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Abstract—In this work, we propose Layer-Puzzle, a multi-
task allocation and scheduling framework for multi-core NPUs.
Based on the proposed latency-prediction model and dynamic
parallelization scheme, Layer-Puzzle can generate near-optimal
results for each layer under given hardware resources and traffic
congestion levels. As an online scheduler, Layer-Puzzle performs
a QoS-aware and dynamic scheduling method that picks the
superior version from the previously compiled results and co-
runs the selected tasks to improve system performance. Our
experiments on MLPerf show that Layer-Puzzle can achieve up
to 1.61X, 1.53X, and 1.95X improvement in ANTT, STP, and PE
utilization, respectively.

I. INTRODUCTION

The extraordinary accuracy and performance of deep neural
networks(DNNs) make them widespread in many applications,
such as autonomous driving [1] and augmented reality and
virtual reality (AR/VR) [2]. Typically, real-world scenarios,
whether in cloud AI or edge infrastructure, either face the
concurrency of multi-tenant deep learning(DL) request [3]–
[6], or invoke multiple DNN models to accomplish different
sub-tasks of an application [7], [8], and these concurrent multi-
tenant requests and multi-tasks need to be completed within a
specified deadline so that the user experience can be guaranteed.

To support the efficient execution of DNNs, a plethora of
neural processing units(NPUs) [9], [10] have been developed
and deployed in the cloud and at the edge to accelerate the
inference. However, as the scale and number of DNNs in ap-
plications continue to increase, single-core NPU can no longer
meet the performance requirement, so the multi-core NPUs
architecture has been proposed to address this problem [5], [11],
[12]. In order to utilize the computational power of multi-core
NPUs, the DNN model needs to be split into multiple parts
and mapped to multiple NPUs to accomplish the computation.
During the execution, multiple NPUs can process the models
in parallel to achieve high throughput.

When supporting multiple DNN tasks on multi-core NPUs
as in the cloud or edge servers, the resource allocation and
scheduling among multiple DNN models needs to be re-
investigated, which are critical factors that affect system perfor-
mance. To support concurrent DNN models, two representative
approaches have been proposed: temporal-sharing [4], [6], [12],
in which DNNs occupy the entire hardware resources layer by
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Figure 1. PE utilization comparison between MobileNet and Resnet18

layer and network by network, and spatial-sharing [5], [8], in
which each DNN model is allocated fixed hardware resources.
These two methods comprise the basis of accelerating multi-
task on multi-core NPUs, however, both will result in low
hardware resource utilization when individually and statically
applied. This is because there exhibits a high degree of het-
erogeneity between different DNN models, as well as between
successive layers within the same DNN model, resulting in
different hardware utilization for the same hardware resources.
For example, Fig 1 shows a PE utilization comparison between
MobileNet [13] and Resnet18 [14] layer by layer and their
average. They are both allocated 5x5 NPUs(see more details in
Sec IV-A) and scheduled in a temporal-sharing manner. Both
networks are parallelized in feature map (see more details in
Sec II-A). As shown in Figure 1, the average PE utilization
of MobileNet is lower than that of Resnet18 for the same
hardware resources. Meanwhile, we can notice that different
layers in the same network also exhibit varying PE utiliza-
tion. However, previous works ignored these differences and
assigned the network to the same or fixed resources, resulting
in low hardware utilization and system performance [4], [11],
[12]. In addition, we also observe that static or fixed allocation
methods can not achieve optimal performance in dynamically
varying traffic congestion scenarios, which is widespread while
running multi-tasks on the multi-core NPUs architecture.

Therefore, differing from previous work (see Table I for
details), we propose Layer-Puzzle, a fine-grained multi-task
allocation and scheduling framework for multi-core NPUs.
Layer-Puzzle consists of an offline compiler and an online
scheduler. When offline compiling, according to each layer’s
characteristic, Layer-Puzzle can generate near-optimal compi-
lation results suitable for varying system states. Then, based on
the detected runtime system states, Layer-Puzzle will perform a
quality of service (QoS) aware and dynamic scheduling method
that picks the superior version from the previous compiled
results and co-run the selected tasks in a spatial-sharing way.
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TABLE I
COMPARISON DETAILS OF THE RELATED WORKS

Name Allocation Method Schedule Scheme Schedule Granularity Design Goal* Hardware
Utilization% Qos Guaranteed

AI-MT [15] Fixed Temporal-sharing Model Latency, MT Low for light NNs Not mentioned
PREMA [4] Fixed Temporal-sharing Layer System Performance,MT Low YES
Planaria [5] Static Spatial-sharing Layer System Performance,MT Low YES

VELTAIR [3] Dynamic Spatial-sharing Layer Block System Performance,MT Middle YES
FGSpMt-NPU [8] Fixed Spatial-sharing Model System Performance,MT Middle Not mentioned

MAGMA [16] Fixed Spatial-sharing A minibatch of a layer System Performance,MT Middle Not mentioned
Layerweaver [6] Fixed Temporal-sharing Layer Resource Utilization, MT Low Not mentioned
NN-Baton [12] Fixed Temporal-sharing Model Energy, ST Low Not mentioned

Ours Dynamic Spatial-sharing Layer System Performance,
Resource Utili, MT High YES

* MT and ST mean supporting for multi-task and single-task workload. System performance represents the performance metrics for multi-task
systems, such as STP and ANTT.
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(a) NPU architecture (b) Multi-core NPUs architecture

Figure 2. Architecture of NPU(a) and multi-core NPUs(b)

In brief, the main contributions of this paper are as follows:
1) We found that the neglected inter-layer heterogeneity is

the main cause of low hardware utilization. Thus, we propose a
layer-wise allocation method to better balance the PE utilization
and performance speedup.

2) When online scheduling, Layer-Puzzle will detect the
runtime system states and dynamic select the proper pending
layers to execute.

3) We evaluated our framework with the MLPerf benchmark
on a multi-core NPUs platform and compared it with three
representative works. The results show that our framework can
achieve up to 1.61X, 1.53X, and 1.95X improvement in ANTT,
STP, and PE utilization, respectively.

II. BACKGROUND AND MOTIVATION

A. NPU and Multi-core NPUs

NPUs are designed to support the efficient execution of DNN
models, and most NPUs are optimized for DNN inference [9],
[10]. Fig 2(a) depicts the baseline NPU architecture(TPU [9])
in this work. It mainly consists of a systolic array that
completes the convolution computation, a weight buffer that
stores the weight, a unified buffer that stores the input feature
maps(ifmaps), and output feature maps(ofmaps). When starting
a computation, the NPU loads the data from the DRAM into the
on-chip buffer and orchestrates the data into dataflow and flow
through the PE array to complete the computation. Of all the
the described dataflows in work [17], we adopt the commonly
used output stationary as the dataflow for this paper. To meet
the growing computation needs of DNNs, researchers scale up
NPUs to multi-core architecture [5], [6], [11], [12]. A typical
multi-core NPUs architecture is shown in Fig 2(b), which is
also the baseline architecture of this work. It consists of mul-
tiple homogeneous NPUs, which are connected to routers. The
data of each NPU is transmitted through the NoC. Therefore,
when multiple NPUs execute in parallel, the data transmission

congestion on NoC and DRAM is also a considerable factor in
system performance. To utilize the computation power of multi-
core NPUs, several DNN parallelization schemes have been
proposed [11]. For a DNN layer, these parallelization schemes
partition the corresponding data dimension and assign these
sub-tiles to different NPUs for processing, which is called intra-
layer parallelism [15]. Different parallelization schemes result
in various PE utilization and data traffic, while the latency of the
latter is significantly impacted by run-time traffic congestion.
Thus, determining an optimal parallelization scheme for a layer
also requires considering the system run-time status, which is
not considered in previous work [5], [6], [11].
B. Supporting Multi-task on Multi-core NPUs

As multi-task applications that employ multiple DNNs be-
come increasingly popular, prior works have proposed some
methods to support multiple DNNs on the multi-core NPUs to
speed up computations [4]–[6], [8], [12], [15]. Table I lists the
detail of the related works, including their allocation method,
schedule scheme and granularity. According to Table I, they can
be summarized into two categories. (a) Temporal-sharing [4],
[6], [12], [15]. In this approach, each layer of the DNNs will be
allocated the entire hardware resource and is scheduled for exe-
cution in a sequential manner or interleaved with layers of other
tasks. By using the entire hardware resources, the execution
latency of a single DNN will be significantly reduced, while
the multi-core NPUs will suffer from low hardware utilization,
especially for lightweight DNNs. (b) Spatial-sharing [5], [8]. In
this method, the entire hardware resources will be allocated to
multiple DNNs for spatial co-running. The allocated resources
of each DNN will be fixed and smaller. Thus, the PE utilization
of each NPU will be improved than temporal-sharing. However,
this method still ignored the high degree of heterogeneity in
layer shape and operation exhibited in the individual DNN.
For example, in Fig 1, the PE utilization varies widely for each
layer in MobileNet. Thus, this method cannot fundamentally
solve the problem that exists in temporal-sharing.

To compensate for the shortcomings of the above methods,
researchers have proposed several improvements. Work [8]
proposed an online resource re-allocation method, but it ignored
the significant overhead of DNN online compiling caused by
resource re-allocation. MAGMA [16] developed an optimiza-
tion framework to map jobs on multiple accelerators, but it
only supports mapping one layer on a accelerator core, and
ignores compilation overhead and optimization. VELTAIR [3]
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Figure 3. Overall workflow of our Layer-Puzzle

alleviates the problem of low hardware utilization through a
layer-block granularity scheduling strategy, while the inter-layer
heterogeneity is still underutilized. In contrast, our work takes
full account of layer heterogeneity and adopts a dynamic al-
location method and layer-wise scheduling strategy to improve
hardware utilization and system performance.

III. ARCHITECTURE OF LAYER-PUZZLE

In this section, we will introduce Layer-Puzzle in detail. The
overall workflow of Layer-Puzzle is shown in Fig 3. It consists
of an offline compiler that generates compiled instructions and
data, an online scheduler for performing layer-wise and QoS-
aware multi-task scheduling in spatial-sharing manner.
A. Offline Compiler

Because of the significant overhead of DNN compilation,
DNN inference tasks are typically compiled offline and then
deployed online. The biggest challenge for the offline compiler
is to determine the optimal parallelization scheme for each layer
without knowing the run-time available resources and system
states. To solve this problem, we adopt three novel methods.

1) Analytical prediction model

To estimate the latency and PE utilization of a DNN layer
for a given hardware resource and parallelization scheme, we
design an analytical prediction model. Although previous work
[4], [15] proposed some latency prediction methods for DNNs,
they were only applicable to a single NPU scenario and did not
consider the data partition across multi-core NPUs under differ-
ent parallelization schemes and the data transmission delay over
NoC and DRAM due to traffic congestion, which accounts for
a considerable portion of the total latency [18]. Therefore, both
the computation and transmission latency are taken into account
in our prediction model. The detail of our model is illustrated
in Algorithm 1, and it shows how to estimate the total latency
of a layer in the DNN. First, given the number of allocated
NPUs #core and the parallelization scheme paralle shcme,
the algorithm will compute the partitioned data dimensions of
sub-tiles for a DNN layer. Then, according to the assigned
sub-tile of each NPU(tilesperNPU ), the height, width, and
channel of the ofmap can be calculated. With the shape of
the ofmap, we can get the number of times that ofmap will
expand on the PE array vertically and horizontally (line 4-5)
and the time required to drain the systolic array from vertical
and horizontal (line 6-7). With PXperwin, which represents
the cycles needed for one output element, the computation
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Figure 4. Optimal parallelization schemes of Googlenet under varying traffic
congestion levels

latency(C1) of this tile can be calculated (line 8-9). Line 10-
11 are calculating the memory access latency of loading input
and storing output. We equate the impact of traffic congestion
as bandwidth BW multiplied by a discount factor memfactor,
since we only need the impact of traffic congestion on total
memory access latency, so a precise and complex memory
model is cumbersome and unnecessary, and our method can
achieve a better trade-off between complexity and accuracy. At
last, the total latency of this tilesperNPU can be estimated as
shown in line 12. Based on the prediction model, the compiler
can compare the performance between different parallelization
schemes. To verify the accuracy of our prediction model, we
compare it with a multi-core NPUs platform (see in Sec IV-A).
Since memfactor is determined by the run-time system states,
here we only compare the results where neither has traffic
congestion (memfactor=1, experiment platform is occupied
exclusively). The case with traffic congestion will be discussed
in Sec III-B. We generated 8000 DNN layers with different
shapes and numbers of allocated NPUs, and every layer is
arbitrarily assigned a parallelization scheme. The results show
that the prediction latency of our model never deviated more
than 9%(average 4%) of the experiment platform.

2) Dynamic parallelization scheme
There are two major flaws that make previous work [4]–[6],

[11], [15] difficult to achieve optimal parallelization schemes.
First, they ignore the high degree of inter-layer heterogeneity
in layer shape, and thus their fixed parallelization scheme
will lead to low PE utilization for some layers. For example,
assuming that all layers adopt the fmap parallelization [11],
for later layers in the same DNN with a small ifmap size
and a large output channels, the size of the ifmap allocated
in each parallel core will be very small, occupying only a
tiny fraction of the PE array. Thus, output parallelization is a
superior choice for these layers. Second, They do not consider
the extra memory access latency caused by traffic congestion,
which can greatly impact the final latency. This is because
different parallelization schemes [11] lead to variable amount

Algorithm 1: Latency Prediction Model
1 TotalLatency = 0;
2 tilesperNPU = CalculateSubTiles(#cores, paralle scheme);
3 Hof ,Wof , Cof = OutputShape(tilesperNPU );
4 foldh = ⌈(Hof ∗Wof )/ArrayH⌉;
5 foldw = ⌈Cof/ArrayW ⌉;
6 drainh = (Hof ∗Wof − 1)%ArrayH;
7 drainw = (Cof − 1)%ArrayW ;
8 PXperwin = Hfilter ∗Wfilter ∗ Cfilter ;
9 C1 = PXperwin ∗ foldh ∗ foldw +max(drainh, drainw);

10 M1 = tilesperNPU .inputsize()/(BW * memfactor);
11 M2 = tilesperNPU .outputsize()/(BW * memfactor);
12 TotalLatency = sum(M1, C1,M2);
13 return TotalLatency
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of memory access and on-chip data communication [12]. In
high traffic congestion states, the performance of parallelization
schemes with fewer data accesses may outperform the previous
optimal one. Fig 4 shows the optimal layer-wise parallelization
scheme for Googlenet(Batch=5) at different traffic congestion
levels. Googlenet is assigned 5 NPUs and the platform’s traffic
congestion is manually configured to 3 levels. As the figure
shows, a significant proportion of layers will adopt distinct
parallelization schemes after the congestion level changes.
Thus, to overcome the above problem, we propose a dynamic
parallelization scheme to identify the optimal parallelization
strategy for DNN layers under varied traffic congestion levels.
For a DNN layer assigned with #core NPUs, we will use
our prediction model to calculate the PE utilization of different
parallelization schemes at varied congestion levels. Then, for
each congestion level, the parallelization scheme with the
highest PE utilization will be selected. Through experiments
on a large number of common networks, we find that 3
congestion levels(low, medium, and high) are sufficient to cover
most cases where the optimal parallelization scheme of the
layers will change. Thus, in this work, we set 3 congestion
levels, corresponding to memfactor being set to 0.8, 0.5,
and 0.2, respectively. Finally, each DNN layer i obtains a
set S#core

i = {s1, ..., sn} indicating selected parallelization
schemes under given #core NPUs.

3) Allocation along the Pareto frontier
With the prediction model and dynamic parallelization

scheme, we can easily obtain the optimal or near-optimal
compilation results for a given DNN model for all allocation
cases. However, simply saving all compiled versions will
result in large storage overhead(25x3 times larger on a 5x5
scale). Besides, we discovered that some compiled versions
consistently performed worse than others and were thus not
worth saving. Thus, to achieve a better trade-off between the
storage overhead and system improvement, we propose a novel
NPU allocation method, as shown in Fig 5. When compiling
each DNN, the compiler needs a nodes list that contains
the number of NPUs can be allocated to this DNN(default
value of n is the scale of the platform). When processing each
layer in the DNN, the compiler will use our prediction model
and dynamic parallelization scheme to compute PE utilization
and latency for each allocation scheme in nodes list under
different congestion levels. The latency is normalized to a single
NPU to obtain the speedup ratio. Thus, each compilation result
can be represented by a coordinate (speedup, PE utilization).
Since we have three congestion levels, the compiler will
generate three corresponding coordinate systems for each DNN
layer. After obtaining all results of a layer, the compiler will
calculate the Pareto frontier in each coordinate system. Thus,
for layer i, the compiled versions that lie on the Pareto frontier

are preserved to form the set Schemei. Collecting the Schemei
of all layers in the DNN model yields the final results. Our
experiments with numerous representative DNNs show that this
compilation method can save about 44% store overhead.

As shown in Figure 3, in addition to the detailed compi-
lation information of each layer, the compiler generates an
ExpectedProgress(EP ) for each layer, which indicates the
expected progress of the computation when reaching that layer.
EP is defined in Equation 1 and will be used in online
scheduling to calculate the task’s priority.

EP =
Operations elapsed until the current layer

Total operations of current DNN model
(1)

B. Online Scheduler

When online scheduling, Layer-Puzzle will schedule the
pending layers in each DNN to meet their QoS. First, Layer-
Puzzle calculates the priority of each DNN task. Then, based on
the detected traffic congestion level of system, it dynamically
chooses the superior version from compiled results. First, we
introduce how to detect the system traffic congestion.

1) congestion Estimator

To select the superior version from the compiled results, we
need to identify the runtime traffic congestion of the system,
that is, to determine the value of memfactor, which is equal to
ideal acess time
real access time . Because the runtime traffic congestion level of
the system is influenced by a variety of different factors, such as
the number of active cores and the characteristics of the running
layers, manully building a equation between memfactor and
these factors is complex and laborious task. Thus, we propose
a learning-based congestion estimator with light overhead. We
generate 10000 DNN layers(8000 for training, 2000 for testing)
with different shapes and numbers of allocated NPUs, and every
layer is arbitrarily assigned a parallelization scheme. Then, we
deploy them in turn on the multi-core NPUs platform(see in
Sec IV-A), while selecting arbitrary cores from the remain-
ing free cores and deploying layers with various attributes
on these cores. During the experiment, we discover that the
value of memfactor is highly connected to allocated cores
of the generated layer, memory access intensity and active
cores of the system. Thus, depending on these parameters,
we construct several regression models to predict memfactor.
The memory access intensity is represented by the inverse of
the average operational intensity [19](obtained at compilation
phase) of the running layers. Finally, the test results show
that RandomForestRegressor achieves a better accuracy(mean
absolute error=5.1%) while incurring trivial overhead. Thus, we
adopt RandomForestRegressor as the congestion estimator. For
different platforms, the congestion estimator needs to be trained
only once before it can be applied.

2) QoS-aware Scheduling

One of the main advantages of Layer-Puzzle as a scheduler
is that it performs QoS-aware scheduling, capable of assigning
an appropriate priority to each DNN task and scheduling
the proper task for execution. The detail of the schedul-
ing algorithm is shown in Algorithm 2. Whenever a layer
accomplishes its computation, the scheduler will invoke the
function SchedulingTask to obtain new pending layers to
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Algorithm 2: Multi-task Scheduling for Multi-NPUs
1 Function CalculatePriority(pendingnets):
2 for net in pendingnets do
3 Currentprogress = net.elapsedtime

net.deadline
;

4 priority = net.Expectedprogress−Currentprogress;
5 prioritylist[net] = priority;
6 return prioritylist;
7 Function SchedulingTask(Tasklist):
8 for net in Tasklist do
9 if net.notbusy then

10 pendingnets.append(net);
11 prioritylist = CalculatePriority(pendingnets);
12 sort(prioritylist);
13 for net in prioritylist do
14 for S

#corej
i in Schemenet.currentlayer do

15 if #corej > sys.freeNPUs then
16 continue;
17 memfactor = CongesEsima(sys.status,#corej);
18 s = Findbestversion(memfactor, S

#corej
i );

19 pendinglayers.append(s);
20 sys.freeNPUs − = s.#core;
21 return pendinglayers;

schedule. First, the scheduler verifies the state of each task
and determines its priority (line 9-11). The priority of a task
is defined as the difference between ExpectedProgress and
Currentprogress (line 3-5), which means that the task will
have a higher priority when the current progress is behind the
expected progress. After acquiring the priority, starting with the
highest priority task, the scheduler estimates the memfactor for
each S

#corej
i , who requires less NPUs than available resources

system has, using the congestion estimator(line 13-17). Then,
the scheduler recalculates the latency of each compiled version
and selects the one with the lowest latency(line 18). At last,
the scheduler obtains pendinglayers, a set of layers to be
scheduled. Additionally, to avoid starvation of a task, when
the number of times a task is continuously skipped scheduling
reaches a threshold(3 in our experiment), the scheduler will stop
scheduling other tasks until the system has sufficient NPUs for
this task. IV. EVALUATION

A. Experimental Setup

To show the effectiveness of our framework, we developed a
multi-core NPUs platform that consists of SCALE-sim [17], a
cycle-accurate DNN accelerator simulator, and BookSim2 [20],
a detailed cycle-accurate network-on-chip simulator. The sim-
ulation of the memory subsystem is the same as the previous
work [4]. To present the scalability of Layer-Puzzle, we set up
two scales of multi-NPUs architecture and two deadline factors
under corresponding scales. We define the deadline of each
task as (Timeisolated ∗deadline factor), where Timeisolated
refers to the task’s isolated execution time on a single NPU.
The detail of the experimental setup is shown in Table II. The
workloads we used are five representative MLPerf [21] NNs
with batch sizes of 1 and 4, and the details of each NN are
presented in Table III. To quantify the effectiveness of Layer-
Puzzle, we adopt four metrics: average normalized turnaround
time(ANTT, lower-is-better), system throughput(STP, higher-is-
better), service level agreement violated rate(SLA violated rate,
lower-is-better), and PE utilization. We set up three baselines
in our experiments: PREMA [4], a temporal-sharing multi-task

TABLE II
EXPERIMENTAL SETUP DETAILS

Parameter Value
Systolic-array dimension 32x32

PE frequency 700MHz
Dataflow output-stationary

On-chip SRAM size(unified & weight) 8 & 4MB
Multi-core NPUs scale 3x3 5x5

Deadline factor 0.4 0.2
DRAM channels 4

Bandwidth 175GB/s
Router virtual channels & Buffer size 4 & 4

TABLE III
DETAILS OF BENCHMARKS

Area Name # of layers Input size
Vision Googlenet 58 224x224x3
Vision MobileNet-v1 27 224x224x3
Vision Resnet50 54 224x224x3

Commerce NCF 6 1x1x138000
Language Transformer 891 1x1x33708

method, Planaria [5], a spatial-sharing multi-task work with
software-hardware co-design while we only apply its software
part to our platform, and VELTAIR [3], a spatial-sharing
multi-task method with layer-block schedule granularity. To
apply VELTAIR on our experimental platform, we simulated
its single-pass compilation with our compilation method and
replace its interference proxy with our congestion estimator,
while retaining its scheduling method.

B. Experimental Results

1) ANTT and STP comparison

ANTT indicates the turnaround-time slowdown of a task
when executing with other tasks compared to its isolated
execution. The comparison of the ANTT between baselines
and Layer-Puzzle under varying experiment setups is shown in
Fig 6(a) and Fig 6(e). The results demonstrate that Layer-Puzzle
can achieve the lowest ANTT across all experimental settings.
More specifically, Layer-Puzzle can achieve an average of
1.61X, 1.33X and 1.22X improvement over PREMA, Planaria
and VELTAIR across all experiments, respectively. This means
that every task can execute on the multi-NPUs platform more
efficiently and can be scheduled more fairly, thanks to our
near-optimal compilation method and QoS-aware scheduler.
In terms of STP, which quantifies accumulated single-task
progress under multi-task execution, Layer-Puzzle can achieve
the highest results in all experimental settings, as shown in
Fig 6(b) and Fig 6(f). Compared with PREMA, Planaria and
VELTAIR, Layer-Puzzle can improve STP by an average of
1.53X, 1.32X and 1.16X across all experiments, respectively.
In addition, the results also reveal that Layer-Puzzle can achieve
better system performance, including ANTT and STP, on bigger
scale multi-NPUs. With more hardware resources, temporal-
sharing method PREMA results in worse hardware utilization
for the whole DNN model. Despite Planaria and VELTAIR
can improve the system performance by co-running multi-task,
the inter-layer heterogeneity is still underutilized. In contrast,
Layer-Puzzle can obtain near-optimal compiled versions for
each layer under varying hardware resources and adopt a layer-
wise scheduling method to maximize the utilization of system
resources.
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Figure 6. ANTT, STP, PE utilization, and SLA violated rate of the baselines and Layer-Puzzle with multi-task workloads
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Figure 7. Average ANTT results under various multi-task workloads.

2) PE utilization and SLA comparison

The comparison of PE utilization between Layer-Puzzle and
the baselines under varying experimental settings is presented
in Fig 6(c) and Fig 6(g). Benefiting form the dynamic par-
allelization scheme, Layer-Puzzle can improve PE utilization
by an average of 1.95X, 1.28X, and 1.13X over PREMA,
Planaria, and VELTAIR, respectively. Fig 6(d) and Fig 6(h)
illustrate the SLA violated rate comparison between Layer-
Puzzle and baselines. With the expansion of the multi-NPU
scale, the SLA violation rate of all baselines is increasing,
while Layer-Puzzle can achieve a stable and the lowest SLA
violated rate. We find that task NCF is the reason for the high
SLA violation rate of baselines. NCF has the shortest deadline
while it has poor parallel performance on multiple NPUs. Thus,
during scheduling, PREMA schedules NCF first and assigns
all hardware resources to it, and other tasks will be halted
and delayed, resulting in high SLA violated rates. Although
Planaria and VELTAIR can mitigate the impact of NCF by co-
running other tasks, they still allocate additional needless NPUs
to NCF. Instead, Layer-Puzzle assigns NPUs to NCF along its
Pareto frontier, leaving more NPUs available for other tasks.

3) Workload sensitivity

To further verify the performance of Layer-Puzzle, we
construct various multi-task workloads from the benchmarks.
The workloads consist of different numbers of DNN models
randomly picked from Table III with varying batch sizes. We
set up 3 distinct sizes of workloads and generate 30 workloads
in total. Due to length limitations, we only show the average
ANTT results for each experimental setup, which is shown in
Fig 7. As the figure illustrates, Layer-Puzzle can obtain the
lowest ANTT under all experiments, indicating that Layer-
Puzzle can achieve better performance for different multi-task
workloads.

V. CONCLUSION
In this study, we present Layer-Puzzle, a multi-task allocation

and scheduling framework for multi-core NPUs. By leveraging

the dynamic parallelization and proper allocation scheme, it can
generate near-optimal compilation results for each DNN task.
By exploiting the fine-grained and QoS aware scheduler, Layer-
Puzzle dynamically selects superior versions from compiled
results for execution. According to the evaluation, Layer-Puzzle
can significantly improve the system performance.
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