
CR-Spectre: Defense-Aware ROP Injected
Code-Reuse Based Dynamic Spectre

Abhijitt Dhavlle∗, Setareh Rafatirad†, Houman Homayoun†, Sai Manoj Pudukotai Dinakarrao∗
∗George Mason University, Fairfax, VA, USA. †University of California Davis, Davis, CA, USA.

Email: {adhavlle, spudukot}@gmu.edu, {srafatirad, hhomayoun}@ucdavis.edu
Abstract—Side-channel attacks have been a constant threat

to computing systems. In recent times, vulnerabilities in the
architecture were discovered and exploited to mount and ex-
ecute a state-of-the-art attack such as Spectre. The Spectre
attack exploits a vulnerability in the Intel-based processors
to leak confidential data through the covert channel. There
exist some defenses to mitigate the Spectre attack. Among
multiple defenses, hardware-assisted attack/intrusion detection
(HID) systems have received overwhelming response due to its
low overhead and efficient attack detection. The HID systems
deploy machine learning (ML) classifiers to perform anomaly
detection to determine whether the system is under attack.
For this purpose, a performance monitoring tool profiles the
applications to record hardware performance counters (HPC),
utilized for anomaly detection. Previous HID systems assume that
the Spectre is executed as a standalone application. In contrast,
we propose an attack that dynamically generates variations in
the injected code to evade detection. The attack is injected into
a benign application. In this manner, the attack conceals itself
as a benign application and generates perturbations to avoid
detection. For the attack injection, we exploit a return-oriented
programming (ROP)-based code-injection technique that reuses
the code, called gadgets, present in the exploited victim’s (host)
memory to execute the attack, which, in our case, is the CR-
Spectre attack to steal sensitive data from a target victim (target)
application. Our work focuses on proposing a dynamic attack
that can evade HID detection by injecting perturbations, and
its dynamically generated variations thereof, under the cloak
of a benign application. We evaluate the proposed attack on
the MiBench suite as the host. From our experiments, the HID
performance degrades from 90% to 16%, indicating our Spectre-
CR attack avoids detection successfully.

I. INTRODUCTION

The insurgence of the side-channel attacks [1], [2], attacks
that exploit the inherent vulnerability in a system while trying
to snoop on secure sensitive applications, at an alarming
rate, is considered one of the pivotal issues. Spectre [3] is
one such recently introduced powerful exploit that targets the
vulnerability in modern branch predictors. Spectre ‘mistrains’
a branch predictor to perform legitimate operations initially,
and later, it forces an erroneous speculative execution, which
leaks sensitive data over a covert channel.

There exist detection mechanisms [4]–[8] to mitigate Spec-
tre attacks by employing machine learning (ML)-based de-
tectors, also known as Hardware-assisted Intrusion Detection
(HIDs). The seminal theme of these works [4]–[8] is to train
the ML-based detectors on the microarchitectural patterns1

of the executing applications. The performance counters can
extract different microarchitectural information regarding the

1Microarchitectural traces are obtained from the performance monitoring
unit (PMU). These features are also known as hardware performance counters.

application, such as cache-hits, cache-miss, total cycles, in-
struction count, etc. Spectre affects the branch predictor, cache,
memory-related instructions’ patterns during its execution [4],
[5]. The existing defense techniques such as [4]–[7] utilize
the affected performance counters’ patterns to differentiate an
attack and a benign application.

Traditionally, Spectre is launched as a standalone attack.
However, in a system where an adversary does not have the
permissions to execute a malicious binary as a standalone
application, there is a need to evade the conventional launch
process. Also, the HID detects and protects the system by
profiling the applications, thus guarding the system against
side-channel attacks, such as Spectre.

On the other hand, there exists a genre of attacks known as
Code-reuse attacks [9], [10], which operate by subverting the
control flow of the victim without directly manipulating the
victim application or memory. Return-oriented programming
(ROP) [10], [11] is one such example of a code-reuse attack.
The methodology of the ROP attack is to target fragments of
code, generically known as gadgets in the victim that end with
ret (return) instruction. By chaining such gadgets together,
an attacker can perform a Turing-complete manipulation to
execute malicious instructions. Hence, the attack is also known
as an ROP-chain attack. The attack redirects the program flow
to the malicious code, thus, hijacking the control flow of the
victim application. With the instruction code already existing
in the memory, victim application can be forced by ROP attack
to execute a malicious code, hence the term ‘code-reuse.’

There exist techniques that can mitigate the ROP attack,
such as Stack Canaries [12], and Address Space Layout
Randomization (ASLR) [13]. ASLR works by randomizing
the addresses in the memory. Although address randomization
can deter an ROP-attack by randomizing the address space, the
ASLR defense can be circumvented [14]–[17]. Stack Canaries
[12] is memory protection that inserts a randomly chosen
value in the stack between the local variables and return
address. When a function call returns, it checks the value for
any corruption. If the value is overwritten, the program exits
without executing further. Similar to ASLR, Stack Canaries
technique can also be evaded to launch a ROP attack.

Yet another class of defenses for thwarting Spectre attack
are InvisiSpec [18] and Context-Sensitive Fencing [19]. The
former technique works by making speculative execution
invisible to the system and other applications. It uses a specu-
lative buffer to save data from load instruction until the load is
deemed safe; later, the data is re-loaded to local caches, which
also affects the microarchitecture. The latter defense employs
a microcode customization mechanism allowing processors to

510978-3-9819263-6-1/DATE22/ c©2022 EDAA

insert fences into the dynamic instruction stream to mitigate
undesirable side-effects of speculative execution [19]. Both the
defenses are employed at software-level, inducing overheads
and require architecture level modifications [18], [19]. In
contrast, this work targets system that demonstrate machine
learning assisted mechanisms in detecting and mitigating
Spectre. And, for injecting the attack, this work exploits buffer
overflow vulnerability.

In this work, we exploit the ROP code-injection attack as
a promising methodology to launch a malicious application,
such as Spectre, that intends to steal sensitive information. The
mechanism offers the benefit of attack injection without explic-
itly writing to victim’s memory and using existing code in the
memory. Mere integration of code-reuse attack with Spectre
can be still vulnerable to the existing defense techniques [4]–
[8]. To alleviate the detection, we pivot the proposed code-
reuse Spectre (CR-Spectre) attack on the ROP injection and
dynamic adaptation to keep the malicious behavior undetected
by existing detection techniques. The dynamic adaptation in
the CR-Spectre generates perturbations, thus contaminating
the HPC generated by the host with the injected malicious
application. These dynamic patterns intend to degrade HID
performance, forcing misclassification of the attack.

The advantage of the proposed CR-Spectre compared to
other Spectre variants [3], [20], [21] is its distributed nature
and the capability to be a moving target for the defender,
especially the ML-based solutions such as [4], [5], [7], [8].
Our proposed attack is capable of extracting secret information
from an application while evading ML-based detection. This
work evaluates the proposed attack on a Hardware-based
intrusion detection system (HID) utilizing machine-learning
(ML) [4]–[6], [22], that provides inference based on unique
application traces, hardware performance counters (HPC),
rendered by hardware performance monitoring unit (PMU).

In summary, the essential contributions of this work are:

1) Propose CR-Spectre attack, capable of executing under
the cloak of a benign (white-listed) application as a
launching mechanism.

2) A dynamic attack capable of modifying microarchitec-
tural state to render the attack more robust against an
HID is introduced.

3) A thorough evaluation of the performance of CR-Spectre
under different scenarios are presented. Another aspect
is to evaluate the overhead of the proposed attack.

We present our results and evaluation of the proposed
attack and demonstrate that CR-Spectre can help degrade
HID performance, thus misclassifying benign from an attack
application. Experiments are performed using Spectre [3], and
MiBench benchmark suite [23]. In our experiments, the HID
performance degrades from 90% to 16%, indicating our CR-
Spectre attack evades detection successfully.

II. PROPOSED CR-SPECTRE ATTACK

A. Threat Model
There exists an adversary that intends to steal secret data

from an application that processes sensitive data. The adver-

sary employs attack code to steal secret data from the target
application (target). The exploited victim (host application) is
the application into which the adversary injects the attack -
the attack refers to CR-spectre - and the intention is to steal
data from the target application (target). For the demonstration
of the attack, we keep the secret as an array that is stored in
the host application; the host never accesses the secret. The
CR-Spectre attempts to read the secret in the array. Similar
to [3], we assume that the adversary knows the address of
the secret processed by target. The adversary has no special
or root privileges to execute the attack. CR-Spectre is tested
on HIDs that are inspired from the recent works presented
in [4]–[6], [24], all of which utilize the HPC information for
training the machine learning classifiers. CR-Spectre attempts
to inject malicious code to steal secret information from the
target while evading HID detection using perturbations. For an
ROP-chain attack to function, there needs to be a mechanism
to overflow the buffer and rewrite the stack contents. Hence,
it is a prerequisite that the host application makes a write
operation to the buffer, controlled by the adversary.

Fig. 1. CR-Spectre program flow
B. Overview of the Proposed CR-Spectre

Here, we explain the overview of the attack injection,
dynamic perturbations, and HID for detection. Figure 1 shows
the attack process flow depicting various aspects of the attack.
There are five aspects to CR-Spectre attack - host, vulnerable
code fragment, target, speculative attack code, and dynamic
perturbations. The host is the application to which the ma-
licious code (Spectre) is injected. The adversary attempts
to access the secret stored in the target application. The
vulnerable code is the host application’s code fragment that
serves as a point-of-entry for the ROP attack. The speculative
attack code exploits the vulnerability in computing systems to
access unauthorized memory locations. At the same time, the
dynamic perturbation is proposed to contaminate the victim’s
(host) and speculative attack’s HPCs to degrade HID perfor-
mance. The secret (target) is stored in the same application as
the host, sharing the memory space, but it can be contained as
a standalone application. The proposed attack is initiated with
the knowledge of the vulnerability in the host. In our case, we
utilize buffer overflow vulnerability to launch the ROP attack.

Design, Automation and Test in Europe Conference (DATE 2022) 511

The host expects a string of a certain length, and it is
stored in a buffer. The ROP attack is deployed by passing to
a host a string that exceeds the buffer’s capacity/length. This
overwrites the contents in the stack space, which corrupts the
return address of the calling function - “victim application()”
in Algorithm 1. The string passed to the host also contains
arguments that will be needed by the ‘execve’ as its argument,
for example, the address of the malicious binary. Addresses
of the ROP gadgets are also provided as the input string
to the host. Hence, the host returns to a series of gadgets
carefully chosen to make an ‘execve’ system call and inject
the malicious binary. After injecting the malicious binary,
speculative execution application, it will attempt to access the
secret in the target. The address of the secret in the target is
known to the adversary. The computing system is protected
by HID, which samples the HPCs of applications executing
on the system in runtime.

The HID can detect the speculative attack explained above
with high accuracy. Hence, it becomes necessary to conceal
the attack. We propose to conceal by introducing dynamic
perturbations. The dynamic perturbations are generated by
calling functions containing a couple of ‘if’ loops that execute
based on the values of the attack parameters (variables in
the loop). The clflush and the mfence instructions ensure
that the data is flushed each time the function executes to
cause variations in the HPC patterns. The perturbations can
be modified dynamically by varying the parameters; thus,
each generated variant producing a different HPC pattern. The
dynamic perturbation is discussed in detail in Section II-E
and Algorithm 2. With the CR-Spectre, the HPCs of both
the host and attack are contaminated, leading to performance
degradation of the HID, thus evading the defense.

C. CR-Spectre: Attack Methodology and Gadget Generation

Referring to Section I, and for conciseness, we present our
proposed CR-Spectre by considering a simple application as
shown in Algorithm 1 that stores the string provided as an
argument in the buffer. The victim application is the main
function of the host application. For our experiments, we
utilize the MiBench suite as the host; any other application
could be used as a host, as the proposed technique is not bound
to host application. We load the compiled victim binary in the
Linux Debugger (GDB) to search for all instructions that end
in a ret instruction. We then carefully chose instructions such
that by chaining them together, the ROP attack makes a system
call, executing the malicious attack. Due to Data Execution
Prevention (DEP), system-level memory protection that marks
stack and heap as non-executable, we cannot write malicious
code to the victim’s memory; an ROP-chain attack utilizes
existing code in victim’s memory to evade DEP protection.

As the existing code in memory is marked executable, the
aim is to setup the stack memory such that the sequential
execution (chain) of gadgets executes a system call, “execve”
in this case, which takes the path name of the CR-Spectre
binary as an argument. The ROP attack exploits a vulnerable
function, exploited function, to serve as an entry point for the

Algorithm 1 Pseudocode for code reuse attack on victim
1: vulnerable function(char* string) {
2: char buffer[100];
3: strcpy(buffer, string); // ROP attack injection with

buffer overflow exploit }
4: host application(int argc, char** argv) {
5: exploited function(argv[1]);
6: victim code line 2 ...
7: victim code line 3 ...
8: victim code line 4 ...
9: victim code line 5 ...

10: return 0; }

attack. However, the proposed attack with ROP-chain [9], [11]
can be extended to any victim where a return address can be
manipulated to execute a gadget.

In Algorithm 1, the buffer overflow manipulates the return
address, replacing it with an address of a gadget. Likewise,
all the addresses of the necessary gadgets are provided as
arguments to the vulnerable function, thereby chaining them to
execute the CR-Spectre binary using the system call. A binary
compiled using GCC has various other libraries linked with it,
thus providing more gadgets than available only with the host.
With sufficient gadgets, there exist innumerable possibilities of
what could be executed within the victim [11]. The content
of the argument, as shown in Listing 1, is 108 bytes (0x6C)
of random data (all ‘D’s along with four bytes of ‘FFFF’
used to fill the buffer), followed by the address of execve
function, followed by four bytes (ABCD), finally followed by
the address of the Spectre binary.

Listing 1. Attack payload passed as argument for ROP attack
. / v i c t i m f u n c t i o n ” $ (py thon −c ’ p r i n t ”D”*0x6C
+ ”FFFF” + ” a d d r e s s o f sys tem ”
+ ”ABCD” + ” a d d r e s s o f a t t a c k f u n c t i o n ” ’) ”

For conciseness, we omit to show all the addresses of the
gadgets accessed before finally making the system call. A
working example of the code-reuse ROP attack is available on
our anonymous repository2. The argument essentially fills in
all the space in the buffer, shown in Algorithm 1, overwrites
the return address to the address of the gadget in memory,
address of the second gadget in the chain, and so on. Finally,
it is followed by the “execve” gadget address and the address
of the CR-Spectre binary executable, which is external to the
host application. Hence, the host can execute a malicious code
without writing to its memory, utilizing the gadgets already in
the memory. The attack code is not contained in the host’s
code segment, instead it is injected in runtime; hence the HID
cannot abort it by analyzing offline.

D. Attacking HID

Figure 2(a) shows how CR-Spectre attacks the HID. The
CR-Spectre code is injected3 into the host application. During
execution, the application is profiled by the detector to record
performance counters in runtime [4], [5], [7]. The HID moni-
tors the recorded traces, and inference is provided - attack or
benign. The decision is measured in terms of accuracy over

2https://github.com/hartanonymous3512/CR-Spectre
3Injection refers to the ROP attack that subverts the control of the host

application forcing it to execute a malicious code.

512 Design, Automation and Test in Europe Conference (DATE 2022)

Algorithm 2 Pseudocode for generating dynamic perturba-
tions for the CR-Spectre attack
1: void perturb() {
2: int a =11, b=6;
3: for(i=0;i<10;i++) {
4: if(i < a) {
5: cflush(address(a));
6: mfence();
7: a = a+50; }
8:
9: if(i < b) {

10: cflush(address(b));
11: mfence();
12: b = b+10;
13: cflush(address(b));
14: mfence();
15: b = b-10; }
16:More loops can be added here......
17: }
18: }

time. The HID performance is discussed in Section III. For
an HID, a higher accuracy refers to distinguishing between
benign and attack situations more accurately. The purpose of
the proposed CR-Spectre is to degrade the performance of
the HID to evade detection. Figure 2(b),(c) visually present
the difference between traditional Spectre and CR-Spectre. In
(b), the adversary exploits attack code to steal secret data
from the target application. On the contrary, as shown in
(c), CR-Spectre injects the malicious code in a host (benign)
application and executes it under the umbrella of the host.

Fig. 2. (a) Code injection of Spectre attack to evaluate HID performance, (b)
Traditional Spectre attack strategy, (c) CR-Spectre attack strategy

E. Defense-aware Dynamic Perturbation Generation

With the previously explained attack methodology, there can
exist scenarios where the attack cannot evade the detection
because the HID can learn, online learning or retraining, or
the application can be tagged as an attack by the human-
in-the-loop. Online learning type HIDs are retrained on the
augmented dataset, the profiled HPC patterns of the appli-
cations during the runtime for robust threat detection. To add
better evasion despite having online learning capable HIDs, we
propose dynamicity in the CR-Spectre attack injected through
ROP discussed in Section II-C. This affects the microarchi-
tectural behavior of the application such that the monitored
information by the HID can be different from the traces on
which the HID is trained.

Figure 3 shows the process of the attack and generation of
perturbed variations. CR-Spectre generates a perturbed version
of the speculative attack code and injects it into the host. The
applications, benign and the CR-Spectre attack, are profiled to
record performance counters (HPCs). The profiled traces are

Fig. 3. Process flow of the ROP attack and generation of perturbed code
fed to the ML-based HID. The HID provides the inference
with a certain accuracy, indicating if the attack is detected or
not. For the attack to evade the HID detector, we consider
accuracy of 55% or less. Suppose the HID inference result
accuracy is less than 55%. In that case, the attack successfully
degrades the detector performance while the malicious attack
steals secret data from the target. If the HID detects the
attack with high accuracy (>80%), we consider that the attack
was detected. The HID performs realtime profiling of the
applications executing on the system [4], [5], [7].

Upon detecting the CR-Spectre attack, we modify the per-
turbation code’s parameters to generate a variant, the HPC
traces of which differ from the previous variant. A variant is
generated by modifying the attack parameters like the loop
count and operation variables, ‘a’ and ‘b’, as shown in Line 2
of Algorithm 2. The parameters are utilized in the algorithm as
shown in Lines 4, 7, 9, 12, 15, 17, 20, and 23. The parameters
affect the clflush instruction; hence it varies the HPC patterns
as well. With different attack parameters, the generated HPC
patterns are modified. The attack process is repeated to steal
secrets from the target. The benign applications running on the
system are also profiled and fed to the HID. This is necessary
because, in a real-world situation, the system executes multiple
applications. Hence, we profile applications like browsers, text
editors, etc., and train the HID to emulate a practical situation.
The code shown in Algorithm 2 is called from within the
malicious code, Spectre.

The cflush on the arithmetic operation triggers a cache miss
and affects other hardware events such as those related to
branch prediction, the number of instructions executed, and the
cache access cycles. The mfence instruction ensures that the
previous operation, clflush, completes before proceeding with
the operation below. The data recovery process is elaborated
in [3]. For conciseness, we only discussed situations where
the generated perturbations (HPC) increase in magnitude.
Nevertheless, we can use a delay loop to disperse generated
perturbations, thus distributing them in time. In this manner,
the generated HPC patterns can also reduce in magnitude.

III. RESULTS AND EVALUATION

A. Experimental setup

MiBench [23], Spectre [3] are used as the host and mali-
cious attack applications, respectively. The CR-Spectre attack
is not limited to the applications reported here, but it can
exploit other vulnerable applications, thus reading a specified
unauthorized memory location in the system. PAPI-based pro-

Design, Automation and Test in Europe Conference (DATE 2022) 513

filing tool [7] is utilized for recording the performance mon-
itoring unit’s output, hardware performance counters (HPCs).
All experiments, application profiling, ROP attacks are exe-
cuted on Ubuntu 18.04 running on an Intel i5 with 16 GB
RAM. We collect a total of 2000 samples for each class,
CR-Spectre, and host; the scope of applications profiled also
includes the host and other benign applications like browsers,
text editors, etc. The training and testing datasets are separated
in a ratio of 70/30. We evaluate HID performance on MLP
(Sklearn) [4], Neural Network (NN) from Tensorflow [5],
[6], Logistic Regression (LR) [4], [5], and a SVM [4], [5]
classifier. The HIDs’ parameters are as follows: the neural
networks have 6-layers using ‘Relu’ activation; SVM classifier
uses a linear kernel for classification; the MLP is 3-layer
network-based classifier. The parameters for the hidden layers
are determined experimentally. We choose the parameters that
deliver high accuracy in detecting CR-Spectre from other
applications profiled. Features used for the training are ‘total
cache misses’, ‘total cache accesses’, ‘total branch instruc-
tions’, ‘branch mispredictions’, ‘total number of instructions’,
and ‘total cycles’. The first five features are affected by Spectre
attack as presented in works [4], [5]. The last feature is utilized
for the IPC metric for overhead analysis.
B. Results

1) HID Performance on Spectre Detection: Figure 4 shows
the performance (accuracy) of the HID in detecting/differen-
tiating the benign (host and other applications) and Spectre
applications. The HID is inspired from [4]–[6] and utilizes
similar features for Spectre detection. The features fed to HID
are the recorded performance events (HPCs). We collect a total
of 56 performance events available on the system (offline). For
real-time monitoring of the events, a limit is imposed on the
number of events counted simultaneously. Hence, we present
the results with multiple feature sizes (1, 2, 4, 8, and 16) to
show the efficiency of the HID system deployed in this work
for Spectre detection. Figure 4 shows the performance of the
HID in differentiating MiBench and Spectre [3] applications.
We experimented with different variants of the Spectre attack,
discussed in [20], [21]. The accuracy shown in the figure is the
average of the variants of Spectre. The legend Spectre_1
indicates the performance in classification of Spectre - and
other variants averaged - and MiBench application-1 (Math
application as listed in Table I), similarly we can interpret other
legends. Performance with a few MiBench applications in
Figure 4 are shown for conciseness. As seen, accuracy of more
than 80% for feature sizes 16, 8, 4, and 2 in Spectre detection
irrespective of the MiBench application used. However, using
only one feature for classification is inefficient due to its
inability to capture the HPC variations in a single feature.
To alleviate the monitoring and computational overheads, we
consider utilizing 4 features in this work for Spectre detection
that lead to >90% accuracy on average. For the rest of the
article, we consider a feature size of 4 which can be recorded
in runtime on modern processors [5].

2) Does CR-Spectre Evade HID?: Figures 5 and 6 present
the HID performance under attack. The accuracy metric is

0

30

60

90

16 8 4 2 1

Ac
cu

ra
cy

 (%
)

Feature Size

Spectre_1 Spectre_2
Spectre_3 Spectre_4

Fig. 4. HID performance for four benign (host) applications and original
Spectre attack studied for different feature sizes

(a) (b)

86

88

90

92

94

96

1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

 (%
)

Attempt

Spectre [2] Spectre [4]
Spectre [3]-LR Spectre [3]-SVM

0

20

40

60

1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

 (%
)

Attempt

CR-Spectre [2] CR-Spectre [4]
CR-Spectre [3]-LR CR-Spectre [3]-SVM

Fig. 5. Comparison of offline-type HID performance with Spectre and CR-
Spectre attack
plotted against the number of CR-Spectre attack attempts over
time. We study two scenarios for the attack, offline and online
learning HID. The offline learning HID is a static type that
does not retrain itself (or retrained by the defender) during
runtime, i.e., similar to the [22]. On the contrary, we deploy
an online learning version of the HIDs which are retrained
during runtime on newer traces to enhance attack detection
capability on unseen data.

Figure 5 presents the offline-type HID performance for
original Spectre and CR-Spectre with HID using different
types of ML classifiers. In Figure 5(a), it is seen that the
original Spectre attack is detected with high accuracy by the
HID detector implemented with different ML classifiers. The
accuracy variations are observed due to the variations in the
recorded HPC traces during each attack attempt. Whereas, in
Figure 5(b), the performance of HID degrades with perturbed
instances of the attack. The accuracy shows a degrading trend
as the offline HID is employed. It is to be noted that we do not
generate dynamic perturbations for an offline-type HID. The
reason being the offline-type does not ‘learn’ or retrain itself
on newer traces. Hence, to save the overhead, CR-Spectre only
generates one variation of perturbation but does not modify the
attack parameters dynamically every time it attacks the HID.

Similarly, from Figure 6(a), it is observed that the HID
detects Spectre with high accuracy. The patterns are leveled
compared to Figure 5(a), as the online-type HID, by retraining
itself on new traces, hence becomes more robust to HPC trace
variations during the recording phase. A degrading trend is
again observed for the HID performance in Figure 6(b). The
exception is that the HID attempts to boost the detection
performance owing to retraining. Yet, with the introduced
dynamic perturbations, the CR-Spectre performs well in de-
grading the HID detection accuracy to less than 55% to the
lowest observed accuracy of 16% in our experiments. Under
the cloak of such degraded performance, the speculative attack
recovers the secret data from the target.

514 Design, Automation and Test in Europe Conference (DATE 2022)

(a) (b)

86
88
90
92
94
96

1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

 (%
)

Attempt

Spectre [2] Spectre [4]
Spectre [3]-LR Spectre [3]-SVM

0

50

100

1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

 (%
)

Attempt

CR-Spectre [2] CR-Spectre [4]

CR-Spectre [3]-LR CR-Spectre [3]-SVM

Fig. 6. Comparison of online-type HID performance with Spectre and CR-
Spectre attack

C. Overhead analysis

We perform overhead analysis of CR-Spectre by evaluating
different applications in the MiBench suite. We select instruc-
tions per cycle (IPC) as an evaluation metric. Latency is also
a metric other works [4]–[6], [22] have utilized. However, the
latency metric could be counterproductive due to system noise.
The noise is caused by other applications and the operating
system running in the background. Furthermore, IPC is also
considered as a trait of the application in determining the
presence of abnormalities or stalls in the application. We
mitigate trace fluctuations by averaging the values by iterating
the same application 100 times.

TABLE I
PERFORMANCE OVERHEAD IN EVALUATED BENCHMARKS

Benchmark Original Application CR-Spectre with CR-Spectre with
(IPC) offline-type HID (IPC) online-type HID (IPC)

Math 1.9419 1.88 1.865
Bitcount 50M 3.041 3.05 3.031

Bitcount 100M 3.052 3.051 3.041
SHA 1 0.736 0.742 0.73
SHA 2 0.814 0.819 0.80

We report IPC values for the original application (without
CR-Spectre), the offline execution of CR-Spectre, and the
online execution of CR-Spectre. The aim is to deliver perfor-
mance with negligible overhead. The overheads are reported in
Table I. For the Math application (math small and math large
applications averaged), the IPCs observed are 1.94, 1.88, and
1.865 for the original, offline, and online execution. Similarly,
for the Bitcount with 50M operations, the IPCs are 3.041,
3.05, and 3.031, respectively. And for the SHA cryptographic
algorithm, it is 0.814, 0.819, and 0.818, respectively. Again,
we average the values to cover for variations. The overhead
average for the offline-type and online type is 0.6% and 1.1%,
respectively, compared to the Spectre-only attack without
dynamic perturbations and ROP attack injection.

IV. COUNTERMEASURES

It is crucial to discuss countermeasures for proposed CR-
Spectre attack to help mitigate potential security threats.
Disable clflush and mfence instructions for non-privileged pro-
cesses, thus disabling dynamic perturbations; Accompanying
automatic HID detection with manual inspection of processes
that might be vulnerable to ROP/Buffer-overflow exploits;
Using a shadow memory -only accessible to the operating
system - to compare and correct when return address manip-
ulation takes place. However, further analysis and verification
is needed to evaluate robustness against the proposed attack.

V. CONCLUSION

In this work, we proposed a novel ROP Injected Code-
Reuse-based Spectre, CR-Spectre. The CR-Spectre exploits
the ROP attack and the speculative execution vulnerability to

inject malicious code in the host application. The malicious
code is intended to steal secret data from the target application.
We presented details on generating dynamic perturbations to
evade HID defense. We discussed and evaluated HID detector
performance in different scenarios. The proposed CR-Spectre
was assessed on the online and offline type HIDs as well.
With CR-Spectre, the HID performance is observed to degrade
from 90% to 16% on an average. Based on the experimental
results and evaluation, we conclude that CR-Spectre delivers
high performance in degrading the HID system, yet posing
negligible overhead, 0.6% for offline and 1.1% for the online-
type, on the overall performance of the host application.

REFERENCES

[1] A. Dhavlle et al., “Entropy-shield: Side-channel entropy maximization
for timing-based side-channel attacks,” in International Symposium on
Quality Electronic Design (ISQED), 2020.

[2] A. Dhavlle et al., “Imitating functional operations for mitigating side-
channel leakage,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2021.

[3] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in
Symposium on Security and Privacy (SP), 2019.

[4] C. Li et al., “Online detection of spectre attacks using microarchitectural
traces from performance counters,” in Computer Architecture and High
Performance Computing, 2018.

[5] B. A. Ahmad, “Real time detection of spectre and meltdown attacks
using machine learning,” 2020.

[6] J. Depoix et al., “Detecting spectre attacks by identifying cache side-
channel attacks using machine learning,” Advanced Microkernel Oper-
ating Systems, p. 75, 2018.

[7] M. Chiappetta et al., “Real time detection of cache-based side-channel
attacks using hardware performance counters,” Appl. Soft Comput.,
vol. 49, 2016.

[8] M. Alam et al., “Performance counters to rescue: A machine learning
based safeguard against micro-architectural side-channel-attacks,” Cryp-
tology ePrint Archive, Report 2017/564, 2017.

[9] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Conf. on Computer and
Communications Security, 2007.

[10] A. Bhattacharyya et al., “Smotherspectre,” SIGSAC Conference on
Computer and Communications Security, Nov 2019.

[11] R. Roemer et al., “Return-oriented programming: Systems, languages,
and applications,” vol. 15, no. 1, 2012.

[12] T. H. Dang et al., “The performance cost of shadow stacks and stack
canaries,” in Symposium on Information, Computer and Communications
Security, 2015.

[13] P. Bania, “Security mitigations for return-oriented programming attacks,”
CoRR, 2010.

[14] G. F. Roglia et al., “Surgically returning to randomized lib(c),” in 2009
Annual Computer Security Applications Conference, 2009, pp. 60–69.

[15] A. Sotirov et al., “Bypassing browser memory protections,” in In
Proceedings of BlackHat, 2008.

[16] https://www.computerworld.com/article/2516793/hacker-busts-ie8-on-
windows-7-in-2-minutes.html.

[17] D. Evtyushkin et al., “Jump over aslr: Attacking branch predictors to by-
pass aslr,” in International Symposium on Microarchitecture (MICRO),
2016, pp. 1–13.

[18] M. Yan et al., “Invisispec: Making speculative execution invisible in the
cache hierarchy,” in (MICRO), 2018.

[19] M. Taram et al., “Context-sensitive fencing: Securing speculative exe-
cution via microcode customization,” in ASPLOS, 2019, p. 395–410.

[20] E. M. Koruyeh et al., “Spectre returns! speculation attacks using the
return stack buffer,” in WOOT, 2018.

[21] V. Kiriansky et al., “Speculative buffer overflows: Attacks and defenses,”
CoRR, 2018.

[22] T. Zhang et al., “Cloudradar: A real-time side-channel attack detection
system in clouds,” in RAID, 2016.

[23] M. R. Guthaus et al., “Mibench: A free, commercially representative
embedded benchmark suite.” USA: IEEE Computer Society, 2001.

[24] C. Li et al., “Detecting malicious attacks exploiting hardware vulnera-
bilities using performance counters,” in COMPSAC, 2019.

Design, Automation and Test in Europe Conference (DATE 2022) 515

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

