
Reduce: A Framework for Reducing the Overheads
of Fault-Aware Retraining

Muhammad Abdullah Hanif, Muhammad Shafique
Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates

mh6117@nyu.edu, muhammad.shafique@nyu.edu

Abstract—Fault-aware retraining has emerged as a prominent
technique for mitigating permanent faults in Deep Neural
Network (DNN) hardware accelerators. However, retraining leads
to huge overheads, specifically when used for fine-tuning large
DNNs designed for solving complex problems. Moreover, as each
fabricated chip can have a distinct fault pattern, fault-aware
retraining is required to be performed for each chip individually
considering its unique fault map, which further aggravates the
problem. To reduce the overall retraining cost, in this work,
we introduce the concept of resilience-driven retraining amount
selection. To realize this concept, we propose a novel framework,
Reduce, that, at first, computes the resilience of the given DNN
to faults at different fault rates and with different amounts of
retraining. Then, based on the resilience, it computes the amount
of retraining required for each chip considering its unique fault
map. We demonstrate the effectiveness of our methodology for
a systolic array-based DNN accelerator experiencing permanent
faults in the computational array.

I. INTRODUCTION

Deep Neural Networks (DNNs) have emerged as a
promising set of models for solving complex problems [1].
They are now state of the art for many AI applications,
e.g., image classification, object detection and language
translation [1] [2]. However, these DNNs have high compu-
tational complexity [2]. To meet stringent performance and
efficiency constraints of real-world applications, specialized
DNN hardware accelerators, such as Eyeriss [3] and TPU [4],
are used. These accelerators are usually built using nano-scale
CMOS technology and face various reliability issues.

One of the foremost reliability concerns with nano-
scale CMOS devices is permanent faults induced due to
imperfections in the manufacturing process. Prior works, such
as [5], have shown that even a small fraction of these
faults can drastically reduce the accuracy of DNNs. Hence,
these faults render some of the fabricated chips useless,
which negatively impacts the manufacturing yield. To address
permanent faults in DNN hardware accelerators, various fault-
mitigation techniques have been proposed. For example, Kim
et al. [6] propose to bypass faulty Processing Elements (PEs)
and view a faulty array as a smaller fault-free array. Such
techniques improves the yield, but at the cost of performance
loss. Techniques like [7] propose to add redundancy such
that each redundant PE in the architecture is dedicated for
a limited region of the computing array. These techniques
also significantly impact the performance of the system, as
they employ redundancy for fault mitigation. Apart from
redundancy-based techniques, Fault-Aware Pruning (FAP) [5]
is proposed which exploits intrinsic resilience of DNNs to

pruning (zeroed weights/computations) to mitigate the effects
of permanent faults in the computational array of a systolic
array-based DNN accelerator. Fault-Aware Mapping (FAM) [8]
further improves the effectiveness of FAP by permuting the
DNN weights such that less significant weights are mapped
to the bypassed (faulty/zeroed) PEs. The main shortcoming of
these methods is that they offer fault-mitigation at the cost
of accuracy loss. To offer fault mitigation without significant
accuracy loss, Fault-Aware Pruning + Training (FAP+T) is
proposed in [5]. Fault-Aware Training (FAT) is also exploited
in [9] to mitigate permanent faults in DNN accelerators. The
above works clearly show that FAT leads to the best accuracy
results under hardware faults, and it achieves this with minimal
impact on system’s performance. Even though FAT offers the
best accuracy, it has serious limitations. Its core drawback is
that it incurs huge (re)training overheads, specifically in cases
where a DNN has to be tuned for numerous faulty chips having
distinct fault patterns. Towards this, we aim at addressing the
following challenging question: how to reduce the (re)training
overheads of FAT when a given DNN has to be tuned for
numerous chips having different fault maps.

A. Our Novel Contributions
To address the above-mentioned research question, in this

work, we present a novel framework, Reduce. The framework
mainly estimates the resilience of the given DNN to faults and
defines the amount of retraining required for each individual
faulty chip based on its fault characteristics and the resilience
characteristics of the given DNN.

II. REDUCE: PROPOSED FRAMEWORK FOR REDUCING
THE OVERHEADS OF FAULT-AWARE RETRAINING

Fig. 1 shows our proposed Reduce framework, which
receives a pre-trained DNN, a dataset, a user-defined accuracy
constraint, and fault maps of the faulty chips as input and
defines a retraining policy to efficiently generate fault-aware
DNNs for the given faulty chips. The framework first computes
the resilience of the given DNN to faults using fault-injection
experiments at different fault rates and with different levels of
retraining (Step 1). This resilience is then used in Step 2 to
select the amount of fault-aware retraining for each individual
faulty chip based on its unique fault characteristics. The
selection is performed in such a way that each output DNN
offers accuracy close to the user-defined accuracy constraint
without incurring unnecessary overheads. In the final step,
Step 3 , FAT is performed and the generated DNNs are then
distributed to their corresponding faulty chips.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Resilience
Analysis

Resilience & Epochs
vs. Fault rate1

Legend: Inputs

Steps Outputs

Fault Maps

Fault Maps

Fault Models

Constraints

Dataset

Pre-trained DNN

Amount of
Retraining for Each

Chip

Reduce Framework

Resilience-Driven
Retraining Amount

Selection

Fault-Aware
DNNs

Fault-Aware
Retraining

2

3

Fig. 1: Overview of the proposed Reduce framework

III. RESULTS AND DISCUSSION

A. Experimental Setup

To evaluate the effectiveness of the proposed technique,
we consider the case of mitigating permanent faults in the
computational array of a DNN accelerator. We consider the
modified DNN accelerator design presented in [5] with FAP
support. We assume the size of the systolic array to be
256×256. For evaluation, we built our entire framework using
PyTorch. Similar to [5], we consider a random fault injection
model for generating fault maps.

B. Resilience Trends for VGG11 trained on Cifar10 Dataset

Fig. 2a shows the impact of different levels of FAT on
the accuracy of the VGG11 at different fault rates while
Fig. 2b shows the amount of FAT required at each fault rate
to achieve a particular accuracy level. For each data point in
Fig. 2b, we repeated the experiment five times and reported
the minimum and maximum number of epochs along with the
mean. The error bars in the figure show that the use of mean
values can lead to undertraining. Therefore, we propose to use
the maximum reported values for estimating the amount of
retraining for each faulty chip, as it leads to higher confidence
that the generated model meets the accuracy constraint.

0
25
50
75

100

0 0.2 0.4 0.6 0.8

A
cc

u
ra

cy

[%
ag

e]

Fault Rate

No Re-training 0.05 Epochs
5 Epochs 10 Epochs

0

2

4

6

0 0.1 0.2 0.3 0.4 0.5

o

f
Ep

o
ch

s

Fault Rate

90% Accuracy 91% Accuracy

92% Accuracy

(a) (b)

Fig. 2: Resilience trend of VGG11 trained on Cifar10 dataset.

C. Comparison with State of the Art

To highlight the effectiveness of the proposed technique, we
compared our Reduce framework with fixed-policy retraining
method proposed in [5]. Fig. 3a and b shows the results of the
proposed methodology when employed for retraining VGG11
(trained on Cifar10) for 100 faulty chips. Fig. 3c, 3d and
3e correspond to the cases where the DNN is trained for
each faulty chip individually for a pre-specified number of
epochs. The figures show that as the amount of retraining
is increased the number of samples that meet the accuracy

0

0.1

0.2

89 91 93

o

f
Ep

o
ch

s

Accuracy

0

0.1

0.2

89 91 93

o

f
Ep

o
ch

s

Accuracy

0

0.1

0.2

89 91 93

o

f
Ep

o
ch

s

Accuracy

0

50

100

0.05 0.1 0.15 0.2%
ag

e
sa

m
p

le
s

w
it

h
 a

cc
u

ra
cy

>=

 9
1

%

Average # of Epochs

Reduce falls on
the Pareto-front

0

0.1

0.2

89 91 93

o

f
Ep

o
ch

s

Accuracy

0

0.1

0.2

89 91 93

o

f
Ep

o
ch

s

Accuracy

(a)

(b)

(c) (d) (e)

(f)

Proposed Reduce Framework Training with Fixed Epochs Accuracy Constraint

More samples meet the constraint at higher # of epochs

Fig. 3: Comparison with state of the art. (a) Results of the Reduce framework
using the maximum values from the resilience analysis for training amount
estimation. (b) Results of Reduce using mean values from the resilience
analysis. (c), (d) and (e) correspond to cases where VGG11 is trained for each
chip using fixed number of epochs. (f) A summary of the results in (a)-(e).
All the results are generated assuming 91% as the accuracy constraint.

constraint increases. The results of Fig. 3a - 3e are summarized
in Fig. 3f. The figures clearly show that the proposed Reduce
framework produces better (more robust) models with lesser
training compared to the fixed-policy techniques.

IV. CONCLUSION

In this paper, we proposed Reduce, a methodology for
reducing the overheads of fault-aware retraining when used
for tuning a given DNN for multiple faulty chips. We mainly
addressed how to compute the amount of retraining required
for tuning the given DNN for a specific faulty chip such that
the given DNN meets the user-defined accuracy constraint
without incurring high retraining overheads. The results
showed that the proposed technique could significantly reduce
the retraining cost compared to state-of-the-art methods.

ACKNOWLEDGEMENT

This work has been supported in part by the Center
for Artificial Intelligence and Robotics (CAIR), funded by
Tamkeen under the NYUAD Research Institute Award CG010,
and the Center for Cyber Security (CCS), funded by Tamkeen
under the NYUAD Research Institute Award G1104.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
p. 436, 2015.

[2] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural
networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp.
2295–2329, 2017.

[3] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible accelerator
for emerging deep neural networks on mobile devices,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp. 292–308, 2019.

[4] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance analysis of a
tensor processing unit,” in 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2017, pp. 1–12.

[5] J. J. Zhang, T. Gu, K. Basu, and S. Garg, “Analyzing and mitigating the impact
of permanent faults on a systolic array based neural network accelerator,” in 2018
IEEE 36th VLSI Test Symposium (VTS). IEEE, 2018, pp. 1–6.

[6] J. H. Kim and S. M. Reddy, “On the design of fault-tolerant two-dimensional
systolic arrays for yield enhancement,” IEEE Transactions on Computers, vol. 38,
no. 4, pp. 515–525, 1989.

[7] I. Takanami and M. Fukushi, “A built-in circuit for self-repairing mesh-connected
processor arrays with spares on diagonal,” in 2017 IEEE 22nd Pacific Rim
International Symposium on Dependable Computing (PRDC), 2017, pp. 110–117.

[8] M. A. Hanif and M. Shafique, “SalvageDNN: salvaging deep neural network
accelerators with permanent faults through saliency-driven fault-aware mapping,”
Philosophical Transactions of the Royal Society A, vol. 378, no. 2164, 2020.

[9] J. J. Zhang, K. Basu, and S. Garg, “Fault-tolerant systolic array based accelerators
for deep neural network execution,” IEEE D&T, vol. 36, no. 5, pp. 44–53, 2019.

	Select a link below
	Return to Previous View
	Return to Main Menu

