
GraphHD: Efficient graph classification using
hyperdimensional computing

Igor Nunes, Mike Heddes, Tony Givargis, Alexandru Nicolau and Alex Veidenbaum
Department of Computer Science

UC Irvine, Irvine, USA
{igord, mheddes, givargis, nicolau, alexv}@uci.edu

Abstract—Hyperdimensional Computing (HDC) developed by
Kanerva is a computational model for machine learning inspired
by neuroscience. HDC exploits characteristics of biological neural
systems such as high-dimensionality, randomness and a holo-
graphic representation of information to achieve a good balance
between accuracy, efficiency and robustness. HDC models have
already been proven to be useful in different learning applica-
tions, especially in resource-limited settings such as the increas-
ingly popular Internet of Things (IoT). One class of learning
tasks that is missing from the current body of work on HDC is
graph classification. Graphs are among the most important forms
of information representation, yet, to this day, HDC algorithms
have not been applied to the graph learning problem in a general
sense. Moreover, graph learning in IoT and sensor networks,
with limited compute capabilities, introduce challenges to the
overall design methodology. In this paper, we present GraphHD
— a baseline approach for graph classification with HDC. We
evaluate GraphHD on real-world graph classification problems.
Our results show that when compared to the state-of-the-art
Graph Neural Networks (GNNs) the proposed model achieves
comparable accuracy, while training and inference times are on
average 14.6× and 2.0× faster, respectively.

Index Terms—Hyperdimensional computing, Graph classifica-
tion, PageRank centrality, Graph neural networks, Graph kernels

I. INTRODUCTION

Machine Learning has played an increasingly central role in
academic research and industrial applications. This popularity
is due in large part to the good empirical results obtained on
problems in which data is captured in the Euclidean space,
such as vectors of feature values, time series data or images.
However, in countless real-world scenarios, in both natural
and social sciences, we are often interested in representing
relationships between entities. Examples range from chemical
molecules [1] and bioinformatics [2], to computer vision [3]
and analysis of social networks [4]. The information about
such entities and the relationships between them is inherently
non-Euclidean. Graphs, instead, provide a much more natu-
ral abstraction. For this reason, the challenge of developing
methodologies capable of utilizing the full potential of ma-
chine learning algorithms to deal with graphs has received a
lot of attention from the scientific community in recent years.

One of the first successful strategies for graph learning
problems is to calculate a measure of similarity between
graphs. These methods are called graph kernels [5]. The
similarity measurement functions are used in conjunction with
kernel machines (e.g. support vector machines) to perform
cognitive tasks such as classification. A myriad of graph kernel
methods have been proposed, especially in the last 15 years,
which will be covered in Section II. While it is true that kernel

methods are highly competitive graph learning approaches,
especially on small graphs, considerable recent effort has
focused on alternative methods [6] with better scaling and
performance characteristics. In particular, kernel methods scale
quadratically with respect to the size of the dataset and do not
allow for online learning [7], limiting their applicability in
real-time scenarios [8]. Our work introduces a new alternative
approach to graph kernels.

Another popular alternative, motivated by the notorious
accomplishments of deep neural networks, are graph neural
networks (GNNs). GNNs are models that extend regular neural
network operations, such as pooling and convolution, to handle
graphs. Despite the functional accuracy achieved by GNNs,
the high computational and energy cost of deep learning
approaches make them difficult, or prohibitive, to be applied
in real-world situations, such as those encountered in IoT and
embedded applications [9], [10]. The demand for alternatives
is clear given the growing number of graph learning applica-
tions in resource-constrained scenarios. Examples range from
IoT malware detection [11] to air pollution monitoring sensor
networks [12].

In a search for learning methods capable of handling
scenarios with limited compute resources, Hyperdimensional
computing (HDC) has emerged as an efficient alternative to
deep learning [13]. HDC represents information in a high-
dimensional space using hypervectors. Each hypervector stores
data holographically, that is, each dimension contains the
same amount of information. This representation provides
inherent robustness to faulty components [14]. In addition, the
learning algorithms in HDC are based on well-defined oper-
ations between hypervectors, which are typically dimension-
independent, providing an opportunity for massive parallelism.
Unlike the arithmetic-based deep network solutions, HDC’s
natural expression of massive logic-level parallelism makes it
particularly well suited for FPGA, GPU and ASIC mappings.
For example, Schmuck et.al. [15] show how the use of
associative memories makes it possible to reduce the time of
each classification event to the extreme of a single clock cycle.

The characteristics of HDC have already shown their merit
on several problems (see Section II). However, despite the
previously stated importance of graph learning applications,
to the best of our knowledge, HDC algorithms have never
been applied to such tasks. It is based on this motivation that
we propose GraphHD, the first of its kind baseline approach
for graph learning with HDC. GraphHD focuses on providing
an efficient, robust and scalable alternative to current state-of-

1489978-3-9819263-6-1/DATE22/ c©2022 EDAA

the-art graph learning algorithms.
We submit GraphHD to extensive testing on real-world

graph classification problems from six publicly available
datasets. We compare GraphHD to state-of-the-art graph ker-
nels and GNNs. The comparative results indicate that the
method for graph learning based on HDC achieves a com-
parable accuracy, while being inherently more robust to noise
and achieving much higher efficiency compared to GNNs. In
addition, experiments are carried out to assess the scalability
of the methods in relation to the size of the graphs. GraphHD
behaves better than the other methods, achieving training times
that are 6.2× faster than GNNs and 15.0× faster than kernel
methods on the largest graphs.

II. RELATED WORK

Historically, HDC emerged from the cognitive modeling
work by Kanerva [13] and was inspired by characteristics of
human memory. Like our memory, the operations on hypervec-
tors were shown to be able to capture information association
and bundling. The three fundamental operations—addition
(bundling), multiplication (binding), and permutation—were
used to create problem-specific encoding algorithms. In early
work, the algorithms focused on classifying time series and
text sequences [14], [16]–[20]. Recent work has expanded the
application opportunities by introducing encoding algorithms
for images [21], [22] and DNA sequence matching [23].

In addition to the expanding scope of applications and
training methods, there has been research into HDC’s com-
putational efficiency and robustness. The computational ef-
ficiency is a result of the small set of well-defined opera-
tions on high-dimensional vectors which allows for massive
parallelization [24], [25]. Hardware-level optimizations such
as in-memory processing promise to further increase the
computational efficiency of HDC [26]. Schmuck et. al. [15]
propose a number of hardware techniques for optimizing
HDC operations on an FPGA while simultaneously improv-
ing throughput and circuit area. Among other results, they
demonstrate that each HDC inference operation can be per-
formed in a single clock cycle. The high-dimensional vectors
with random independent and identically distributed (i.i.d.)
components make hypervectors a robust way of information
representation [13], [27]. The opportunity for massive parallel
computation in combination with the robust nature of HDC
makes it an ideal learning framework for resource constrained
environments such as IoT and embedded systems [28].

With the growing number of applications for machine
learning with graphs, several approaches have been proposed
in recent years. Popular ones include those based on graph
kernels and graph neural networks. Examples of graph kernel
approaches are those based on spectral properties [29], random
walks [30] and matching of node embeddings [31]. Some
very prominent graph kernels are based on the well-known
heuristic for graph isomorphism, i.e., the Weisfeiler-Leman
(WL) algorithm [32], [33]. For a detailed and recent review
of graph kernels, see Kriege et al. [5].

More recently, numerous attempts to adapt neural networks
to deal with graphs have come to be known as graph neural

networks (GNNs) [34]. The initial concept is due to Gori et al.
(2008) [35], further elaborated by Scarselli et al. [36]. Despite
the recent and extensive exploration of GNNs, classical graph
kernels are still very competitive in terms of accuracy [6]
and especially in efficiency (as indicated by our results in
Section V). Xu et al. [37] show that GNNs are at most as
powerful as the WL test in distinguishing graph structures.

While these existing approaches have a well established
track record in the field of graph similarity analysis, our HDC
approach is a novel attempt at solving graph learning tasks.

III. HYPERDIMENSIONAL COMPUTING

Hyperdimensional computing seeks to emulate brain circuits
in a more robust and efficient way than neural networks
by representing information as points in a high-dimensional
space, called hypervectors. Hypervectors are typically binary
or bipolar vectors with ten thousand dimensions. Representa-
tion and transformations of data in HDC are performed over
fixed dimension hypervectors. The cognitive tasks are carried
out based on the similarity between those representations.

HDC models can often be separated into three stages:
encoding, training, and inference. An overview of HDC
classification is shown in Figure 1. The encoding stage is
application specific and serves to transform the input data
into hypervectors. During the training the hypervectors are
aggregated to learn a model. Finally, inferences into the model
can be made using the generated class representations. The
following sections will cover each stage in more detail.

Fig. 1. Hyperdimensional computing classification overview

A. Encoding

The mapping of data to the high-dimensional space is the
first step in HDC and this process corresponds to encoding.
The process is governed by a function Enc : I → H

d, that
maps input arguments (e.g. graphs, text or images) in I to the
d-dimensional space H

d. Encoding is the HDC counterpart to
the feature extraction process in classical learning methods.
Thus, the main intuitive principle that governs the encoding
is that inputs that are similar in the original space should be
mapped to similar hypervectors.

The process starts by generating a set of basis hypervectors
that represent units of information (e.g. feature values and
positions). The basis hypervectors remain fixed throughout
computation and each data sample is encoded by combining
and manipulating them using the addition (bundling), multi-
plication (binding) and permutation operations.

An example of a commonly used technique is the record-
based encoding. This encoding binds key and value hypervec-
tors and bundles them to create the hypervector for each data

1490 Design, Automation and Test in Europe Conference (DATE 2022)

point. The key hypervector can for example correspond to the
position in an image or the identifier of an attribute.

The following equation shows a general example for record-
based encoding. The encoding generates the hypervector H
from the randomly generated key hypervectors Ki which
are bound to their value V̄i which is one of the predefined
value hypervectors in V. The square brackets [. . .] denote
normalization, commonly element-wise majority voting, × and
+ respectively represent binding and bundling.

H =
[
K1 × V̄1 +K2 × V̄2 + . . .+KN × V̄N

]
,

V̄i ∈ {V1,V2, . . . ,Vm},where 1 ≤ i ≤ N

Categorical feature values are mapped to the high-
dimensional space using randomly generated hypervectors,
making the hypervectors for each category nearly orthogonal
to the others. In the following statement δ is a given similarity
metric between a pair of hypervectors such as the inverse
Hamming distance or the cosine similarity.

∀i, j : δ
(
Vi,Vj

)
� 0, where i �= j

B. Training

The standard HDC training process creates k hypervectors,
one for each class. Therefore, a trained model is simply
denoted by M = {C1,C2, . . . ,Ck}, a set of class-vectors
where Ci contains all the information used to identify the i-th
class. Each Ci is calculated as the vector with the smallest
average distance to the the hypervectors obtained by encoding
the training samples of class i:

Ci =
∑

j:�(xj)=i

Enc(xj)

where each xj ∈ I and �(xj) ∈ {1, . . . , k} are a training
sample and its respective class. The

∑
symbol denotes the

element-wise majority voting of hypervectors, named bundling
(or addition) in HDC.

C. Inference

The first step to classify a test sample y ∈ I in HDC is
to encode y. The resulting hypervector Enc(y) is referred to
as query-hypervector. It is important to emphasize that the
function Enc is exactly the same as the one used to encode
samples in the training process. After that, the predicted class
for y is obtained by checking which class-vector in M is most
similar to Enc(y). In mathematical form:

pred(y) = argmax
i∈{1,...,k}

δ
(
Enc(y),Ci

)

where pred(y) is the predicted class for y.

IV. GRAPHHD

A. Notations and problem formulation

Let G = (V,E) denote a graph with vertex set V and edge
set E with n = |V |, m = |E|. The class of a specific graph G
is denoted by �(G). The graph classification problem is defined
as follows: given a set of graphs G = {G1, G2, . . . , GN} and
a training subset GL ⊂ G for which the labels are known,

create a model capable of predicting the unknown labels for
the graphs in G \ GL.

An important thing to mention is that, since GraphHD was
thought of as a baseline method for graph learning with HDC,
we assume that graphs do not have any other information such
as labels or attributes. Although some datasets contain this
type of information, we decided to keep GraphHD as uniform
and generic as possible in the present work. The use of this
information in ad-hoc applications can be advantageous and
shall be investigated in future work.

B. GraphHD overview

As described in Section III, The first and most important
question to be addressed when applying HDC to a different
domain is: how to encode the input data? We want to define
a function EncG : G → H

d, capable of mapping graphs in the
input set to d-dimensional hypervectors. Illustrated in Figure 2,
the overall strategy of GraphHD’s encoding is to map each
element that composes the graph, i.e. its vertices and edges,
individually to a hypervector and then combine the information
using the bundling operation.

Fig. 2. GraphHD encoding

C. GraphHD encoding

GraphHD first encodes the vertices, those hypervectors are
then used to encode the edges. We will first describe the
process Encv : V (G) → H

d used to encode each element
in the set of vertices of a graph G, denoted by V (G). In
the existing encoding examples, used for non-graph data, the
process usually starts by assigning a random hypervector for
each possible symbol. For example, one for each letter to
encode text.

Based on the existing encoding strategies, one could think
of starting to encode graphs by assigning independent random
hypervectors to each vertex. However, note that in these other
problems, there is a relationship between the symbols that is
consistent across different samples of the dataset. For example,
the symbol “A” in a text represents equivalent information in
another text, which makes it reasonable to encode both using
the same hypervector. However, since we only look at the
structure of the graphs, there is no such trivial correspondence
between vertices of different graphs.

To address this issue, the vertex encoding process needs to
start by extracting an identifier for the vertices based only on
the topology of the graph. For this purpose, we propose the
use of the PageRank centrality metric [38]. Initially developed

Design, Automation and Test in Europe Conference (DATE 2022) 1491

by Google to rank web pages in the web graph, the PageRank
algorithm receives a graph as input and returns, for each vertex
vi ∈ V , a value c(vi) ∈ [0, 1] that measures its “importance”
in the graph. The metric is well established and has been
widely applied to different problems beyond the web [39].
As rests evident from its initial application, PageRank can be
implemented in a very efficient and scalable manner, which
matches the purpose of GraphHD.

From this ranking induced by the PageRank centrality of
the vertices, it is possible to establish a meaningful connection
between vertices in different graphs. Therefore, GraphHD uses
the centrality rank of the vertex as its identifier (or symbol).
Accordingly, vertices of different graphs, but with the same
centrality rank, are encoded to the same random hypervector
from the basis set.

After creating the hypervectors for each vertex, GraphHD
makes use of these representations to also encode each edge
(vi, vj) ∈ E(G). The edge encoding function Ence is defined
as follows:

Ence
(
(vi, vj)

)
= Encv(vi)× Encv(vj)

The × symbol represents the binding operation in HDC, which
is the standard operation to represent an association between
a pair of hypervectors, similar to the role of an edge in a
graph. The result of the binding operation is a third vector,
statistically quasi-orthogonal to the operand vectors, which we
name edge-hypervectors.

D. GraphHD training

Based on the encoding functions presented, GraphHD train-
ing is described in Algorithm 1. For each class we generate a
set H� of hypervectors. Each hypervector included in H� (line
12 in Algorithm 1) is what we call a graph-hypervector. For
each graph G, the corresponding graph-hypervector is created
with bundle(HG), which bundles all the edge-hypervectors
contained in the set HG. Note that vertex encoding is used as
an intermediate edge encoding step as defined above.

Algorithm 1: GraphHD training procedure

1 GraphHD Training (GL);
Input : A training set of graphs GL with their

respective labels and a set of random
vertex-hypervectors Hv .

Output: A trained HDC model M consisting of the
class vectors {C1, . . . ,Ck}

2 for each class label i ∈ {1, . . . , k} do
3 H� ← ∅

4 for each graph G ∈ GL : �(G) = i do
5 HG ← ∅

6 for each edge e ∈ E(G) do
7 HG ← HG ∪ Ence(e)
8 H� ← H� ∪ bundle(HG)
9 Ci ← bundle(H�)

10 return {C1, . . . ,Ck}

V. EXPERIMENTS

To evaluate GraphHD, two groups of experiments were
conducted. First, we adopt six graph classification datasets to
evaluate the accuracy, training times, and inference times. All
of these benchmarks are part of TUDataset, a collection of
datasets and standardized evaluation procedures widely used
in the empirical evaluation of graph classification methods [6].
The performance of GraphHD is compared to two kernel
methods and two graph neural networks. Secondly, the scaling
profile of GraphHD is empirically assessed and presented in
comparison to a GNN and a kernel method.

All the experiments are performed on the same machine
with 20 Intel Xeon Silver 4114 CPUs at 2.20GHz with 93 GB
of RAM and 4 Nvidia TITAN Xp GPUs with 3840 cores and
12 GB running CentOS Linux release 7.9.2009.

GraphHD uses 10,000-dimensional bipolar hypervectors in
all the experiments. We fix the number of PageRank iterations
to 10 for all experiments because the accuracy of GraphHD
has then plateaued. The PageRank batch size is 256.

A. Accuracy and Training time

We compare the accuracy and the training and inference
times of GraphHD on six datasets from the TUDataset [6]
collection against four methods. We use 10-fold cross vali-
dation because the datasets contain relatively few graphs. We
report training and inference time per graph to normalize over
varying dataset lengths. The wall-time for one fold of training
is considered the training time. The inference time is set to be
the testing wall-time of one fold. Measurements are averaged
over 3 repetitions of 10-fold cross validation.

GraphHD is expected to significantly outperform existing
methods on training time. The experiment gives insight into
exactly how much faster and how much accuracy is traded-off
for the increase in training speed. Since GraphHD only takes
the structure of the graph into account we restrict the GNNs
and kernel methods from utilizing the vertex and edge labels.

1) Datasets: An overview of the statistics of the datasets
used is shown in Table I. ENZIMES [2] is a dataset of protein
structures, and the task is to assign each enzyme to one of 6
Enzyme Commission (EC) top-level classes. MUTAG [40] has
graphs representing mutagenic aromatic and heteroaromatic
nitro compounds with 7 labels. NCI1 [1] is a set of data
from the National Cancer Institute (NCI) and the task is to
classify chemical compounds according to their ability to
inhibit cancerous cell multiplication. In the graph datasets
PROTEINS [41] and DD [41], the task is to classify whether
or not the represented proteins are non-enzymes. Finally,
PTC FM [42] is a dataset from the Predictive Toxicology
Challenge containing a collection of chemical compounds
represented as graphs which report the carcinogenicity for rats.

The selected datasets, with the exception of DD, contain
very small graphs, with an average of less than 40 vertices. The
graphs in the selected datasets are also very sparse, the average
fraction of connected vertices is 0.05. The dataset containing
the largest graphs, DD, should give an indication on real data
of how well the learning methods scale.

1492 Design, Automation and Test in Europe Conference (DATE 2022)

Fig. 3. Left: Accuracy achieved on six datasets by GraphHD compared to that of the kernel methods, 1-WL and WL-OA, and the graph neural networks,
GIN-ε and GIN-ε-JK. Middle: Training time in seconds of the five learning methods for each of the six datasets. Note that the y-axis is in logarithmic scale.
Right: Average inference time for a graph in each of the six datasets compared across the five learning methods. Note that the y-axis is in logarithmic scale.

TABLE I
STATISTICS OF GRAPH DATASETS.

Dataset Graphs Classes Avg. vertices Avg. edges
DD 1178 2 284.32 715.66
ENZYMES 600 6 32.63 62.14
MUTAG 188 2 17.93 19.79
NCI1 4110 2 29.87 32.3
PROTEINS 1113 2 39.06 72.82
PTC FM 349 2 14.11 14.48

2) Baselines: As baseline methods for comparison, two
state-of-the-art GNNs and two kernel-based methods were
used. The methods are the most recently published that are
available for standardized evaluation in the TUDataset reposi-
tory. The two selected GNN methods are GIN-ε [37] and GIN-
ε-JK [43]. For both GNN methods the network architecture
was fixed for all experiments at 1 layer with 32 units. We
found that this is the smallest network size that matches or
exceeds the accuracy of GraphHD on all datasets. We use the
Adam optimizer with a learning rate scheduler starting at 0.01
with a patience parameter of 5 which decays with 0.5 till a
minimum of 10−6, and the batch size is 128. For the kernel
methods baseline Weisfeiler-Lehman Subtree (1-WL) [32] and
Weisfeiler-Lehman Optimal Assignment (WL-OA) [33] were
used. As part of the training process the C-parameter of the
kernels are selected from

{
10−3, 10−2, . . . , 102, 103

}
and the

number of iterations from {0, . . . , 5}. The training hyper-
parameters, except for the fixed size GNN architecture, were
taken from the reference baseline experiments.

B. Scalability
To confirm the superior computational efficiency of HDC,

the scalability experiment looks at how training time relates
to the size of the graphs in the dataset. We create synthetic
datasets with 2 classes evenly split over 100 graphs with
varying numbers of vertices using the Erdős–Rényi random
graph model [44]. The edge probability is set to 0.05, which
is similar to the average connections in the real-world datasets
as derived from the dataset statistics in Table I. GraphHD is
compared against one GNN and one kernel method, GIN-ε

and WL-OA, respectively. The methods use the same hyper-
parameters as described in Section V-A2.

VI. RESULTS AND DISCUSSION

Fig. 4. Scaling profile of GraphHD compared to the graph neural network
GIN-ε and the kernel method WL-OA. The y-axis is in logarithmic scale.

The accuracy results, shown on the left in Figure 3, show
that GraphHD has comparable accuracy to the baseline meth-
ods, except for NCI1 and ENZYMES where the kernel meth-
ods respectively do 18% and 12% better than both GraphHD
and the GNN methods.

The training time results, shown in the middle of Figure 3,
confirm the notion that HDC is more computationally efficient
than the other learning methods. GraphHD trains significantly
faster than both the kernel and GNN methods on every
dataset. On the DD dataset, which contains the largest graphs,
GraphHD trains 12.1× faster than the GNNs and 24.6×
faster than the fastest kernel method. Moreover, on the largest
dataset, NCI1, GraphHD trains 77.1× faster than the kernel
methods. Confirming that with respect to the dataset size the
kernel methods have inferior scaling.

The inference time of GraphHD, shown on the right in
Figure 3, is also faster than the other methods for every dataset.
On the DD dataset the fastest GNN is 10.5% slower and the
kernel methods are 21.7× slower.

The scaling profile of GraphHD, as shown in Figure 4, is
up to an order of magnitude lower than that of the baseline

Design, Automation and Test in Europe Conference (DATE 2022) 1493

methods as the graphs’ sizes increase. At the largest measured
graphs with 980 vertices, GraphHD is 6.2× faster than GIN-
ε and 15.0× faster than WL-OA. The faster training and
inference times allow for more graph learning applications to
become feasible. These findings are consistent with those from
the training times on the real-world datasets from the accuracy
and training time experiment described in Section V-A. It is
worth to remind the potential of HDC dedicated hardware to
further improve the training and inference times of GraphHD
as discussed in Section II.

VII. FUTURE WORK

As a first HDC approach for graph classification, a goal
of GraphHD is to demonstrate the effectiveness of the idea
and thereby open and motivate new research directions and
advance the problem frontier. Some of the main directions
that may be further investigated include: 1) To what extent is
it possible to sacrifice the efficiency of GraphHD to match
and possibly surpass the accuracy of the other methods?
This could be done by extending GraphHD with techniques
already known in HDC such as retraining and multiple class-
vectors per class; 2) As previously mentioned, in some specific
applications, the datasets contain information other than the
graph structure, such as labels and attributes for both vertices
and edges. It would be interesting to study methods that incor-
porate these types of additional information into GraphHD.

VIII. CONCLUSION

We show that GraphHD achieves comparable accuracy
while proving to be significantly more efficient. Remarkably
when the graphs increase in size, the scaling profile of
GraphHD is much more favorable, opening up possibilities for
graph classification on large graphs that were previously not
computationally feasible. We introduced a baseline graph en-
coding algorithm that makes it possible to use HDC for graph
learning applications. The results of GraphHD are promising
and indicate the importance of continuing to investigate HDC
algorithms for graph learning as a light-weight, robust and
scalable alternative to deep learning, especially in resource
constrained applications such as embedded devices and IoT.

REFERENCES

[1] N. Wale and G. Karypis, “Comparison of descriptor spaces for chemical
compound retrieval and classification,” in ICDM, 2006, pp. 678–689.

[2] K. M. Borgwardt et al., “Protein function prediction via graph kernels,”
Bioinformatics, vol. 21, no. suppl 1, pp. i47–i56, 2005.

[3] M. Neumann et al., “Graph kernels for object category prediction in
task-dependent robot grasping,” in KDD, 2013, pp. 0–6.

[4] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in SIGKDD,
2015, pp. 1365–1374.

[5] N. M. Kriege et al., “A survey on graph kernels,” Applied Network
Science, vol. 5, no. 1, pp. 1–42, 2020.

[6] C. Morris et al., “Tudataset: A collection of benchmark datasets for
learning with graphs,” in ICML, 2020.

[7] S. S. Keerthi, O. Chapelle, D. DeCoste, K. P. Bennett, and E. Parrado-
Hernández, “Building support vector machines with reduced classifier
complexity.” Journal of Machine Learning Research, vol. 7, no. 7, 2006.

[8] Y. Zhan and D. Shen, “Increasing the efficiency of support vector
machine by simplifying the shape of separation hypersurface,” in
International Conference on Computational and Information Science.
Springer, 2004, pp. 732–738.

[9] R. Khan et al., “Future internet: the internet of things architecture,
possible applications and key challenges,” in FIT. IEEE, 2012, pp.
257–260.

[10] L. Lai and N. Suda, “Enabling deep learning at the IoT edge,” in ICCAD.
ACM, Nov. 2018, pp. 1–6.

[11] A. Abusnaina et al., “Adversarial learning attacks on graph-based iot
malware detection systems,” in ICDCS. IEEE, 2019, pp. 1296–1305.

[12] P. Ferrer-Cid et al., “Graph learning techniques using structured data for
iot air pollution monitoring platforms,” IoT-J, 2021.

[13] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognitive computation, vol. 1, no. 2, pp. 139–159, 2009.

[14] A. Rahimi et al., “A robust and energy-efficient classifier using brain-
inspired hyperdimensional computing,” in ISLPED, 2016, pp. 64–69.

[15] M. Schmuck et al., “Hardware optimizations of dense binary hyper-
dimensional computing: Rematerialization of hypervectors, binarized
bundling, and combinational associative memory,” JETC, vol. 15, no. 4,
pp. 1–25, 2019.

[16] D. Kleyko and E. Osipov, “Brain-like classifier of temporal patterns,”
in ICCOINS. IEEE, 2014, pp. 1–6.

[17] G. Recchia et al., “Encoding sequential information in semantic space
models: comparing holographic reduced representation and random
permutation.” Computational Intelligence and Neuroscience, 2015.

[18] A. Rahimi et al., “Hyperdimensional biosignal processing: A case study
for emg-based hand gesture recognition,” in ICRC. IEEE, 2016, pp.
1–8.

[19] F. R. Najafabadi et al., “Hyperdimensional computing for text classifi-
cation,” in DATE, 2016, pp. 1–1.

[20] M. Imani et al., “Voicehd: Hyperdimensional computing for efficient
speech recognition,” in ICRC. IEEE, 2017, pp. 1–8.

[21] A. X. Manabat et al., “Performance analysis of hyperdimensional
computing for character recognition,” in ISMAC. IEEE, 2019, pp. 1–5.

[22] M. Imani et al., “A binary learning framework for hyperdimensional
computing,” in DATE. IEEE, 2019, pp. 126–131.

[23] Y. Kim et al., “Geniehd: Efficient dna pattern matching accelerator using
hyperdimensional computing,” in DATE. IEEE, 2020, pp. 115–120.

[24] A. Rahimi et al., “High-dimensional computing as a nanoscalable
paradigm,” Transactions on Circuits and Systems, vol. 64, no. 9, pp.
2508–2521, 2017.

[25] H. Li et al., “Hyperdimensional computing with 3d vrram in-
memory kernels: Device-architecture co-design for energy-efficient,
error-resilient language recognition,” in IEDM. IEEE, 2016, pp. 16–1.

[26] M. Imani et al., “Ultra-efficient processing in-memory for data intensive
applications,” in DAC. IEEE, 2017, pp. 1–6.

[27] T. F. Wu et al., “Brain-inspired computing exploiting carbon nanotube
fets and resistive ram: Hyperdimensional computing case study,” in
ISSCC. IEEE, 2018, pp. 492–494.

[28] S. Benatti et al., “Online learning and classification of emg-based
gestures on a parallel ultra-low power platform using hyperdimensional
computing,” TBioCAS, vol. 13, no. 3, pp. 516–528, 2019.

[29] R. Kondor and H. Pan, “The multiscale laplacian graph kernel,” in NIPS,
vol. 29, 2016, pp. 2982–2990.

[30] U. Kang et al., “Fast random walk graph kernel,” in SDM. SIAM,
2012, pp. 828–838.

[31] G. Nikolentzos et al., “Matching node embeddings for graph similarity,”
in AAAI, vol. 31, no. 1, 2017.

[32] N. Shervashidze et al., “Weisfeiler-lehman graph kernels.” Journal of
Machine Learning Research, vol. 12, no. 9, 2011.

[33] N. M. Kriege et al., “On valid optimal assignment kernels and applica-
tions to graph classification,” in NIPS, 2016, pp. 1615–1623.

[34] Z. Wu et al., “A comprehensive survey on graph neural networks,”
Transactions on Neural Networks and Learning Systems, 2020.

[35] M. Gori et al., “A new model for learning in graph domains,” in IJCNN,
vol. 2. IEEE, 2005, pp. 729–734.

[36] F. Scarselli et al., “The graph neural network model,” Transactions on
Neural Networks, vol. 20, no. 1, pp. 61–80, 2008.

[37] K. Xu et al., “How powerful are graph neural networks?” in ICLR, 2019.
[38] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web

search engine,” Computer Networks and ISDN Systems, vol. 30, no. 1-7,
pp. 107–117, 1998.

[39] D. F. Gleich, “Pagerank beyond the web,” SIAM Review, vol. 57, no. 3,
pp. 321–363, 2015.

[40] A. K. Debnath et al., “Structure-activity relationship of mutagenic aro-
matic and heteroaromatic nitro compounds. correlation with molecular
orbital energies and hydrophobicity,” Journal of Medicinal Chemistry,
vol. 34, no. 2, pp. 786–797, 1991.

[41] P. D. Dobson and A. J. Doig, “Distinguishing enzyme structures from
non-enzymes without alignments,” JMB, vol. 330, no. 4, pp. 771–783,
2003.

[42] C. Helma et al., “The predictive toxicology challenge 2000–2001,”
Bioinformatics, vol. 17, no. 1, pp. 107–108, 2001.

[43] K. Xu et al., “Representation learning on graphs with jumping knowl-
edge networks,” in ICML, 2018, pp. 5453–5462.

[44] E. N. Gilbert, “Random graphs,” The Annals of Mathematical Statistics,
vol. 30, no. 4, pp. 1141–1144, 1959.

1494 Design, Automation and Test in Europe Conference (DATE 2022)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

