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Abstract—To meet latency and privacy requirements, resource-
hungry deep learning applications have been migrating to the
Edge, where IoT devices can offload the inference processing to
local Edge servers. Since FPGAs have successfully accelerated
an increasing number of deep learning applications (especially
CNN-based ones), they emerge as an effective alternative for
Edge platforms. However, Edge applications may present highly
unpredictable workloads, requiring runtime adaptability in the
inference processing. Although some works apply model switching
on CPU and GPU platforms by exploiting different pruning rates
at runtime, so the inference can adapt according to some quality-
performance trade-off, FPGA-based accelerators refrain from
this approach since they are synthesized to specific CNN models.
In this context, this work enables model switching on FPGAs
by adding to the well-known FINN accelerator an extra level
of adaptability (i.e., flexibility) and support to the dynamic use
of pruning via fast model switch on flexible accelerators, at the
cost of some extra logic, or via FPGA reconfigurations of fixed
accelerators. From that, we developed AdaFlow: a framework
that automatically builds, at design time, a library from these
new available versions (flexible and fixed, pruned or not) that
will be used, at runtime, to dynamically select a given version
according to a user-configurable accuracy threshold and current
workload conditions. We have evaluated AdaFlow under a smart
Edge surveillance application with two CNN models and two
datasets, showing that AdaFlow processes, on average, 1.3× more
inferences and increases, on average, 1.4× the power efficiency
over state-of-the-art statically deployed dataflow accelerators.
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I. INTRODUCTION

Due to thermal and energy constraints, many IoT devices
are restricted in their processing capabilities, requiring that
computing-intensive tasks get processed elsewhere. In this
scenario, numerous IoT devices send their raw data over the
local network to Edge servers that are physically closer than the
cloud, avoiding long latency and increasing security. Convolu-
tional Neural Networks (CNNs) are a representative example of
such heavy tasks and are used for many IoT applications, like
smart video surveillance, intelligent manufacturing, smart cities,
etc. FPGA platforms, due to their performance, energy costs,
and reconfigurability, have successfully deployed these CNN
models, emerging as scalable alternatives to be integrated into
Edge servers [1–3]. However, technology scaling and hardware
improvements alone cannot push forward the current levels of
efficiency demanded by such applications [4]. Therefore, the
CNN models that lie on top of the hardware layer must be
optimized as well [5, 6].

Pruning [8] is one representative example of these optimiza-
tions. It consists in removing parts of a Deep Neural Network
(DNN) to improve performance at the cost of accuracy. Figure
1(a) illustrates this effect in a CNN. It plots the accuracy and
throughput (given in Frames per Second) of a CNN model
over pruning rates varying from 0 to 85%. As we increase the
pruned portion of the CNN, inference is processed faster as
accuracy decreases. Some CPU and GPU-based Edge platforms

Figure 1. (a) Accuracy and FPS vs. Pruning Rate for CNVW2A2 on CIFAR10
over FINN [7]. (b) Edge server’s workload and frame loss for not pruned
and pruned CNVW2A2 models switched by FPGA reconfigurations of varied
times. * Indicates the original CNVW2A2 FINN reconf. time on a ZCU104.

have been employing multiple CNN models with different
pruning rates, so they can be dynamically switched according
to the requirements at hand, which is called model switching
[5, 6]. Therefore, pruning can be exploited to enable adaptation
in highly unpredictable Edge environments with changing
workload levels, available resources, or accuracy. However,
state-of-the-art FPGA-based dataflow accelerators [7, 9], which
are specifically synthesized for one CNN model, preclude fast
model switching for FPGA-based modern Edge solutions: they
require frequent use of time-consuming FPGA reconfigurations
to switch from one accelerator to another. To better support
this claim, let us take, as an example, an FPGA-based Edge
server receiving frames from IoT devices to be processed (CNN
inference). Due to factors like FPS fluctuation [10], network
congestion [11], or variable number of connected nodes, the
rate of incoming inference requests may change over time.
Figure 1(b) shows this variance in the “workload” line, given
as the incoming FPS (left y-axis) through time (x-axis). We
simulated the following FPGA-based Edge servers (represented
by different lines): “No Pruning” that uses the state-of-the-
art FINN [7] dataflow CNN accelerator without pruning; and,
“Pruning Reconf.” that can switch pruned models and their
respective FINN accelerators by reconfiguring the FPGA with a
specific reconfiguration time and frame loss rate (right y-axis).

From Figure 1(b), we point out that switching CNN models
is mandatory since unforeseeable changes in workload require
adapting the inference processing. However, model switching
has to be fast enough so it does not undermine the overall
performance. For example, even though servers with 290ms
(purple curve) and 362ms (brown curve) switch models to
increase their throughput, their reconfiguration times cause
frame losses that are higher than using no model switching
(i.e., use the original, not pruned FINN). As the reconfiguration
time decreases, the model switching gains start to appear, and,
in an ideal scenario with no reconfiguration overhead (0ms -
orange curve), all frames would get processed, achieving zero
frame loss. While a zero-cost reconfiguration time is unrealistic,
this experiment shows that fast model switching (i.e., faster
than traditional FPGA reconfiguration times) is mandatory for
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highly unpredictable workload scenarios.
Nevertheless, enabling such extra adaptability to allow for

shorter switching times requires extra logic and power, creating
a trade-off between flexibility and efficiency for FPGA-based
dataflow accelerators. Given that, our contribution is twofold:
1) we implemented an extra level of adaptability to FINN on
top of its framework, so pruning and fast model switching
are possible. With that, flexible-pruning accelerators (i.e.,
allow for fast switching) and accelerators fixed to particular
pruned models (fixed-pruning) become available; 2) These
new versions enabled the development of AdaFlow, which
is a hybrid, two-step approach: at design time, AdaFlow
automatically generates a library composed of the now available
pruned CNN models with different resource and accuracy
profiles, and dataflow accelerators that can either support fast
model switching or model switching via FPGA reconfiguration;
at runtime, it offers a management technique that automatically
chooses the best CNN model and accelerator type from the
library to dynamically adapt the inference serving, aiming to
increase the number of processed inferences with less energy
or higher throughput, according to a configurable accuracy
threshold and current environmental workload demands.

Therefore, this work makes the following contributions:

• A dataflow-aware pruning method for generating multiple
CNN models and a novel dataflow accelerator imple-
mented on top of FINN that enables fast model switching;

• AdaFlow, a framework for adaptive inference on dataflow
accelerators, which comprises two steps: the static genera-
tion of a library of pruned CNN models with flexible and
fixed accelerators; and the dynamic exploitation of this
library by switching, at runtime, between CNN models
and accelerators to approach the best balance of accuracy,
performance, and power given a set of requirements;

• We show that AdaFlow processes, on average, 1.3× more
inferences at minor accuracy penalties, resulting in Quality
of Experience improvements of 12%, while improving
power efficiency by 1.27×, on average, when compared to
FINN accelerators deploying CNVW2A2 and CNVW1A2
CNN models on the CIFAR10 and GTSRB datasets.

II. BACKGROUND

CNN Optimizations. With millions of weights and multiply-
accumulate (MAC) operations, modern CNNs require extreme
amounts of computation and memory transfers. To enable
more efficient CNNs, works have proposed several optimiza-
tions to reduce CNN memory and computation requirements.
Compression methods like non-structured, structured pruning,
and quantization are leading examples of such optimizations.
Pruning is especially recommended when there is a need
to reduce not only the model’s memory footprint (e.g., by
quantizing weights), but also computation (i.e., number of
MACs) at inference. In particular, filter pruning is the structured
pruning technique used in this work. It removes entire filters
from the CNN weight matrices, creating no sparsity (keeping
memory access regular), which facilitates the use of the existing
hardware infrastructure. Removing filters from a convolutional
(CONV) layer also reduces the number of channels of the
output feature map. This correlation between pruned filters
and channels grant filter pruning a roughly quadratic effect on
reducing the CNN’s footprint and computations.

FPGA-Based CNN Acceleration with FINN. FPGA-based
accelerators can be divided into two groups: single-engine
(where a single convolutional engine performs all layers, one
at a time), and dataflow accelerators that rely on a pipeline-
like, feed-forward, architecture mapping each CNN layer to a

Figure 2. A sample CNN-dataflow mapping.

dedicated module [7, 9]. We adopt dataflow accelerators since
they have shown the highest performance levels compared to
the single-engine ones due to their specialization and greater
ability to explore parallelism [12]. Tools like fpgaConvNet [9]
and FINN [7] are frameworks for mapping DNNs to dataflow
accelerators on FPGA. These frameworks take a graph-based
description of a CNN to map it to a sequence of hardware
modules connected in a dataflow fashion. FINN, which is used
in this work, employs hardware modules implemented as a set
of High-Level Synthesis (HLS) template classes configured with
each layer’s parameters. Therefore, each generated dataflow
accelerator is “hard-wired” to its CNN model.

Figure 2(a) shows a mapping from a sample CNN to a
simplified FINN dataflow. FINN maps CONV layers to the
Sliding Window Unit (SWU) and Matrix-Vector-Threshold
Unit (MVTU) modules. The SWU module prepares the input
feature map to be multiplied with the weight matrix in the
MVTU, performing the actual convolution operation. Its output
corresponds to that layer’s output feature map and is fed to the
next module in the dataflow. Figure 2(b) details the FINN’s
MVTU module. Each MVTU can be configured with the
number of processing elements (PEs) and SIMD lanes, which
directly affects MVTU’s performance and resource usage. The
number of PEs and SIMD in each layer’s MVTU can be
defined by the user (through a configuration file) but are also
constrained by parameters of the CNN model, like the layer’s
number of channels and kernel size. These restrictions will
guide the pruning process presented in Subsection IV-A1.

III. RELATED WORK

To cope with the resource-hungry processing, CNN in-
ferences can be offloaded from resource-limited devices to
servers equipped with high-performance architectures, the so-
called inference serving systems. At the Edge, FPGA-based
accelerators have been largely used to accelerate inferences
[1–3], enabling HLS optimizations [13], consuming less energy
than GPU boards with equivalent accuracy [14], or even
superior performance with small accuracy drops [15]. Scylla
[1] employs an FPGA for serving CNN inferences at the
Edge, exploiting the reconfigurability capabilities of FPGAs for
Quality of Experience (QoE) optimization. In [2], the authors
exploit the regularity of inference requests for allocating and
scheduling multiple accelerators over a Xilinx ZCU104.

To further increase the performance/efficiency of inference
processing, some works have approached optimizations on
the FPGA-based accelerators. Seyoum et al. make use of
dynamic partial reconfiguration to break a FINN dataflow into
chunks and schedule them to execution on low-cost FPGAs
[16]. In [17], a toolflow for statically customizing CNNs to the
underlying dataflow is proposed. On the other hand, GPU-based
Edge platforms have employed optimizations like CNN pruning
dynamically to adapt the inference on the accuracy-resource
trade-off. ReForm [6] provides resource-aware inference mech-
anisms by reconfiguring a CNN model according to the mobile
device’s computation resource. Dynamic-OFA [5] dynamically
prunes a CNN to adapt the inference in embedded GPUs.
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Wrap-up and Our Contributions. CPU and GPU-based
inference systems have shown that adapting the inference
processing (e.g., by switching pruned CNN models) is crucial
at the Edge [5, 6]. Even though works have already shown
that pruning can be used at the design stage of FPGA-
based dataflow accelerators [17, 18], these systems have not
been able to leverage such optimizations at runtime since
they are synthesized to particular CNN models [7, 9]. In
this context, AdaFlow enhances the state-of-the-art of FPGA
dataflow accelerators with runtime flexibility, enabling fast
model switching on dataflow accelerators and enabling the
advantages of adaptive pruning at runtime.

IV. ADAFLOW

A. AdaFlow’s CNN and Dataflow Optimizations
This section details our pruning technique and our modifi-

cations to FINN. Both contributions enable the generation of
multiple pruned CNN models and the novel flexible dataflow
accelerator used in the AdaFlow framework.

1) Dataflow-Aware Pruning: To provide multiple design
points on the accuracy-resource trade-off for a single dataflow
accelerator, we propose a filter pruning mechanism that, besides
the CNN model, takes into account properties of the dataflow
accelerator. In FINN, there are two main constraints refraining
a dataflow accelerator from loading a CNN model that had
its CONV layers freely pruned: for each MVTU performing a
CNN layer, we have that the number of PEs has to be divisible
by the number of CONV filters (or neurons, in the case of a
fully-connected layer); and, the number of SIMD lanes has to
be divisible by the number of input channels. Such constraints
guarantee the correctly feeding of all PEs and SIMD lanes,
ensuring full parallelism (i.e., no idle PEs or SIMD lanes). To
build models that respect such constraints, we implemented
the Dataflow-Aware Pruning mechanism, which, starting from
an initial CNN model, prune filters to generate a pruned model
version with particular accuracy and resource profile.

For each pruned model, our Dataflow-Aware Pruning takes
an initial CNN model, a FINN configuration file (containing the
dataflow parameters), and a pruning rate (percentage specifying
how many filters to prune). Then, for every CONV layer, the
procedure attempts to prune a certain amount of filters ri in
such a way that it respects the (chout

i
− ri)mod (PEi) = 0

and (chout

i
− ri) mod (SIMDi+1) = 0 constraints, where

PEi and SIMDi+1 give the MVTU’s number of PEs and
SIMD lanes (see Figure 2(b)) of current i and next layer i+1,
respectively. chout

i gives the not-pruned number of channels
for that layer (from the initial CNN). If the constraints are not
met, the procedure iteratively decreases ri until they are met.
Dataflow-Aware Pruning leverages the filter selection proposed
in [8] that measures the relative importance of a filter in each
channel by calculating, from the floating-point representation,
the sum of its absolute weight values (�1-norm). After all
CONV layers have been pruned, the model can be retrained
and exported as an ONNX file. We call the dataflow accelerators
synthesized from pruned CNN models Fixed-Pruning since
they can only execute that particular model. AdaFlow’s pruning
is implemented on top of Brevitas [19], which is a PyTorch-
based tool for quantization-aware training from Xilinx and is
part of the FINN infrastructure.

2) Enabling Runtime Flexibility on FINN: In our work,
besides the accelerators generated from pruned CNN models
that require FPGA reconfiguration whenever a model switch
is needed, we enable fast switching of those models through
a novel dataflow accelerator, the Flexible-Pruning, so FPGA
reconfigurations are not needed. For that, we modified FINN’s

Figure 3. Loops with variable control (red shaded) in Flexible HLS templates
with channels half the channels_worstcase in both examples.

HLS classes with runtime-controllable parameters. Since the
pruning technique used by AdaFlow affects only the number
of CONV filters and its respective number of output channels,
the number of channels is the only parameter that needs to
be configured at runtime in the dataflow accelerator. In that
sense, Flexible HLS templates differ from regular FINN HLS
templates only in the loops in which bounds are affected by
the number of CONV channels. Then, at runtime, it can be
configured to process a smaller number of channels. Therefore,
flexible accelerators are synthesized to the worst case in terms
of model size, given by the initial, not-pruned, CNN model.
Below, we focus on the difference between Flexible and FINN
HLS templates. The modifications made to FINN’s HLS classes
can be divided into two cases: when the runtime-controllable
parameter (i.e., number of CONV channels) affects HLS unroll
directive and when it affects the pipeline directive.

We bring two representative examples for presenting each
case: the MVTU module, responsible for executing all convo-
lutional and fully-connected layers, and the MaxPool module.
MVTU’s unroll is independent of the runtime-controllable
parameter (MVTU unroll is given by the number of PEs and
SIMD lanes - see Figure 2). On the other hand, MaxPool
unrolling depends on the number of channels. Figure 3
presents these two examples, where channels_worstcase
gives the full number of input or output channels (given
by a not pruned model) and channels is the runtime-
controllable parameter that gives the current number of channels
(particular to the currently loaded CNN model version, variable
between models). Red shaded if statements give the runtime-
controllable behavior to both modules. In Figure 3(a) we have a
simplified version of the MVTU, which is unrolled on a fixed
parameter CONST (i.e., PE/SIMD values). In this case, the
runtime-controllable parameter only affects the pipeline feeding,
causing fewer pipeline iterations and a shorter execution
time. On the other hand, for the MaxPool module that is
unrolled on the runtime-controllable parameter, the loop has
to be synthesized to the worst case, and, when channels <
channels_worstcase, some of the units performing the
unrolled operation will not be fed, as depicted in Figure 3(b).

Information on the number of channels of every model’s
layer is attached to the model description when AdaFlow
prunes a CNN model. Then, during inference, at runtime, the
number of channels can be passed to every flexible module
in the dataflow (those have an extra 16-bit interface port to
set the runtime-controllable, channels, parameter). However,
the extra circuitry enabling flexible execution creates a small
overhead in both resource usage (making the accelerator larger)
and performance (increased latency). This trade-off between
accelerators’ flexibility and efficiency is exploited by AdaFlow
to process inferences at the highest levels of adaptability.

We added the set of new flexible HLS template classes
to the original FINN framework. Also, FINN’s design steps
[7] were modified to integrate the new runtime-controllable
functionalities and ensure synthesis and correct processing of
the Flexible-Pruning accelerators.
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Figure 4. AdaFlow’s Workflow.

B. AdaFlow Workflow

AdaFlow’s goal is to provide an efficient and adaptive solu-
tion for CNN inference processing. Figure 4 shows AdaFlow’s
two-step workflow from the generation of its Library up to
the execution of inferences. AdaFlow starts by receiving the
following user inputs: initial CNN models, training dataset, and
FINN configuration files as well as an accuracy threshold. Then,
the Library Generator creates a library containing multiple
pruned CNN models and dataflow accelerators. In this step,
user datasets and initial CNN models are used to generate
multiple pruned CNN models and their respective dataflow
accelerators (Fixed- and Flexible-Pruning). AdaFlow’s Library
supports the second step, the Runtime Manager, that performs
runtime adaptation of the inference processing based on the
user’s accuracy threshold and workload conditions. Next, we
detail the AdaFlow’s Library Generator and Runtime Manager.

1) Library Generator: In this step, the Library Generator
reads the user’s inputs to feed the Dataflow-Aware Pruning
(presented in Subsection IV-A1). Then, by ranging the pruning
rate at fixed steps for each dataset/initial CNN model, it
gathers multiple pruned versions of each initial CNN model.
These CNN model versions offer multiple design points on
the accuracy-resource trade-off (the larger and less pruned a
CNN is, the higher is its accuracy). After all pruned CNN
models are generated, the Library Generator passes them to
the “CNN Compilation & HLS Synthesis” to synthesize their
respective accelerators: Fixed-Pruning (one for each pruned
CNN model, using fixed modules - FINN HLS in Figure 4) and
Flexible-Pruning (one for all pruned models of the same initial
CNN model, using the new Flexible HLS classes). With CNN
models and accelerators generated, a library in the form of a
table containing a list of pruned CNN models (rows) with their
accuracy (extracted after pruning) as well as the throughput
values (extracted during synthesis) is created.

2) Runtime Manager: The Runtime Manager is the software
module in charge of selecting and loading the pruned CNN
models and accelerator type (Fixed or Flexible). The choice
for which CNN model to load (i.e., which pruned version)
is tightly coupled to the application at hand. Generally, the
conflicting targets of accuracy and performance are desired
for inference - in other words, it should process the most
inferences at the highest accuracy. To that end, the Runtime
Manager dynamically selects CNN models taking their accuracy
and throughput into account. The search on the Library takes
as input the user’s accuracy threshold (see user’s input in
Figure 4) and information the server’s current workload (i.e.,
incoming FPS). Then, it selects, among the pruned models with
accuracy above the threshold, the model that delivers the highest
throughput (i.e., FPS). The only exception happens when the
desired FPS (currently incoming) can be matched by more than
one model. In that case, the model with the best accuracy will
be selected. The Runtime Manager will act every time there
is a change in either accuracy threshold (set by the user) or

incoming FPS (that can be flagged by performance monitors
added to the software in charge of the incoming inferences).
For selecting the accelerator type, the Runtime Manager uses a
rule-based criteria: Fixed-Pruning accelerators are only selected
when models need to be switched at intervals greater than a
predefined value, which can be fine-tuned depending on the
application and FPGA at hand. For example, if the user sets this
criteria to 1 second and FPGA reconfiguration is 100ms long,
the Runtime Manager will only select Fixed-Pruning if, at least,
1 second has passed since the last model switch. Otherwise,
Flexible-Pruning accelerators are used. It is important to note
that fine-tuning this criteria is possible for other applications.

As an illustrative example, Fig. 4’s Runtime Manager
displays workload and accuracy curves for a sample application.
First, let us see how the Runtime Manager uses the trade-off
created by pruned CNN model versions (ver. 1 to 3 in Fig. 4).
We can see that the Runtime Manager responds to workload
increases by switching to faster models (at the cost of lower
accuracy). For instance, the model first loaded (version 1) is
switched by model version 3 as soon as the workload rises. As
version 3 was pruned more aggressively, it has fewer channels
(fewer squares in Fig. 4), resulting in a higher throughput
that can better accommodate the current workload level. For
unpredictable and fast changes in workload, CNN models can
be switched fast, requiring no FPGA reconfiguration, thanks
to the Flexible accelerator in use. On the other hand, when the
application shifts to a more stable phase, the Runtime Manager
can load a Fixed-Pruning dataflow since the reconfiguration
overhead will not harm the overall performance (no subsequent
model switches are expected). Fixed-Pruning accelerators
consume less power as they do not have any of the logic
due to the runtime-controllable parameters.

V. METHODOLOGY

Setup and Tools. Accelerators used across our experiments
were synthesized within the Xilinx’s FINN design flow [7]
with Vivado targeting a Xilinx Zynq Ultrascale+ MPSoC
ZCU104 board (XCZU7EV) at 100MHz. We used Xilinx
Vivado for resource usage and power extraction and Verilator
RTL simulations for performance (FINN infrastructure).

We adopted two CNN models supported by our accelerator
of choice for evaluation: CNVW2A2 and CNVW1A2. Models
were adapted to the CIFAR-10 and the German Traffic Sign
Recognition Benchmark (GTSRB) datasets. All images consider
CIFAR-10’s image resolution (3x32x32). Accuracy results are
reported on Brevitas TOP-1 test accuracy. Each pruned CNN
model is retrained for 40 epochs after pruning [8], with standard
data augmentation (padding, crop, and flipping) and learning
rate of 0.001 with decay of 0.1. Retraining was performed on
Intel Xeon E5-2640 with NVIDIA Tesla K20m GPU. AdaFlow
generates 18 models for each initial CNN with pruning rates
from 0% (not-pruned) to 85% (5% steps). Each model generates
a Fixed-Pruning dataflow accelerator. Four Flexible-Pruning
accelerators were synthesized, one for each dataset/CNN.
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Figure 5. (a) FPGA Resource for FINN, Flexible and Fixed accelerators. Accuracy vs. Energy for CNV2W2A on CIFAR-10 (b) and GTSRB (c).

Evaluation Scenario. Our case study is based on typical
smart video surveillance systems that have to deal with
numerous cameras (IoT devices) sending inference requests
(frames) to a local Edge server. Therefore, we have set 20 IoT
devices to produce inference requests at the real-time rate of 30
FPS. Evaluations are 25 seconds long. Due to factors like FPS
fluctuation [10], network congestion [11], or variable number
of connected nodes, the rate of incoming inference requests
(workload’s incoming FPS) in an inference server changes over
time [20]. Based on such environments [10, 11, 20], we evaluate
AdaFlow under two scenarios: Scenario 1 that represents a
more stable Edge environment with 30% random workload
deviation every 5 seconds; and Scenario 2 that represents a
more unpredictable environment with 70% workload deviation
every 500ms. Experiments are executed 100 times, and average
values are reported. We have set the maximum accuracy
loss (AdaFlow’s accuracy threshold) to 10%. The Runtime
Manager selects accelerator type given a predefined criteria (see
Subsection IV-B2). Based on our experiments, we set this value
to 10× the reconfiguration time. We note that both parameters
are user-defined and can be tuned to specific applications and
user goals. In the next section, we evaluate AdaFlow over the
Original FINN (baseline) on performance, power efficiency,
and Quality of Experience, here defined as the product of
accuracy by the percentage of processed frames. With QoE,
we assess the user experience that targets low frame loss levels
and high accuracy levels.

VI. RESULTS

A. AdaFlow’s Design Space
Before we evaluate AdaFlow under the Edge application,

this section shows the design space enabled by AdaFlow’s
Library. Figure 5(a) shows the FPGA resource usage (y-axis) for
the original FINN and AdaFlow’s Flexible and Fixed-Pruning
accelerators for CNVW2A2 CNN on the CIFAR-10 dataset.
Figures 5(b) and (c) plot the energy per inference (x-axes) vs.
accuracy (y-axes) for CNVW2A2 on CIFAR-10 and GTSRB
datasets. CNVW1A2 follows the same behavior. As it can be
noticed in Figure 5(a), the Flexible-Pruning accelerator presents
the highest resource usage compared to FINN and its Fixed-
Pruning counterparts as it requires extra logic to implement
the runtime-controllable behavior. Still, as the space taken by
feature maps and weights only decreases with pruned models
when compared to FINN, Flexible-Pruning shows no increase
in BRAM usage (which is often the limiting factor for FPGA-
based CNN accelerators - i.e., the resource with the highest
usage, see Figure 5(a)). Flexible-Pruning increases in 1.92×
the number of used LUTs compared to the original FINN.
Fixed-Pruning, on the other hand, presents reductions in LUT
usage ranging from 1.5% (at 5% pruning rate) to 46.2% (at
85% pruning rate) compared to the original FINN.

Although requiring more resources, AdaFlow’s Flexible-
Pruning allows switching to pruned models that will deliver
higher performance and lower energy consumption at runtime.
Overall, as the pruning rate increases, the energy consumption

decreases at the cost of accuracy w.r.t the FINN baseline. For
example, it would be possible to switch to a 25% pruned model
on Flexible-Pruning (green square in Fig. 5(b)), reducing the
energy per inference by 1.38× with accuracy loss of only
9.9% when compared to FINN. The same pruning rate with a
Fixed-Pruning accelerator (red square in Fig. 5(b)) reduces by
1.64× the energy consumption w.r.t FINN. When comparing
AdaFlow’s accelerators, the Fixed-Pruning ones present slightly
better inference latency (up to 3.7% difference, 0.67% average),
meaning that Fixed-Prune’s lower energy consumption is mainly
due to having no runtime-controllable logic.

Even though Flexible accelerators present energy consump-
tion higher than their Fixed counterparts, they require no FPGA
reconfigurations to switch models at runtime. Consequently, in
scenarios where the application requirements change rapidly,
Flexible-Pruning is the only alternative for runtime adaptation,
as will be presented next.

B. AdaFlow at the Edge
In this section, we evaluate AdaFlow under the two Edge

scenarios presented in Section V. Table I reports frame loss,
QoE, and power for AdaFlow and Original FINN averaged
over the full 25 seconds run. Table I’s right-most column gives
AdaFlow’s power efficiency (number of processed inferences
per Watt) w.r.t Original FINN. First, we see that AdaFlow
achieves greater performance (i.e., lower frame loss) and power
efficiency than the original FINN for all evaluated datasets and
CNN models. The higher performance levels (frame loss up to
27.22% lower than Original FINN - GTSRB/CNVW1A2) and
efficiency (up to 1.40× more efficient - GTSRB/CNVW2A2)
are enabled by AdaFlow’s dynamic adaptation. By switching to
models of higher throughput whenever needed, AdaFlow can
adapt the inference processing to eventual workload increases
with minimal accuracy loss. This minimal accuracy loss and
improved performance also cause AdaFlow to deliver QoE
higher than FINN. As it is not always necessary to keep
accuracy close to the threshold (e.g., for a currently low
workload level), AdaFlow’s Runtime Manager (Subsection
IV-B2) grants a 7.07% (CIFAR-10/CNVW2A2) maximum
accuracy drop over all evaluations (4.6% on average). We also
would like to note that for applications that tolerate accuracy
thresholds larger than the one in use (10%), larger performance
and efficiency gains are expected since, in that case, CNN
models of more aggressive pruning would be allowed.

Now, let us consider a representative evaluation to detail
the AdaFlow behavior. In Figure 6(a), we show FINN and
AdaFlow frame losses (y-axis) over the 25 seconds run (x-axis)
for CIFAR-10/CNVW2A2 under Scenarios 1 and 2 as well as
Scenario 1+2 that provides an additional evaluation. To show
how AdaFlow adapts to a change of environment, Scenario
1+2 starts with a stable condition up to 15 seconds (same
setting of Scenario 1) and then shifts to a more unpredictable
phase (same setting of Scenario 2) that lasts until the end
of the evaluation. In Figure 6(a), we also show the pruned
models used by AdaFlow for Scenario 1+2 and the moment it
changes the accelerator type. Pruned models switched during
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Table I
FRAME LOSS, QOE, POWER, AND POWER EFFICIENCY FOR ALL DATASETS AND CNN MODELS ON THE FULL 25 SECONDS RUN.

Frame Loss (%) QoE (%) Power (W) Power Eff.
w.r.t FINNDataset / Model Scenario AdaFlow Orig. FINN AdaFlow Orig. FINN AdaFlow Orig. FINN

CIFAR-10 / CNVW2A2
1 0 23 81.74 68.32 1.01 1.07 1.39x
2 5.11 30.99 78.54 61.23 1.2 1.07 1.25x

GTSRB / CNVW2A2
1 0 23.53 65.12 53.55 1.01 1.07 1.4x
2 3.64 29.91 63,21 49.08 1.14 1.07 1.3x

CIFAR-10 / CNVW1A2
1 12.27 23.68 73.58 66.63 0.98 1 1.17x
2 21.89 31.73 66.12 60.47 1.125 1 1.01x

GTSRB / CNVW1A2
1 0 22.57 65.85 69.86 0.94 0.96 1.35x
2 4.14 31.36 62.88 47.95 1.11 0.97 1.23x

Figure 6. Frame Loss (a) and QoE (b) for CNVW2A2 on the CIFAR10
dataset. AdaFlow’s model switches are indicated in (a).

the execution of other scenarios are not displayed for the sake
of clarity. Figure 6(b) follows the same idea of (a) for showing
Orignal FINN and Adaflow QoE curves.

As explained in Subsection IV-B2, the Runtime Manager
selects Fixed-Pruning accelerators for stable environments
(i.e., the ones that cause relatively few model switches).
Scenario 1 represents such a condition, allowing that AdaFlow
reconfigures the FPGA with Fixed-Pruning accelerators. For
example, considering the first run for CIFAR-10/CNVW2A2
out of the 100 runs averaged (“AdaFlow - Scen. 1” in Figure
6), AdaFlow switched models five times, resulting in a total od
five FPGA reconfigurations (around 725ms total). Even though
they need FPGA reconfigurations, Fixed-Pruning accelerators
offer higher power efficiency: see AdaFlow’s lower frame loss
and lower power dissipation in Scenario 1 (when using Fixed-
Pruning) in contrast to AdaFlow in Scenario 2 in Figure 6(a).
In Scenario 2, when changes in workload happen at a higher
rate, FPGA reconfigurations are not allowed. Thus, AdaFlow
employs the Flexible-Pruning accelerator. A total of 31 model
switches were performed over Scenario 2’s 25 seconds run. For
those model switches, however, no FPGA reconfiguration is
required thanks to the Flexible-Pruning accelerator. In summary,
enabling fast model switches on the FPGA-based server made
it possible to achieve power efficiency 1.25× greater and frame
loss 25% lower than the Original FINN in Scenario 2.

Unlike the first two scenarios, Scenario 1+2 presents a shift
in the workload condition at runtime (as explained earlier). This
change of workload condition causes AdaFlow to change from
Fixed- to Flexible-Pruning accelerator. During the more stable
phase of Scenario 1+2 (from 0 to 15secs), AdaFlow switched
models twice (15 and 20% pruning rates, indicated in Figure
6(a)) with Fixed-Pruning accelerators. After that, the Runtime
Manager flagged a change in workload at a shorter time
interval and reconfigured the FPGA with the Flexible-Pruning
accelerator (“Change of Dataflow” in Figure 6(a)). Once the
Flexible-Pruning was loaded, six more model switches were
performed with no need for FPGA reconfigurations. Overall,
in Scenario 1+2, AdaFlow achieved a frame loss 24% lower,
and increased QoE and power efficiency by 15% and 1.21×,
respectively, over FINN. Therefore, in contrast to inference on
traditional dataflow accelerators, AdaFlow adapts the inference

processing by changing the pruning rate at runtime. Moreover,
as shown in Scenario 1+2, AdaFlow can exploit power-efficient
accelerators (e.g., from 0 to 15secs) or fast model switching
(e.g., from 15secs onwards) dynamically, depending on the
workload conditions.

VII. CONCLUSIONS

We proposed the AdaFlow framework that adapts at runtime
the inference processing with transparently generated pruned
CNN models and new accelerator designs that enable fast model
switching and power-efficient execution. Overall, AdaFlow
improves, on average, power efficiency in 1.27×, performance
in 21%, and QoE in 12% over the state-of-the-art FINN.
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