicitly represents itself and state variables

evolve naturally using the physics of the analogue circuit.

A particularly interesting perspective is a fully-analogue sys-

tem whereby the digital memories, used in current analogue

processors, are replaced by emerging non-volatile memory

technologies. This would permit multiplication and addition

to be evaluated (using Ohm’s and Kirchoffs laws) physically

inside of the memory circuit itself [49] and for centralised

bias generating units (which define neuron parameters) to be

replaced by programmable conductance elements integrated

directly into the circuits. However, as is the case with many

analogue systems, transistor mismatch and other physical non-

idealities limit the robustness of this approach.

B. Convolutional neural networks

Like SNNs, activations (more commonly referred to as

feature maps) in CNNs are also inherently sparse - in particular

when used in combination with rectifying activation functions

[50]. Furthermore, techniques such as pruning [51] and weight

quantization [52] result in many zero-valued weights - making

the CNN itself sparse. Unlike SNNs, however, CNNs are not

immediately compatible with streaming event-data. 2D CNNs

take as input stacked 2D matrices (e.g., the three red, green and

blue channels in colour images) and therefore a pre-processing

step is required convert the stream of events into a so-called

dense-frame. The most simple solution is simply to count

the number of generated events, per pixel, during a temporal

window (typically tens to hundreds of milliseconds) [53], [54].

Negative polarity events can be subtracted from positive ones

to create a single frame, or positive and negative events can

accumulate in two separate channels (Fig.2). Some empirical

results have even shown that CNNs, using event-data in this

fashion, can achieve better performance than CNNs using

standard frames [55]. However, this effectively discards the fine

microsecond level temporal resolution of motion captured by

the sensor. Other aggregation methods aim to preserve some

of this information by making use of time surfaces [56] where

pixel intensities encode the time since each pixel last generated

an event. Some works also jointly use event counting and time

surfaces together [57] or even train a recurrent neural network

to generate frames based on the event-based input [58]. One

disadvantage of these methods is that the possibility for event-

driven computation is lost, since frames are prepared as periodic

intervals. One solution to this may be through sub-manifold

convolutions [59] whereby, as events arrive one at a time, only

a subset of calculations are performed based on determining

the active regions of affected feature maps in different layers.

One principal advantage of dense-frame CNN approaches

is that they are immediately compatible with existing, highly

optimized CNN accelerators. Such hardware typically fall into

two categories : systolic processing element arrays and zero-

skipping processors. Systolic processor arrays distribute com-

putation (i.e., convolution of specific feature maps with specific

kernels) over the array before spatially summing (between

!

!



0

0

1

2

Sparsity map

Value list = [7,4,1,3] Time

P
o

s
it

io
n rpos

rt

search volume

edges

vents

CNN

GNN

Fig. 2. Left (red) SNN: an example of the electrical circuit model of a spiking neuron and its surrogate gradient, an example of a neuromorphic spiking
processor. Centre (green) CNN: an example of how a two-channel dense-frame is constructed from a series of events, sparse CNN feature maps and kernel
weights and an example of how the feature map may be compressed. Right (blue) GNN: examples depicting how graphs are created from a set of events.

neighbouring elements) the resulting partial feature maps [60],

[61]. While achieving massive parallelization and having a

deterministic memory access pattern, they do not necessarily

exploit CNN sparsity (i.e., the zeros within the convolutional

feature maps and kernel weights) to reduce the amount of

computation. Zero-skipping CNN accelerators, on the other

hand, incorporate two main innovations to exploit CNN spar-

sity. As the name implies, the principal innovation is skipping

multiplications by zero - ideally saving clock cycles. This can

be achieved by skipping zero values in feature maps [62]

or skipping zero-valued weights [63]. Some accelerators are

capable of skipping both zeros in feature maps and weights

at the expense of an increase in complexity [64]. The second

principal innovation is the compressed format of the stored data

which helps reduce memory accesses (Fig.2). However, this

results in an inefficient non-deterministic SRAM access pattern.

To mitigate this, CNNs may be trained with a set of constraints

such that sparsity has a regular structure with reduced memory

accesses [65]. It should be noted that structured sparsity is not

only advantageous for zero-skipping but systolic processing

element arrays too, and that both approaches exploit benefit

from data reuse strategies where data is typically used several

times for single memory access [66].

IV. ARE EVENT-GRAPHS THE SOLUTION?

Recently, a third option for event-based AI using Graph Neu-

ral Networks (GNNs) [67], [68] has emerged as a contender.

GNNs can learn data sharing and feature computation aspects

in graphs. Considering a generated stream of events as a point-

cloud in two spatial and one temporal dimensions, a graph

can be constructed by, for example, connecting events through

directed edges based on their euclidean distance. Layers of

graph convolutions can then be applied in order to find in-

creasingly powerful representations for each event. Since graph

edges allow for spatiotemporal differences between events to

be incorporated into the convolutions, graph convolutions can

exploit the precise timing information captured by an event-

camera deep into a neural network. Like SNNs and recurrent

CNNs, they also naturally integrate information from the past

(and future) into their current state as new events are continually

incorporated. Event-GNNs have already outperformed dense-

frame CNNs on a variety of event-camera benchmarks in

classification [69], object detection [70], segmentation [71] and

optical-flow estimation [72] while remarkably requiring orders

of magnitude fewer neural network calculations and parameters.

Event-graphs are also inherently sparse and amenable to event-

driven operation because graph convolutions could be triggered

upon the generation of each event. Despite this early promise,

there remain numerous roadblocks that need to be removed

before event-graphs can realise their potential - in particular

there is a hardware vacuum. While dedicated GNN accelerators

have recently been proposed [73], [74] for datacenters, they are

poorly adapted for the sparse streaming nature of event-data and

low-power operation at the edge. Perhaps most problematic of

all is the latency required to incorporate events into a con-

tinuously evolving event-graph (generally based on tree-search

methods [75]) - although algorithmic innovations have already

resulted in a four order of magnitude speed-up [72] that brings

closer the possibility of real-time event-graph processing.

V. DISCUSSION

The motivation for SNNs in the papers included in this

review is, that they are sparse and event-driven and therefore

will ultimately be well suited for low-power edge AI systems.

Current SNN hardware, however, is largely clock-based, and

CNNs, due to pruning, rectifying activation functions and

weight quantization, are also highly sparse. In some cases,

the inverse is in fact true and digital CNN hardware imple-

mentations are more efficient than digital SNNs [42]. While

it may be argued that SNNs are required for tasks relying on

temporal memory, recurrent blocks can be readily incorporated

into CNNs for this purpose, too [76]. Furthermore, SNNs have

been observed to consistently exhibit a degraded performance

relative to CNNs when applied to a variety of event-camera

benchmarks [77]. This conclusion may feel somewhat unsatis-
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Near EB Sensor SNN CNN GNN

Data - Exploit temporal information ++ - ++

Data - Sparsity ++ - ++

Data - Preparation (↓) ++ + - -

Computation - Sparsity ++ + ++

Computation - # Operations (↓) + - ++

Application - Accuracy - + ++

Hardware - Maturity + ++ - -

Memory - Footprint (↓) + ++ ?

Memory - Bandwidth (↓) + - ?

System - Energy Efficiency ++ + ?

System - Configurability / Scalability - ++ ++ (?)

System - Latency (↓) ++ - ++ (?)
+ stands for ”has better metrics in”. ↓ lower is better

TABLE I
QUALITATIVE COMPARISON TABLE.

factory: How can the best way of treating event-data be through

discarding the temporal information?

In practical evaluations, CNN accelerators [62] and digital

spiking neuromorphic processors [78] exhibit power consump-

tion of the order of hundreds of milliwatts (although these vary

with network size and sparsity), while analogue spiking proces-

sors generally consume an order of magnitude less power [46].

These systems may therefore be advantageous in applications

where energy is extremely scarce and high task accuracy is of

secondary importance.

On the other hand, SNNs have the advantage of being fully

event-driven enabling low-latency systems and are immediately

compatible with the address-event representation protocols that

are already in use at the sensor. CNNs largely lack this

potential for data-driven computation that puts a lower bound

on, for example, how fast they can respond to changes in their

input data. Thus, SNN appear to be the natural choice for

exploiting the time-domain information, and consequently high

temporal resolution, of event-cameras, particularly in vision

tasks requiring optimized system response latency. SNNs may

also have a greater potential with regards to efficient on-chip

learning by exploiting event-triggered and backpropagation-

free gradient approximation techniques which are supported in

recent neuromorphic processors [41]. They may be best suited

for scenarios therefore where the system will be required to

continually learn and update its operation over time without

the possibility of off-chip retraining.

A solution to forego the above summarized conflicts may

reside in the exciting new research into event-graph neural

networks which, like SNNs, compute in an event-driven fash-

ion. Rather than discarding spatiotemporal information, event-

graphs incorporate it into their edges and use it to perform

graph convolutions and ultimately appear capable of outper-

forming CNNs with substantial reductions in memory and

calculation resources.

New neuromorphic event-graph hardware, which does not

exist today, will need to be developed in order for this elegant

data-driven approach to fulfill its potential and we expect this

to emerge as a new active area of research in coming years.
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