
Golden Model-Free Hardware Trojan Detection by
Classification of Netlist Module Graphs

Alexander Hepp∗, Johanna Baehr∗, Georg Sigl∗†,
∗Department of Electrical and Computer Engineering

Technical University of Munich, Munich, Germany

Email: {alex.hepp,johanna.baehr,sigl}@tum.de
†Fraunhofer Institute for Applied and Integrated Security (AISEC), Munich, Germany

Abstract—In a world where increasingly complex integrated
circuits are manufactured in supply chains across the globe,
hardware Trojans are an omnipresent threat. State-of-the-art
methods for Trojan detection often require a golden model of the
device under test. Other methods that operate on the netlist
without a golden model cannot handle complex designs and
operate on Trojan-specific sets of netlist graph features.

In this work, we propose a novel machine-learning-based
method for hardware Trojan detection. Our method first uses a
library of known malicious and benign modules in hierarchical
designs to train an eXtreme Gradient Boosted Tree Classifier
(XGBClassifier). For training, we generate netlist graphs of each
hierarchical module and calculate feature vectors comprising
structural characteristics of these graphs. After the training
phase, we can analyze the synthesized hierarchical modules of
an unknown design under test. The method calculates a feature
vector for each module. With this feature vector, each module
can be classified into either benign or malicious by the previously
trained XGBClassifier. After classifying all modules, we derive a
classification for all standard cells in the design under test. This
technique allows the identification of hardware Trojan cells in a
design and highlights regions of interest to direct further reverse
engineering efforts.

Experiments show that this approach performs with >97%
Sensitivity and Specificity across available and newly generated
hardware Trojan benchmarks and can be applied to more complex
designs than previous netlist-based methods while maintaining
similar computational complexity.

I . INTRODUCTION

With the ever-increasing use of Integrated Circuits (ICs)
in both home appliances and industrial production, there is
a growing risk of malicious functionality added to an IC by
a third party. At the same time, the internationalization of
production chains and accompanying trends mean that the
entire production chain cannot remain under close surveillance.
This lack of control allows for the addition of Hardware
Trojans (HTs) that endanger all security principles. A HT is
a change of functionality created so that it stealthily blends
into an electronic device such as an IC and hides its malicious
capabilities [1]. It typically consists of a trigger and a payload
circuit. The trigger activates the payload circuit depending

The authors would also like to thank the anonymous reviewers for their
valuable comments and helpful suggestions. This work was partly funded by
the German Ministry of Education and Research in the project RESEC under
Grant No.: 16KIS1009

on specific conditions, while the payload performs malicious
activity after activation.

In answer to this threat, multiple techniques for HT detection
have been proposed. Usually a distinction is made between
pre- and post-silicon methods [2], i.e. between methods that
can be applied before and after manufacturing. The first group
of pre-silicon methods relies on heuristics to find weak spots in
designs that are prone to HT insertion [e.g. 3] or on heuristics
to find seldomly used signals or inputs [e.g. 4]. Another group
of methods performs logic code analysis in order to prove that
the design performs as specified [e.g. 5] or that the design has
not been tampered with [e.g. 6]. Post-silicon methods either
use a side-channel analysis [e.g. 7] or a functional, behavioral
analysis [e.g. 8] to discover changes in the design.

To summarize, most hardware Trojan detection techniques
use a variant of fingerprinting. These detection techniques
become ineffective, when HTs are designed that evade the
detection heuristics and a golden model of the design is not
available. Golden model selection is a expensive and difficult
task and might be impossible if the HT is already inserted
in the design phase. Many HT detection techniques can only
be applied using some form of golden model, for example by
simulation [9] or assuming that only part of the fabricated ICs
carry Trojans [10]. Furthermore, even sophisticated heuristics
detecting Trojan characteristics can be broken by designing
appropriate HTs [e.g. 11].

Besides these methods, hardware Trojans can be detected
based on netlist analysis. A suspicious design netlist is in-
spected pre-silicon, to find HT inserted by the system designer
or in third party IP-cores. Previous Reverse Engineering(RE)-
and machine learning-based techniques for HT detection in
netlists focus on small design sizes and detect HTs by few HT-
specific features, which are not generally found in every HT
[12]–[14]. Yu, Gu, Liu, et al. [15] proposed a netlist detection
method based on a feature vector for each standard cell using
local structural features of cells fan-in and fan-out. This still
can not utilize structures beyond a threshold logic level. To
summarize, previous HT detection methods for netlists search
for local fingerprints or signatures of HTs.

This paper follows a novel and orthogonal approach in large
design HT detection, by employing a recently introduced form
of automated netlist reverse engineering [16]. The authors show
that fuzzy netlist submodule identification is possible with an

1321978-3-9819263-6-1/DATE22/ c©2022 EDAA

approach based on graph partitioning and machine learning.
They build upon the notion that in Application Specific
Integrated Circuit (ASIC) netlist graphs, form follows function,
i.e. the design functionality can be identified by analyzing the
netlist graph structure. In this work, we automatically identify
and classify submodules in gate-level netlists containing a HT
and do not depend on a golden model being available, but
operate on a set of known designs and primitives that are
identified within the netlist of a design. As such a netlist of
the design is available for black-box IP-cores, this approach
may also be used for detecting HTs in protected Intellectual
Property (IP) or even Field-Programmable-Gate-Array (FPGA)
netlists. Without loss of generality, this paper focuses on ASIC-
HTs.

The important difference to pre-silicon fingerprinting tech-
niques such as FANCI [4] or netlist based fingerprinting [12] is
that the features we collect from the flat netlist are not Trojan-
specific, but are generally able to identify building blocks used
in the design under test.

The presented approach also does not create a whole-design
fingerprint, unlike methods such as [7], which create one side-
channel fingerprint per design. We believe that sufficiently
complex hardware designs can not be analyzed without splitting
it into smaller elements.

Many HT detection methods require a golden chip that is
HT-free. The method proposed in this work can also be used
to select such a golden model, so that these, typically simpler
but also less complex detection methods can be applied.

The contribution of this paper consists of four parts:

1) We define a novel process and algorithm for fuzzy
hardware Trojan detection in large netlists.

2) We show that the computational complexity of the novel
process is on par with the complexity of the previous
method.

3) We show by experiment that detecting hardware Trojans
using this process is successful.

4) We analyze the existing machine learning-based HT-
detection technique on large netlists and show that the
local HT-specific features are not useful for complex
netlists nor generalize well towards unknown designs.

The rest of the paper is structured as follows: In section II we
describe the RE-based HT detection process and the individual
steps necessary to perform our analysis. In section III we
empirically evaluate the performance of our approach and
compare it to the existing HT detection method based on
machine learning.

II . METHODOLOGY

A. Definitions

In this work, a design netlist is perceived as hypergraph
D = (M,N), with the set of modules (i.e. standard cells) μ ∈
M and the nets ν ∈ N connecting the modules. All modules
connected to the net ν are in the set Mν . A hierarchical design
can be described by a tree H with nodes Hl

i on a hierarchy
level l starting with l = 0 describing the complete design. Each

hierarchical node in the tree instantiates at least two subnodes
from higher levels, i.e. H l

i = {H l′
i |lmax � l′ > l � 0} and

|H l
i | > 0. Leaf nodes H lmax

i are in the highest level lmax of the
tree and are identical to the modules μ, i.e. ∀i : H lmax

i ∈ M.

H̄ l
i =

⋃
Hl′

i ∈Hl
i
H̄ l′

i , with H̄ lmax
i = H lmax

i , is defined as the
flattened hierarchy, i.e. the set of μ belonging to the hierarchy
node itself or to one of the subnodes from higher levels.

For each H̄ l
i , we generate a directed graph Ḡl

i = (V̄ l
i , Ē

l
i)

such that each node v̄ is a module μ ∈ H̄ l
i and V̄ l

i is thus
a set of standard cells in H̄ l

i . An edge ē ∈ Ē is generated
between two modules μ1, μ2 ∈ H̄ l

i if there is a net ν ∈ N
in the design netlist with μ1 ∈ Mν ∧ μ2 ∈ Mν . As net
names and cell names are arbitrary and should not influence
the classification, only the type of μ is kept as an attribute of
v̄. Placement information is not utilized, thus the edges ē have
unit length. Another graph Gl

i = (V l
i , E

l
i) is generated, such

that each node v is a module μ ∈ {μ|μ ∈ H l
i}, i.e. this graph

comprises only the nodes describing the immediate function
of this hierarchy node. The graph Ḡ0

0, in which no hierarchy is
given, is the flat netlist produced at the end of logic synthesis.
In this work, we refer to the set of all Gl

i and Ḡl
i in one design

as L. When distinguishing between the members of L is not
necessary, the symbol G is used. The union of all L in a given
library of designs is denoted as L. L is thus a set of subgraphs,
defined by the respective design hierarchy, of all flat netlists in
a library of designs. In such a library of HT-infected circuits,
a base-design is the benign large circuit into which HTs can
be inserted. Each insertion forms a new HT specimen, that is
a base-design with inserted HT.

B. Input Data and Attacker Model

We specify the attacker model using the HT-taxonomy in
[1]. In the realm of this paper, an attacker may be capable
of inserting a HT at the specification and design phases. The
inserted HTs may operate at any abstraction level down to
the Gate level, may use any activation mechanism, may have
any effects, and a location in the processor, the I/O and
the clock tree. (see fig. 1) This means that the presented
method cannot, for example, identify a HT that does not have
a trigger and only modifies a metal wire width for side channel
leakage or increased power consumption. This limitation can
be compensated with orthogonal side-channel and testing based
HT-detection methods. If the HT evades such methods with a
complicated trigger that hides the change on the physical level,
the trigger circuit will be visible on the gate-level and can be
detected using our approach described in this paper.

Our methodology requires netlists and known hierarchy
information for a collection of benign and infected library
designs to train the machine learning, in which the HTs
are implemented in one or multiple H l

i , separate from the
rest of the design. Such a database could be maintained by
an entity collecting Trojan samples from the whole silicon
industry and providing pre-trained machine learning models
for Trojan detection. If the library is large enough, it allows the
machine learning to generalize on the features that constitute a

1322 Design, Automation and Test in Europe Conference (DATE 2022)

Hardware Trojans

Insertion Phase

Specification

Design

Fabrication

Testing

Assembly and
Package

Abstraction Level

System Level

Development En-
vironment

Register-transfer
level

Gate level

Transistor level

Physical level

Activation Mechanism

Always on

Triggered

Internally

Externally

Effects

Change

Downgrade

Leak

DoS

Location

Processor

Memory

I/O

Power supply

Clock grid

Figure 1. Hardware Trojan taxonomy [1]. The highlighted area in yellow
shows the assumed attacker model.

hardware Trojan and thus also detect Trojans that are previously
unknown.

The trained machine learning hardware Trojan detector as
described in this paper is purposed for pre-silicon detection.
The netlist and hierarchy information for the design under test
is retrieved as a synthesis output, in order to detect HTs inserted
by the hardware designer, the synthesis tool or in IP-cores. In
this work, we assume that the HTs are implemented in one or
multiple H l

i , separate from the rest of the design.
Additionally, a flat netlist could be retrieved from silicon

reverse engineering post-silicon, in order to detect HTs inserted
at any step in the supply chain. For a flat netlist, it is necessary
to generate detected hierarchies Ĥi with partitioning algorithms
as described in [16]. This has the potential to increase the
attacker capabilities to an insertion at any insertion phase, as
detection happens for the final end product.

C. Machine Learning-Assisted Reverse Engineering

The process of detecting HTs with in netlist graphs com-
prises three steps for all library designs:

Graph generation Convert the netlist to a graph representa-
tion and generate the set L.

Graph labelling Label all graphs in L as malicious (1), if they
belong to the Trojan circuit, or as benign (0) otherwise.

Feature vector generation For each graph in L, generate a
graph embedding feature vector.

Afterwards, we train a eXtreme Gradient Boosted Tree
Classifier (XGBClassifier) with the graphs in L, represented
by their feature vectors and test our approach with a separate
testing set, that was prepared identical to the training set. When
training is completed, we can identify HTs in a design under
test as follows:

Graph generation Convert the netlist to a graph representa-
tion and generate the set L for the netlist.

Feature vector generation For each Gl
i and Ḡl

i, generate a
graph embedding feature vector.

Graph classification Use the trained XGBClassifier to create
a label for each Gl

i and Ḡl
i.

Entire design assessment Join the resulting subgraph labels
to a label for each μ in the entire design.

The rest of this section describes these steps in detail.
1) Graph generation: As larger hardware designs under test

contain a multitude of different functionalities and Trojans may
be spread across, it is not sufficient to identify and classify the
design functionality for the design as a whole. Generating a

Table I
OVERVIEW OF FEATURES, BOTH ORIGINAL AND SINGLE. COMPLEXITY

IS BASED ON ASSUMING A SPARSE NETLIST GRAPH, I .E. |V | ∼ |E|

Feature Type Feature Complexity

Original degree O(|V |2)
node in-degree O(|V |2)
(in/out-degree, in/out-edge katz, eigenvec-
tor, betweenness)-centrality

O(|V |)

closeness centrality O(|V |2)
pagerank O(|V |)

Single Nr. of TYPE nodes O(|V |)
Node Type Ratio for TYPE O(|V |)
number of nodes and edges O(1)
density O(|V |)
degree assortativity coefficient O(|V |)
condensation factor O(|V |)
length of dominating set O(|V |)
flow hierarchy O(|V |2)

feature vector for a large design may hide the small changes
introduced by a HT.

Graph generation is performed for the library designs and the
design under test. We use the available hierarchical description
and generate the Gl

i and Ḡl
i for all nodes in the hierarchy tree,

to receive the set L. This step is performed during training
and during testing.

2) Graph labelling: Any H l
i that directly implements Trojan

functionality is called infected, else it is called benign. We
define directly implements such that if a H l

i is called infected,
there is no submodule H l′

i , l′ > l which is not inserted by
the HT designer. Thus, a H̄ l

i is called infected, if H l
i is called

infected and a Gl
i or Ḡl

i is called infected, if the corresponding
H l

i or H̄ l
i is called infected. This naming can be converted to

a discrete-valued labeling function mL(G) : L �→ {0, 1} for
each subgraph. This function can also be formulated on the
cell-level as mc(μ) : M �→ {0, 1} for each μ. mc(μ) is either
1, if the malicious μ is part of any infected H l

i or 0 otherwise.

3) Feature Vector Generation: In this work, we assume that
the functionality of a netlist can be inferred by inspection
and comparison of its graph structure. Consequently, the input
feature vectors for machine learning predominantly contain
values that express the structure of the netlist graph.

Each previously generated Gl
i and Ḡl

i is transformed into
a graph embedding feature vector. Some feature values are
generated by statistically evaluating information for each v or
e in the graph, referred to as original features. These original
features include node degree and various centrality measures.
Table I summarizes the used original features. After original
feature generation, the values for each v or e in the design
are statistically agglomerated with average, min, max, mode,
median, entropy and an empirically parameterized histogram.
The result is a varying number of derived features per original
feature. These derived features are part of the feature list.

Other features are single agglomerate values for the whole
graph, such as the number of input and output dummy nodes,
the number of v of a specific gate type (such as AND or OR
gates) or graph connectivity and modularity measures. Table I
summarizes these single features, which are directly part of

Design, Automation and Test in Europe Conference (DATE 2022) 1323

the feature vector.

In total, this results in 230 numeric feature values saved in
a feature vector, along with the identifier, for each Gl

i and Ḡl
i.

This step is performed during training and during testing.

Using the generated feature vectors, a XGBClassifier is
trained without scaling and preprocessing. The XGBClassifier
is a time and space efficient implementation of machine
learning using gradient tree boosting, especially fit for the large
number of features and learning samples used in this work. The
training set is the list of feature vectors for all graphs in the
library L, which includes benign designs, the benign parts of
infected designs, as well as the infected Gl

i and Ḡl
i from the

infected designs, which directly implement Trojan functionality.
The truth vector consists of the previously defined ground truth
values for each graph in L.

4) Graph classification: HT detection is performed based
on the feature vectors of all graphs in L of a design under test
using the previously trained XGBClassifier. The output of the
XGBClassifier is a discrete-valued function m̂L(G) ∈ {0, 1}
mapping each G to a maliciousness value.

5) Entire Design Assessment: Based on the previous results,
it is possible to assess and evaluate a complete design under
test. For this, we calculate the cell-level maliciousness function
m̂c(μ) = maxG|μ∈G m̂L(G) that finds a maliciousness value
for each standard cell μ by finding if μ is part of any G that
was detected to be infected.

As a result, a design under test is labeled into a benign and a
malicious part (i.e. those μ where m̂c(μ) = 0 and m̂c(μ) = 1,
respectively).

III . EXPERIMENTAL RESULTS

To evaluate the approach presented in this work, a high
number of HT samples are required to train the classifier. The
number of available public HT-benchmarks is far too small to
allow the necessary training.

In order to generate the required number of HT samples, a
simple HT-generator was used, that created synthetic variants
of existing HTs from the benchmark database Trust-Hub [17].
To this end, the available samples for three base-designs were
analyzed. It was found that the available samples only differ
in the combination of the used trigger and payload circuits,
while the concrete implementation of the triggers and payloads,
including constant values such as the trigger condition, stay
the same across the samples. This provided an opportunity
to create more synthetic Trojans by varying the combination
of trigger and payload and the used constant values. The HT
generator outputs verilog RTL and is designed to put the HT
implementation into separate verilog modules, one for the
trigger and one for the payload.

The three base-designs are: An RSA implementation, a fully
pipelined AES implementation (due to the used synthesis tool,
the AES implementation was reduced to one round) and a
UART implementation. Each sample contains a Trojan-free
design (one of the original designs) and a design that is
infected.

With the Trojan generator, a total of 2 999 HT samples
were generated, ca. 1000 per base-design. The samples were
synthesized for ASIC using the open source synthesis tool-
chain qflow in version 1.3, that employs the yosys verilog
synthesis tool, version 0.8. Using the synthesis logs, for each
output netlist, the hierarchical modules each standard cell
belongs to were determined. This provides the necessary
hierarchy information and the ground truth mL(G) for each
HT sample netlist. In addition, 361 non-Trojan designs were
synthesized using the same process. For synthesis, the osu035
library from the Oklahoma State University with a 0,35 µm
technology was used.

In total, this results in 115 269 Gl
is and Ḡl

is, of which
10 844 stem from non-infected library designs, 110 377 are non-
infected parts of the HT samples and 4 892 are the infected
HT modules.

Six additional netlists are used to asses the generalization
capabilities. Four of them are additional HT samples from
Trust-Hub and two are additional benign hardware designs.
These additional netlists and their modules are not used during
training of the XGBClassifier, but only used for testing the
learned model.

After synthesis, the netlists were parsed into a verilog AST
using a custom parser based on pyverilog [18]. As in previous
work on netlist RE, buffer structures were removed from the
netlists [19], [20]. From the AST, a graph representation
was generated in python using networkx [21]. In order to
improve feature generation speed, the calculations for feature
vector generation were performed partially with graph-tool
[22] and igraph [23], which use a C++ and C-based backend,
respectively. The statistical evaluation was performed using
the algorithms from scikit-learn [24], while the XGBClassifier
from the xgboost library [25] was used.

In order to receive an optimal set of hyperparameters, a
random subset of 591 of the HT samples, as well as the
361 non-Trojan designs and the additional netlists were used
to perform a grid search on 34 560 parameter options. The
GroupShuffleSplit cross-validation iterator from scikit-
learn was used on the subset to provide training, validation
and testing sets for the grid search. Grouping input data was
necessary to make sure that all Gl

is and Ḡl
is belonging to one

HT sample are put in the same set, either training, validation or
testing. The number of folds was set to 5. Matthews correlation
coefficient was used to evaluate a hyperparameter combination,
because this metric is robust to an imbalanced classification
task. The optimum hyperparameters are shown in table II. Note
that the trained best classifier resulting from hyperparameter
grid search is discarded. This means that the additional netlists
are accounted for in the hyperparameters, but do not belong
to the trained knowledge of the final XGBClassifier.

For training and evaluating the final classifier, a training set
and a test set must be defined. From the available synthetic HT
samples, 90% are used for training, the remaining are used for
testing. Again, it is ensured that all graphs of one sample are
put in the same set. This ensures that training is balanced and
that during testing, the complete HT sample must be scored by

1324 Design, Automation and Test in Europe Conference (DATE 2022)

Table II
HYPERPARAMETERS FOR THE XGBCLASSIFIER USED IN GRID

SEARCH AND THEIR OPTIMUM VALUES.

Hyperparameter Grid Search Value Set Optimum

gamma {0, 0.5, 1, 10} 0
learning_rate {0.1, 0.3, 0.8, 1} 0.1
max_delta_step {1, 3, 10} 10
max_depth {2, 4, 6, 12} 4
min_child_weight {0.5, 1, 3, 10} 0.5
n_estimators {10, 20, 50, 200, 400} 50
scale_pos_weight {1.0, 10, 27} 1.0
subsample {0.5, 0.8, 1.0} 1.0

the classifier. The benign designs are added to training and test
set with the same split ratio. Finally, all additional HT samples
are added to the test set for the generalization assessment.

Preparation of the library and the testing set was performed
on two AMD EPYC 7601 32-Core Processors clocked at
2,6GHz, running Ubuntu 18.04 with a maximum of 20GB
RAM at 60 threads during the feature vector generation. The
total runtime of this approach is ca. 30 h, of which ca. 0,5 h
were spent on specimen generation and RTL synthesis, ca.
0,5 h on verilog parsing and graph generation, ca. 15 h on
feature generation, ca. 14 h on hyperparameter optimization
and only a few minutes to train the XGBClassifier. Note that
this preparation of the HT-detector is a one-time task. The
application of the trained model to evaluate a design for HTs
requires only to generate the feature vector for the design under
test and apply the classification and entire design evaluation.
For example, for the additional test netlist wb_conmax-T200,
this takes ca. 10min.

In the following, we discuss the effectiveness of using
machine learning classification to correctly define a design,
or G ∈ L of a design, as malicious or benign.

A. Machine Learning Performance

In this section, the machine learning algorithms are evaluated
for their ability to correctly classify the graphs and to perform
an entire design assessment that strongly correlates with the
ground truth maliciousness of the design.

1) Partition and standard-cell classification: The perfor-
mance of the classification can be assessed by the Sensitivity
(Se) and Specificity (Sp), i.e. the True-Positive Rate (TPR) and
the True-Negative Rate (TNR). A true positive is a true-infected
Ḡl

i or Gl
i that is classified as “malicious”, a true negative is

a true-benign Ḡl
i or Gl

i that is classified as “benign”. For the
synthetic HT samples in the test set, the classifier performs
perfectly, with Se = Sp = 100,0%.

To ensure that the XGBClassifier-results generalize well
across additional base-designs that are unknown to the classi-
fier, we assess the classifier performance for the additional HT
samples (see table III). For the majority of the samples, the
classifier performs perfectly. For wb_conmax-T200, 193 of
250 G in the design are false-positive. As these modules are
very small, the cell-based Specificity is not as severely harmed.
The HT itself is detected with high Sensitivity.

The classifier also generalizes well for both unknown benign
designs. risc16f84 is a microcontroller design and the

Table III
GENERALIZATION RESULTS FOR SIX ADDITIONAL NETLISTS. THE

LAST TWO COLUMNS SHOW RESULTS FOR THE METHOD IN [12].

m̂L(G) m̂c(μ) m̂c of [12]
Design name |M| Se Sp Se Sp Se Sp

PIC16F84-T200 2510 1.0 1.0 1.0 1.0 0.2 0.99
PIC16F84-T300 2523 1.0 1.0 1.0 1.0 0.06 1.0
PIC16F84-T400 2632 1.0 1.0 1.0 1.0 0.06 0.99
wb_conmax-T200 32547 1.0 0.16 1.0 0.63 0.04 0.63
risc16f84 2446 N/A 1.0 N/A 1.0 N/A 0.99
versatile_mem_ctrl 9537 N/A 0.69 N/A 0.87 N/A 0.84

de
gr

.

pa
ge

ra
nk

de
gr

. in
ce

nt
r.

in
de

gr
.

ei
ge

nv
. ce

nt
r.

nr
ou

tp
ut

s

nr
in

p.
gr

ou
ps

cl
os

en
. ce

nt
r.

N
r of

IN
V

no
de

s

N
od

e
T. Rat

. NA
N

D

co
nd

. fa
ct

or

de
gr

. as
so

rt.
co

ef
f.

N
r of

OA
In

od
es

N
od

e
T. Rat

. IN
V

N
r of

BU
Fno

de
s

N
r of

D
FFno

de
s

N
od

e
T. Rat

. A
N

D

de
gr

. ce
nt

r.

flow
hi

er
.

N
od

e
T. Rat

. N
O

R

N
od

e
T. Rat

. OA
I

N
od

e
T. Rat

. AO
I

0

0.05

0.1

0.15 >50%

re
la

ti
ve

im
p

o
rt

an
ce

Figure 2. Importance of structural features for the machine learning classifier.
For the importance of the original features, the importance values of derived
features were summed up per original feature.

benign version of the PIC* HTs. It is marked as benign with
perfect Specificity. versatile_mem_ctrl is a memory
controller for SDRAM. This design is marked as benign with
good Specificity.

2) Importance of Structural Features in the HT Context: It
is important to understand which structural features correlate
to the maliciousness of a G, in order to asses the capabilities
of the presented classification approach. As typical for tree-
based machine learning models, a trained XGBClassifier reports
the feature-importance. Figure 2 shows the reported relative
importance after training of the classifier. The five most
important features are graph structural features, achieving an
importance of 58,6%. The 22 shown original features allow
to achieve the perfect results of section III-A1, the remaining
26 original features are not used by the classifier. Among
these features are primarily original features, while the single
features are predominantly in the set of important features. No
degradation of performance is expected when removing the
unused features. However, the importance of structural features
strongly depends on the training samples. As further designs
are added to the training sample set, the feature importance
values might change. It is therefore not sensible to propose
the removal of features at this point in time. Also, the feature
calculation routines are optimized for speed, so it was not
necessary to reduce the amount of features from the proposed
set of features in [16].

B. Comparison to Hardware Trojan Specific Features

1) Machine learning performance: We implemented
the method proposed in [12] using an efficient matrix-
multiplication based approach and applied it to our dataset. We

Design, Automation and Test in Europe Conference (DATE 2022) 1325

employed the same train-test-split as for our experiments and
used the XGBClassifier in order to achieve comparable results.
The experiment reveals an average Specificity of 99,99%, but
an average Sensitivity of only 78%. In particular, for designs
which were not tested in the original papers (such as the
HT-specimen in the RSA circuit), the sensitivity decreases
significantly. Even worse results were found for HT detection
in designs that are not in the training set. In the generalization
test set (see table III), sensitivities less than 0.2 were found,
leading to the assumption that an approach using local HT
specific features does not generalize well to unknown designs.

2) Complexity Analysis: Under the assumption that G is
sparse (i.e. (|E| = O(|V |))), matrix multiplication requires
O(|V |), a breath-first-search (BFS) of the graph requires
O(|V |), and a BFS for a limited depth is constant time O(1).

The complexity of the calculation of HT specific features
as proposed in [12] can be grouped into three groups: those
requiring a constant number of sparse matrix multiplications for
each standard cell (resulting in O(|V |2)), those requiring a BFS
for each standard cell (resulting in O(|V |2)) and those requiring
a BFS of limited depth for each standard cell (resulting in
O(|V |)). Thus, the complexity of the calculation of HT specific
features can be approximated with O(|V |2).

For our method, the complexity of feature calculation can
also be approximated with O(|V |2) (see Table I), and thus is
comparable in complexity to other feature based approaches.

This theoretical result is proven empirically, as the feature
calculation for the method of [12] required ca. 13 h on our
machine, which is comparable to the required time for the
approach of this work.

IV. FUTURE WORK

In order to apply this method for real world HT detection,
the training library must be substantially improved and shared
across users. For this, a larger set of HT triggers and payloads
should be developed. An increased library also results in a
larger run-time, but significant effects are only expected for
the feature vector generation step. Fortunately, this effort need
only be performed once for each library design. Additionally,
the used features should be repeatedly evaluated for importance
to remove any features that impair runtime, but do not provide
substantially to detection quality. The machine learning and
design evaluation performance is satisfactory, nevertheless an
increase and diversification of the library, as new designs (both
benign and malicious) are included, will allow to improve the
results for the generalization case, as well. To protect IP, it
is also possible to share only feature vectors or pre-trained
machine learning models.

V. CONCLUSION

This works presents a novel method for golden-model free
hardware Trojan detection in large netlist graphs. By partition-
ing a design under test into subgraphs using pre-silicon hierar-
chy information, we retrieve functional blocks. Using a feature
vector comprised of a broad set of structural graph features, the
functional blocks are classified into benign or malicious. This

allows us to assess unprecedentedly large and complex designs.
By experiment, the process was shown to be almost perfectly
sensitive and specific for the available Trojan specimens, and
outperformed algorithms using Trojan specific features. The
dataset will be published at 10.5281/zenodo.5776362.

REFERENCES

[1] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy
Hardware: Identifying and Classifying Hardware Trojans,” Computer,
2010.

[2] K. Xiao et al., “Hardware Trojans: Lessons Learned After One Decade
of Research,” ACM TODAES, vol. 22, no. 1, May 2016.

[3] H. Salmani, “COTD: Reference-Free Hardware Trojan Detection and
Recovery Based on Controllability and Observability in Gate-Level
Netlist,” IEEE TIFS, 2017.

[4] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identifica-
tion of Stealthy Malicious Logic Using Boolean Functional Analysis,”
in Proc. CCS ’13, 2013.

[5] J. Rajendran, A. M. Dhandayuthapany, V. Vedula, and R. Karri, “Formal
Security Verification of Third Party Intellectual Property Cores for
Information Leakage,” in Proc. VLSID ’16, 2016.

[6] W. Hu, B. Mao, J. Oberg, and R. Kastner, “Detecting Hardware Trojans
with Gate-Level Information-Flow Tracking,” Computer, 2016.

[7] J. Balasch, B. Gierlichs, and I. Verbauwhede, “Electromagnetic circuit
fingerprints for Hardware Trojan detection,” in Proc. EMC, 2015.

[8] M. Banga and M. S. Hsiao, “A Novel Sustained Vector Technique for
the Detection of Hardware Trojans,” in Proc. VLSID, 2009.

[9] J. He, Y. Zhao, X. Guo, and Y. Jin, “Hardware Trojan Detection Through
Chip-Free Electromagnetic Side-Channel Statistical Analysis,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2017.

[10] R. Bian, M. Xue, and J. Wang, “A Novel Golden Models-Free Hardware
Trojan Detection Technique Using Unsupervised Clustering Analysis,”
in Proc. ICCCS, 2018.

[11] J. Zhang, F. Yuan, and Q. Xu, “DeTrust: Defeating Hardware Trust
Verification with Stealthy Implicitly-Triggered Hardware Trojans,” in
Proc. CCS, 2014.

[12] T. Kurihara, K. Hasegawa, and N. Togawa, “Evaluation on Hardware-
Trojan Detection at Gate-Level IP Cores Utilizing Machine Learning
Methods,” in 2020 IEEE 26th Int. Symp. on On-Line Testing and Robust
System Design (IOLTS), 2020.

[13] S. Li et al., “A XGBoost based Hybrid Detection Scheme for Gate-Level
Hardware Trojan,” in 2020 IEEE 9th Joint Int. Information Technology
and Artificial Intelligence Conf. (ITAIC), 2020.

[14] K. G. Liakos et al., “Conventional and machine learning approaches
as countermeasures against hardware trojan attacks,” Microprocessors
and Microsystems, 2020.

[15] S. Yu, C. Gu, W. Liu, and M. O’Neill, “A Novel Feature Extraction
Strategy for Hardware Trojan Detection,” in 2020 IEEE Int. Symp. on
Circuits and Systems (ISCAS), 2020.

[16] J. Baehr, A. Bernardini, G. Sigl, and U. Schlichtmann, “Machine
Learning and Structural Characteristics for Reverse Engineering,” in
Proc. ASPDAC ’19, 2019.

[17] B. Shakya et al., “Benchmarking of Hardware Trojans and Maliciously
Affected Circuits,” HASS, 2017.

[18] S. Takamaeda-Yamazaki, “Pyverilog: A Python-Based Hardware De-
sign Processing Toolkit for Verilog HDL,” in Appl. Reconfigurable
Comput., 2015.

[19] B. Cakir and S. Malik, “Revealing Cluster Hierarchy in Gate-level ICs
Using Block Diagrams and Cluster Estimates of Circuit Embeddings,”
ACM TODAES, 2019.

[20] ——, “Reverse Engineering Digital ICs Through Geometric Embedding
of Circuit Graphs,” 2018.

[21] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring Network
Structure, Dynamics, and Function using NetworkX,” in Proc. SciPy

’08, 2008.
[22] T. P. Peixoto, “The graph-tool python library,” 2014.
[23] G. Csárdi and T. Nepusz, “The igraph software package for complex

network research,” Int J Complex Syst, 2006.
[24] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J.

Mach. Learn. Res., 2011.
[25] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting

System,” in Proc. ACM KDD ’16 Conf., 2016.

1326 Design, Automation and Test in Europe Conference (DATE 2022)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

