
TURBULENCE: Complexity-effective Out-of-order
Execution on GPU with Distance-based ISA

Reoma Matsuo, Toru Koizumi, Hidetsugu Irie, Shuichi Sakai, and Ryota Shioya
The University of Tokyo, Tokyo, Japan

matsuo@rsg.ci.i.u-tokyo.ac.jp, koizumi, irie, sakai@mtl.t.u-tokyo.ac.jp, shioya@ci.i.u-tokyo.ac.jp

Abstract—A graphic processing unit (GPU) is a processor that
achieves high throughput by exploiting data parallelism. We found
that many GPU workloads also contain instruction-level paral-
lelism, which can be extracted through out-of-order execution to
provide additional performance improvement opportunities. We
propose the TURBULENCE architecture for very low-cost out-of-
order execution on GPUs. TURBULENCE consists of 1) a novel
ISA that introduces the concept of referencing operands by inter-
instruction distance instead of register numbers and 2) a novel
microarchitecture that executes the novel ISA. Our proposed ISA
and microarchitecture enable cost-effective out-of-order execution
on GPUs without introducing expensive hardware.

Index Terms—GPU, microarchitecture, instruction-level-
parallelism, out-of-order execution, energy efficiency

I. INTRODUCTION

Throughput-intensive graphic processing units (GPUs) are
widely used in various fields. A typical GPU has single-
instruction multiple-data (SIMD) pipelines with many func-
tional units while minimizing the control overhead [1], [2].
One of the key features of GPUs to efficiently use these
many functional units is latency hiding through multi-threaded
execution. GPUs can hide latency by executing other threads
while instructions with long latencies are being executed. With
this multi-threading, GPUs can effectively hide long latencies
such as memory accesses and floating-point operations to
achieve high throughput [3], [4].

On such GPUs, instructions in each thread are generally
executed in-order and not out-of-order. Out-of-order execution
is widely used in high-performance CPUs because it can effec-
tively hide the latency of each instruction within a thread and
improve performance. However, out-of-order execution requires
very expensive circuits, such as renaming logic, reorder buffers
(ROB), and load-store queues (LSQ) [5]–[7]. If out-of-order
execution were implemented on GPUs, these costly units would
be needed in proportion to the number of threads, making the
circuits unrealistically large. As a result, GPUs generally focus
on hiding latency through multi-threaded execution and do not
introduce expensive out-of-order execution that hides latency
within threads.

In contrast, we found that GPU workloads also contain
available instruction-level parallelism, which can be extracted
through out-of-order execution to provide performance im-
provement opportunities. We propose the TURBULENCE ar-
chitecture, which introduces low-cost out-of-order execution
to GPUs and improves performance without compromising
energy efficiency. TURBULENCE consists of 1) a novel ISA
that introduces the concept of referencing operands by inter-
instruction distance instead of register numbers and 2) a novel

i0: %r1  ld A
i1: %r2  ld B
i2: %r3  add %r2, %r1

i0: ld A
i1: ld B
i2: add ^1, ^2

distance 1

distance 2

(a) Reg. Number-based ISA (b) Distance-based ISA

Fig. 1. (a) shows a conventional ISA that specifies source operands by register
numbers, and (b) shows the distance-based ISA that specifies source operands
by distance. In (b), ˆN indicates that the distance to the source operand is N.
Both programs have the same meaning.

i0: ld A
...
i8: mov ^8
i9: ld B
...
i16: add ^7,^8

(a) Existing Distance-based ISA

i0: %r1  ld A
...
i8 ...
i9 ld B
...
i16: add ^7, %r1

(b) Novel Hybrid ISA

th
e

m
ax

 r
ef

. d
is

ta
nc

e
of

 i
16
 (

8
in

sn
s)

re
la

y
m

ov
 is

 n
ec

es
sa

ry

di
re

ct
 a

cc
es

s

Fig. 2. Instruction sequence when the maximum reference distance is eight.
(a) The second operand of i16 refers to the result of i0, but the distance from
i16 to i0 exceeds the maximum reference distance, so i8 is inserted to relay the
result. (b) The result of i0 is directly referenced by i16 using register number
%r1, while the result of i9, which is located closer, is referenced by distance.

microarchitecture that executes the novel ISA. This distance-
based operand has the property that it does not cause any false
dependencies. Using this property, we achieve cost-effective
out-of-order execution on GPUs without introducing expensive
hardware such as a rename logic and a load-store queue. The
simulation results show that TURBULENCE improves perfor-
mance by 17.6% without an increase in energy consumption
compared to an existing GPU.

II. TURBULENCE
A. Hybrid ISA

The distance-based ISA is one originally proposed for
high-performance CPUs, which specifies operands using inter-
instruction distances instead of register numbers [6], [8]. Fig-
ure 1 shows an example of the distance-based ISA, along with
that of an existing register number-based ISA. Because of the
distance-based representation of operands, the distance-based
ISA does not produce any false dependencies, and thus register
renaming can be omitted [6], [8].

However, existing distance-based ISA can significantly in-
crease the number of instructions, which in turn can reduce
the performance. This increase is due to reasons such as the
insertion of relay instructions to refer to results generated by
distant instructions as shown in Figure 2 (a) [8].

We propose a novel hybrid ISA, which uses register numbers
instead of distances for specific operands with long reference

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Fetch

I-Cache Decode Operand
Collector

ALU

MEM

RegFile

Scheduler

I-buffer

Score
board

PC

RP

Fig. 3. The main modifications from existing GPUs are in the decoder and
scheduler.

distances as shown in Figure 2 (b). Accessing operands through
register numbers must be performed in-order, but GPUs can
effectively hide the latency by multithreading. As a result, the
number of instructions can be reduced while minimizing the
performance impact.

B. Microarchitecture

Our proposed TURBULENCE can achieve out-of-order ex-
ecution without significantly changing the microarchitecture of
existing GPUs as shown in Figure 3. The reasons for the low-
cost out-of-order execution of our method are because 1) the
GPU scheduler has a structure similar to that of the out-of-
order execution CPU scheduler [9], and 2) the distance-based
ISA enables omitting register renaming and recovering from
exception simply. TURBULENCE also solves the memory
ordering problem caused by out-of-order execution at low cost
by using existing register number-based instructions as memory
barrier instructions.

III. EVALUATION

A. Methodology

We implemented and evaluated TURBULENCE in GPGPU-
Sim 4.0.1 [10]. A GPU configuration used in the evaluation is
based on NVIDIA RTX 2060. Eight applications from CUDA
Samples [11] and Rodinia [12] were used for the evaluation.
The PTX-format code compiled from each CUDA application
was manually converted to TURBULENCE ISA. We used
GPUWattch [13] to evaluate energy consumption.

B. Results

Figure 4 shows the performance improvement of TURBU-
LENCE over BASELINE for the entire execution in each
application. TURBULENCE was measured by varying the
instruction scheduling width per thread from 2 to 16. TURBU-
LENCE outperforms BASELINE, which represents a baseline
model based on RTX 2060, by more than 5% in all benchmarks
and by 17.6% on geometric mean when the scheduling width
is eight. In the following, we evaluate the performance with a
scheduling width fixed at eight.

We evaluated the reduction in energy consumption of TUR-
BULENCE compared to BASELINE. TURBULENCE con-
sumes less energy in all benchmarks and consumes 6.1% less
energy than BASELINE on average. TURBULENCE has a
scheduler that is four times larger than that of BASELINE,
but the scheduler consumes only 0.4% of the total processor
energy consumption and does not have a significant impact.
Although the scheduler in an out-of-order CPU can consume
as much as 10% of the total processor energy [6], it has a

1

1.05

1.1

1.15

1.2

1.25

1.3

Sp
ee

du
p

ov
er

 B
AS

EL
IN

E

2 4 8 16

Fig. 4. Performance improvement with TURBULENCE when instruction
window size is varied

very small impact on GPUs in our evaluation because the
scheduler is shared among the 32-lane datapaths. In contrast,
the performance improvement significantly reduces program
execution time and static energy consumption, and thus, it
reduces the total energy consumption.

IV. CONCLUSION

We propose TURBULENCE that enables out-of-order ex-
ecution on GPUs with little additional cost. TURBULENCE
consists of 1) the novel ISA that overcomes the problems
of existing distance-based ISA by utilizing the characteristics
of GPUs and 2) the novel microarchitecture that uses almost
the same mechanisms as existing GPUs. We implemented and
evaluated TURBULENCE and showed that the proposed archi-
tecture improved performance by 17.6% and consumed 6.1%
less energy compared to a GPU with the baseline configuration.

ACKNOWLEDGMENT

This work was partilally supported by JSPS KAKENHI
Grant Numbers JP20J23642, JP20H04153, and JP20J22752.

REFERENCES

[1] NVIDIA, “NVIDIA TURING GPU ARCHITECTURE,”
2018. [Online]. Available: https://images.nvidia.com/aem-dam/
en-zz/Solutions/design-visualization/technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf

[2] AMD, “RDNA2 Instruction Set Architecture Manual,” 2020.
[Online]. Available: https://developer.amd.com/wp-content/resources/
RDNA2 Shader ISA November2020.pdf

[3] S.-Y. Lee and C.-J. Wu, “Characterizing the latency hiding ability of
gpus,” in ISPASS, 2014, pp. 145–146.

[4] Y. Arafa, A.-H. A. Badawy, G. Chennupati, N. Santhi, and S. Eidenbenz,
“Low overhead instruction latency characterization for NVIDIA gpgpus,”
in HPEC, 2019, pp. 1–8.

[5] A. Sembrant et al., “Long term parking (LTP): Criticality-aware resource
allocation in ooo processors,” in MICRO, 2015, pp. 334–346.

[6] R. Shioya and H. Ando, “Energy efficiency improvement of renamed
trace cache through the reduction of dependent path length,” in ICCD,
2014, pp. 416–423.

[7] J. Shen and M. Lipasti, Modern Processor Design: Fundamentals of
Superscalar Processors. McGraw-Hill Higher Education, 2002.

[8] H. Irie et al., “STRAIGHT: Hazardless processor architecture without
register renaming,” in MICRO, 2018, pp. 121–133.

[9] B. W. Coon, P. C. Mills, S. F. Oberman, and M. Y. Siu, “Scoreboard
having size indicators for tracking sequential destination register usage
in a multi-threaded processor,” Patent US8 225 076B1, 2012.

[10] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in ISPASS,
2009, pp. 163–174.

[11] NVIDIA, 2007. [Online]. Available: https://github.com/nvidia/
cuda-samples

[12] S. Che et al., “Rodinia: A benchmark suite for heterogeneous computing,”
in IISWC, 2009, pp. 44–54.

[13] J. Leng et al., “GPUWattch: Enabling energy optimizations in gpgpus,”
in ISCA, 2013, p. 487–498.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

