
A Compaction Method for STLs for GPU in-field test
Juan-David Guerrero-Balaguera, Josie E. Rodriguez Condia, Matteo Sonza Reorda

Department of Control and Computer Engineering
Politecnico di Torino, Torino, Italy

{juan.guerrero, josie.rodriguez, matteo.sonzareorda}@polito.it

Abstract — Nowadays, Graphics Processing Units (GPUs) are
effective platforms for implementing complex algorithms (e.g., for
Artificial Intelligence) in different domains (e.g., automotive and
robotics), where massive parallelism and high computational
effort are required. In some domains, strict safety-critical
requirements exist, mandating the adoption of mechanisms to
detect faults during the operational phases of a device. An
effective test solution is based on Self-Test Libraries (STLs)
aiming at testing devices functionally. This solution is frequently
adopted for CPUs, but can also be used with GPUs. Nevertheless,
the in-field constraints restrict the size and duration of acceptable
STLs. This work proposes a method to automatically compact the
test programs of a given STL targeting GPUs. The proposed
method combines a multi-level abstraction analysis resorting to
logic simulation to extract the microarchitectural operations
triggered by the test program and the information about the
thread-level activity of each instruction and to fault simulation to
know its ability to propagate faults to an observable point. The
main advantage of the proposed method is that it requires a single
fault simulation to perform the compaction. The effectiveness of
the proposed approach was evaluated, resorting to several test
programs developed for an open-source GPU model
(FlexGripPlus) compatible with NVIDIA GPUs. The results show
that the method can compact test programs by up to 98.64% in
code size and by up to 98.42% in terms of duration, with
minimum effects on the achieved fault coverage.
Keywords—Functional Testing, Graphics Processing Units
(GPUs), Self-Test Libraries (STLs), Test Compaction

I. INTRODUCTION

Currently, Graphics Processing Units (GPUs) are effective
platforms used in several data-intensive applications,
sometimes in safety-critical domains. Safety-critical
applications increasingly employ GPUs as the main workhorse
to perform complex operations and process large amounts of
information (e.g., for Artificial Intelligence and sensor fusion
operations). However, in this domain, effective methods to
identify possible faults arising in a device and to face their
effects are crucial goals set by the functional safety standards.

One feasible test solution corresponds to the Software-
Based Self-Test (SBST) strategy, which is based on developing
special test programs (TPs) able to detect faults. These TPs
comprise Self-Test Libraries (STLs) [1].

STLs implement a functional at-speed test strategy to detect
faults with a functional test run at the maximum operating clock
frequency and in operational conditions. Furthermore, STLs
are suitable for in-field testing (during the operative life of a
device) and allow, in particular, the periodic testing of most
internal modules. Currently, manufacturers, such as
STMicroelectronics, Arm, NXP, Infineon, Renesas, Cypress,

and Microchip (among the others), provide their customers with
STLs, thus offering in-field test capabilities for their processor-
based products targeting several domains (industrial, medical,
aerospace, and automotive) [2]–[5].

An STL for processors and microcontrollers includes one or
more TPs developed with different approaches and
programming styles to achieve a given structural fault coverage
(FC), e.g., in terms of stuck-at faults. Similarly, STLs for GPUs
are composed of several ‘Parallel Test Programs’ (PTPs),
which provide the same features as TPs in processors. These
PTPs are designed to exploit the intrinsic parallelism of GPUs
to perform the test.

In the past, several works demonstrated the feasibility of
developing PTPs for control units [6], [7] memory modules [6],
[8], [9], and functional units [10]–[12] in GPUs, achieving a
good FC. Each PTP requires a given amount of time to be
executed. However, it is possible that several application’s
constraints might limit the available execution time. In this
scenario, short and fast PTPs are desired. Thus, compaction
methods can support the optimization of PTPs and simplify
their adoption for in-field test. PTPs in STLs are generated
using different approaches (e.g., custom, ATPG-based,
pseudorandom, deterministic), so the compaction of a PTP can
be a challenging task. Moreover, parallelism features and
constraints of a given PTP must be considered when
compacting their size and duration.

Previously, several works proposed methods to compact
TPs for processor-based systems. These methods effectively
reduce the size and duration of TPs while maintaining the same
FC [13]–[15]. In [16], the authors split TPs into sub-routines
and remove individual instructions after analyzing the FC
contribution of each sub-routine. Authors in [17] exploited
reordering techniques among different pieces of a TP to
maintain the FC and reduce the length of the TP. In both cases,
a high computational effort is required to analyze and compact
a given TP. In fact, the compaction process is based on the
production of compacted TP candidates from the original TP,
which are then fault simulated to assess the new FC. However,
the required time and computational costs for the compaction of
an individual TP are exceptionally high. It is worth noticing that
none of the reported techniques in the literature face the
compaction of PTPs and STLs for GPUs, and some of them can
hardly be extended from CPUs to GPUs.

In this work, we present a method to perform the
compaction of PTPs for GPUs by combining the information
about the microarchitectural operation performed by a PTP, the
individual thread operation, and the fault propagation abilities
of each test pattern to any visible point. This method follows
and extends the basic idea of the time-efficient compaction

456978-3-9819263-6-1/DATE22/ c©2022 EDAA

approach presented in [18], which was developed targeting
STLs for CPUs only, and employs different abstraction levels
(software, RT level, gate level) to perform only ONE logic
simulation and ONE fault simulation, thus significantly
reducing the required compaction time and with minimum
impact on the FC.

In both logic and fault simulations, several parameters are
collected and extracted to support the compaction of STLs.
Firstly, a logic simulation using the RT-level model of a GPU is
used to gather detailed tracing information about the executed
PTP on every clock cycle. Secondly, a fault simulation is
performed using the gate-level version of the circuit. This fault
simulation also records the number of faults detected at each
clock cycle. The results obtained in both simulations are used to
identify those instructions in the PTP unable to stimulate or
propagate fault effects in a target module, so listing them as
candidates for elimination. To the best of our knowledge, the
proposed compaction method is the first attempt to address the
compaction of STLs in GPUs.

For the purpose of this work, an open-source GPU model
(FlexGripPlus) was used to quantitatively evaluate and validate
the proposed compaction method. FlexGripPlus is compatible
with the NVIDIA GPU architecture and programming flow.
The experimental results show that the compaction method is
highly effective in compacting PTPs with continuous and
regular structural descriptions. The reduction in the size of
PTPs reached up to 98.64% and up to 98.42% in the duration
while minimally affecting the fault detection capabilities in the
STL.

The paper is organized as follows: Section II introduces the
background. Then, Section III describes the proposed
compaction method for STLs in GPUs. Section IV reports the
experimental results. Finally, Section V presents the main
conclusions and future works.

II. BACKGROUND

A. GPU organization
The architecture of a GPU is based on arrays of parallel

execution units (also called Streaming Multiprocessors or SMs)
in the NVIDIA’s terminology. An SM is the main operative
core inside a GPU, and it implements the Single-Instruction
Multiple-Data (SIMD) paradigm or variations, such as the
Single-Instruction Multiple-Thread (SIMT). More in detail,
each SM includes several functional units (Streaming
Processors or SPs), which are used to execute the same
instruction in parallel for several threads. The number of SPs
(from 8 to 128) directly depends on the GPU architecture and
the number of parallel threads to be processed simultaneously.
Moreover, the SM also includes several functional units, such
as Special Function Units (SFUs) and Tensor Core Units
(TCUs), to perform specific operations and support multimedia
and artificial intelligence applications. The GPU architecture
also includes a memory hierarchy mainly used to reduce latency
during the kernel execution. The memory resources include a
‘General Purpose Register File’ (GPRF), a shared memory, a
local memory, a constant memory, and an external global/main
memory.

A parallel program (kernel), executed by the GPU and
called by the Host, is divided into parts by a general controller
and assigned to the available SMs. Then, each SM loads one
instruction from the code and processes it in parallel through
the available SPs. During the execution, the SM processes in
parallel a set of threads (or Warps).

B. FlexGrip GPU Architecture
FlexGripPlus [19] is an open-source GPU model based on

the description of one NVIDIA’s microarchitecture (G80) [20].
This GPU model supports up to 52 assembly instructions and is
compliant with the programming flow of NVIDIA.
FlexGripPlus is organized as a set of arrays of SMs. One
general controller controls the tasks submitted to every SM. In
each SM, a local controller manages the task by dispatching a
warp into the available SPs. The SM is divided into five
pipeline stages and executes one instruction following the
Single-Instruction Multiple-Thread (SIMT) paradigm. More in
detail, the SM includes 8 SPs, 8 Floating Point Units (FP32),
and two SFUs. The flexibility of the GPU model allows the
selection of the number of execution units (8,16, or 32) in the
SM.

C. Software-Based Self-Test
SBST [1] is a flexible and noninvasive strategy aiming at

detecting faults in internal modules of a processor-based
system. SBST can be used at the end of the production phase
and is also widely employed for in-field test. This strategy is
based on executing specially crafted TPs using selected
instructions at maximum operational clock speed.

In parallel architectures, such as GPUs, the SBST strategy
can also be adopted to develop PTPs. Each PTP is built
employing the available Instruction-Set Architecture (ISA) of a
target GPU. Each instruction in the PTP is intended to apply
one or more test patterns to one or several target modules in
parallel. These instructions compose routines aiming at
exciting, propagating, and detecting faults when operating
warps in an SM.

In general, a PTP is composed of three main parts: i) thread
registers load, ii) parallel operation execution, and iii)
propagation of the result to an observable point.

In principle, these steps are repeated for each thread in the
program. However, it is also possible that divergences could be
present, so only a portion of the threads executes a given
operation, meanwhile missing threads skip or perform different
procedures. This divergence behavior is commonly used to
excite control modules but may affect the test quality on
functional units and regular structures in the GPU. In these
parallel architectures, the fault detection of a PTP is commonly
performed using exceptions and thread signatures [21] out of
the values on any observation point or memory output of the
GPU. A comprehensive overview of the main issues (and
possible solutions) to be faced when generating STLs in an
industrial environment can be found in [22].

Although several works have been published regarding the
compaction of TPs for processors, to the best of our knowledge,
there are no published works facing the compaction of PTPs for
GPUs.

Design, Automation and Test in Europe Conference (DATE 2022) 457

III. PROPOSED COMPACTION APPROACH

The proposed compaction method assumes the availability
of a Self-Test Library (STL) for a particular module in the GPU
or for the complete GPU. The STL can be split into PTPs. Each
PTP is composed of a given number of instructions, using the
GPU’s assembly language, and targets a given fault model with
a required execution time (clock cycles or ccs) and FC per
target module in the GPU.

Fig. 1. A general scheme of the proposed compaction approach for functional
TPs in GPUs.

The compaction approach proposed here works on PTPs
targeting the stuck-at fault model. However, the same
compaction approach can be adapted considering other fault
models as well.

The compaction approach is divided into five stages. i) PTP
partitioning, ii) Logic tracing, iii) Fault detection analysis and
labeling, iv) PTP reduction, and v) PTP reassembling.

In the program partitioning stage, see (1) in Figure 1, the
target PTPs are extracted and analyzed individually to perform
the compaction procedure. This analysis consists in the
identification of the portions of the PTP which are suitable for
compaction: we called these portions of code Admissible
Regions for Compaction (ARCs). The identification of the
ARC follows three steps. The first step defines and finds the
Basic Blocks (BBs) of each PTP. One BB is a group of
instructions that are always executed in sequence (no in/out
jumps or loops in the BB) [23]. In the GPU case, a BB can be
defined as a group of embarrassingly parallel plain sequence of
SIMD or SIMT instructions [24]. The second step analyzes the
control flow graph of the PTP and incorporates in the ARC all
BBs in the PTP except those BBs involved in parametric loops
whose iterative parameter is calculated by any BB inside or
outside the loop. Once the ARCs are identified and chosen, the
third step of the first stage of the compaction method, extracts
these regions from the PTPs. In contrast, other regions of the
PTPs are discarded as candidates for compaction and remain
unaffected during the compaction process.

The logic tracing stage, see (2) in Figure 1, performs two
logic simulations (one RTL and one GL) with the PTPs in the
microarchitectural description of the GPU and extracts
information about the execution with the purpose of identifying
the relationship between each instruction in the BBs and its
effects in terms of fault detection per warp.

On the one hand, the RTL logic simulation generates fine-
grain information for each clock cycle (cc) about the functional
execution of a PTP in the GPU. This simulation produces one
tracing report that collects the crucial details about the PTP
execution and the interaction at the HW-SW level to identify
the sequence of executed instructions and the correlation with
functional effects on a target module. One hardware monitor is
incorporated for tracing purposes in one SM of the GPU
without any effect on the functional operation of the PTP. This
monitor captures the instruction opcodes coming from the fetch
stage and traces the execution of the instructions in the GPU,
generating a report for the hardware module under analysis.
The tracing report contains the following information for each
cc: the decoded instruction, the program counter value, the
executed instruction per warp, the warp identifier, and the cc
value.

On the other hand, the GL logic simulation executes the
PTP in the GPU to extract the sequence of test patterns per
clock cycle applied to the target module. These test patterns
(binary values) are implicitly generated by each instruction of
the PTP targeting a specific module in the GPU. The sequence
of test patterns is extracted by observing the I/O switching
activity in the target module under analysis. In the end, one test
pattern report is generated and used in the subsequent stage.

The third stage, (3) in Figure 1, performs two steps: i) the
fault simulation and ii) the instruction labeling. Firstly, one
optimized GL fault simulation per PTP is performed to analyze
the fault detection effectiveness of each instruction in the target
module. The proposed optimized fault simulation reduces the
unmanageable fault simulation effort required by big and
complex designs, such as GPUs, by only selecting a target
module instead of fault simulating the complete GPU.

This optimized approach takes advantage of the fact that
test patterns unable to propagate fault effects to the outputs of a
module are also unable to propagate these effects to the output
of the complete GPU or a selected observation point of a PTP
(i.e., the memory bus system in a GPU). Thus, the fault
observability resorts to the outputs of the module (module-level
fault observability [25]). The optimized fault simulation uses
the test patterns report (generated in the previous step) as input.
Moreover, one fault is detected when there is a discrepancy in
the execution between the fault-free and the faulty versions of
the module, since the selected observability point allows the
trace of each propagated fault per cc.

The output of the optimized fault simulation is a detailed
report (Fault Sim Report), which contains a list of each test
pattern injected, the number of activated faults, and the number
of detected faults per pattern. In this stage, a fault dropping
mechanism is employed to increase the compaction rate for
several PTPs devoted to detecting faults in the same module of
a GPU. In this case, one fault list report is employed as a
supporting mechanism to perform the compaction. This fault
list report initially includes all faults of a target module. Then,

458 Design, Automation and Test in Europe Conference (DATE 2022)

after each fault simulation (one per PTP), the fault list is
updated, and those detected faults are removed from the report,
so subsequent fault simulations and PTPs applied to the same
module of the GPU only target those missing undetected faults.

Instruction labeling algorithm
Input: PTP composed of N instructions, Tracing clock cycle report QQ, Tracing

program counter-report PC, tracing decoded instruction report DI, Warp
identifier W, Fault sim test patterns report FSR

Output: Labeled parallel test program (LPTP)
for each instruction I in TP do
| LPTP{I}:=(‘unessential’)
| CC=match (I, PC, DI)
| for each warp Wj executed by I in a block, do
| | for each clock cycle kth in Wjth do
| | | if FSRCCk detects faults, then
| | | | LPTP{I}:=(‘essential’)
| | | | go to next instruction
| | | end if
| | loop
| loop
Loop

Fig. 2. Pseudocode of the instruction labeling algorithm.
The second step (instructions labeling) highlights the

instructions of a PTP according to the observed fault detection
capabilities reported during the fault simulation step. This
labeling procedure tags each instruction as “essential” or
“unessential” according to the analysis of the Tracing and Fault
Sim reports generated in the previous stages.

Fig. 2 presents the algorithm describing the labeling
procedure for a PTP targeting a hardware module in a GPU. In
this procedure, each Instruction I in the PTP is analyzed and
matched by looking at the tracing report and matching each
instruction with their program counter value. This matching
procedure identifies the temporal life (start/end in ccs) of each
instruction.

As introduced in section II, one instruction in the PTP is
executed by several groups of threads (warps in a block), Then
for the jth warp in a block (Wjth), there is a test pattern
correspondence between the kth clock cycle (CCk) and the test
pattern stored in the fault simulation report (FSRCCk).
Therefore, Instruction I is “essential” when its execution and
its associated test pattern can detect faults in at least one of the
executed warps. Otherwise, Instruction I is labeled with an
“unessential,” tag as a candidate to be removed in the next
stage of the compaction method. The previous analysis
produces a Labeled Parallel Test Program (LPTP).

The fourth stage (test program reduction), see (4) in Fig. 1,
processes and reduces the LPTP. Fig. 3 shows the reduction
algorithm employed to remove unessential instructions from a
LPTP. Firstly, the LPTP is divided into BBs. Each BB is
divided in Small Blocks (SBs) of a sequence of instructions that
comprises the load of test operands in the registers, execute an
operation, and propagate the result to an observable point. Then
each SB is analyzed Instruction by Instruction. One SB is
removed from the LPTP when all instructions inside the SB are
labeled as “unessential”. On the other hand, those SBs
containing at least one “essential” instruction remain
unchanged for the final Compacted PTP (CPTP). It is worth
noting that removing an SB may also imply the additional
removal and relocation of associated input data from the main

memory, which depends on the parallel kernel parameters and
the location of the SB in the PTP.

Finally, the reassembling step (5) in Fig. 1, replaces the
original PTPs using the generated CPTPs, so reassembling the
STL. In this stage, a final fault simulation is employed to
evaluate the FC features of the CPTPs in the new STL.

Reduction Algorithm
Input: Labeled Test program LPTP with N instructions divided into M consecutive BBs,

and each BB is segmented in SBs (SB1, SB2, SB3, . . ., SBm);
Output: Compacted Parallel Test Program CPTP
for each SB in LPTP, do
| for each instruction, I in SB do
| | if the label of I is ‘essential,’ then
| | | append SB to CPTP
| loop
Loop
Fig. 3. Pseudocode of the reduction algorithm to remove SBs from an LPTP.

IV. EXPERIMENTAL RESULTS

The proposed compaction approach was implemented as a
tool written in Python language. This tool interacts with one
logic simulator and one fault injector simulator, composing an
environment to analyze and compact the GPU’s STLs. Both
simulators (logic and fault injector) can handle the RTL and GL
description of the FlexGripPlus model, which was configured
with one SM and 8 SP cores.

The simulations reports, employed during the compaction
process, are generated as text files. The test patterns employed
in the fault simulation of the target modules employ the VCDE
format. The compaction procedures and experiments were
performed on a workstation with two AMD EPYC 7301 16-
core processors running at 2.2GHz and equipped with 128 GB
of RAM memory.

In the experiments, one STL for GPUs was used to evaluate
and validate the proposed compaction approach. The STL
comprises several PTPs targeting diverse units inside the GPU,
such as control units, memory modules, and functional units. In
the STL, the PTPs devoted to testing the Decoder Unit (DU)
and the parallel functional units occupy around 90.69%
(157,113 instructions out of 173,241) of the size and 75.70%
(12 million out of 16 million ccs) of the test duration in the
STL. Thus, any compaction in those PTPs represents a
meaningful reduction in the size and duration of the overall
STL. Additionally, the programing structure employed to
develop those PTPs fits the ARC definition explained in section
III. It is worth noticing that 47.60% of overall faults of the GPU
belong to the DU and the parallel functional units. Then the
PTPs targeting these units in the GPU are good candidates to
apply the compaction methodology devised in this work
because they contain the most considerable size and duration of
the whole STL and target a significant amount of faults of the
GPU. The others PTPs are excluded of the compaction since
they have been developed carefully to test control units and any
instruction removal breaks the devised test algorithm.

The first set of PTPs devoted to testing the DU comprises
three PTPs (IMM, MEM, and CNTRL). The IMM PTP targets
the execution of all instruction formats using at least one
immediate operand. This PTP also includes the Register-based
instructions. Similarly, the MEM PTP is composed of
instructions that perform memory accesses (global memory and

Design, Automation and Test in Europe Conference (DATE 2022) 459

shared memory). Finally, The CNTRL PTP uses immediate-
based instructions, memory-addressing instructions, and
register-based instructions to generate special conditions to be
used by the control flow instructions. The IMM and MEM
PTPs are configured for parallel operation as one block and 32
threads per block. On the other hand, the CNTRL PTP is
configured as one block and 1024 threads per block. The PTPs
were developed by a specialized test engineer resorting to a
pseudorandom approach using all instructions formats of the
supported assembly language (Streaming ASSembler language
or SASS) in FlexGripPlus.

TABLE I. MAIN FEATURES OF THE EVALUATED PTPS
Target
Module PTP Size

(instructions) ARC (%) Duration
(ccs)

FC
(%)

Decoder
Unit

IMM 32,736 100.0 2,229,225 71.13
MEM 32,581 100.0 3,186,236 76.59

CNTRL 336 90.0 710,100 71.18
IMM+MEM+CNTRL 65,653 99.0 6,125,561 80.15

SP
TPGEN 19,604 100.0 1,447,620 84.07
RAND 55,000 100.0 3,434,235 83.99

TPGEN+RAND 74,604 100.0 4,881,855 87.22
SFU SFU_IMM 16,856 100.0 1,200,034 90.75

The second set of PTPs targets the functional units, two
PTPs (TPGEN and RAND) target the SP-Cores and one PTP
(SFU_IMM) targets the SFUs. The TPGEN resorts to test
patterns extracted from an ATPG. A parser tool converted the
ATPG test patterns into valid instructions for the GPU. The test
patterns are converted partially due to a lack of fully equivalent
instructions of GPU and generated patterns. RAND is a
pseudorandom-based PTP specially designed to test all SP
cores of any SM in the GPU. The SFU_IMM employs an
ATPG tool that generates the test patterns to test the SFU; then,
a parser tool converts those test patterns into GPU instructions.
The kernel configuration of each PTPs is one block and 32
threads per block. Table I reports the main features of the PTPs
considered for compaction

The analyzed modules in the GPU (DU, SPs and SFUs)
were synthesized using the 15nm Nangate OpenCell library
[26]. In the validation fault injection campaigns, 12,834,
191,616, and 180,540 faults were injected into the decode unit
and functional units, respectively.

Tables II and III report the results after applying the
proposed compaction approach to the considered PTPs. In both
tables, the second column reports the final size for the
compacted version of each PTP. Moreover, the third column
reports the compaction percentage obtained for each PTP
concerning their original length. Similarly, the fourth and fifth
columns show the compacted PTPs and the percentage of
reduced duration. Finally, the sixth column provides the
difference in the FC between the original PTP and the
compacted one. The last column reports the required time to
perform the compaction of each PTP.

The reported results in Table II show that the compaction
approach can considerably reduce the size (up to 90.36%) and
duration (up to 97.84%) for the evaluated set of PTPs targeting
the DU.

A deep analysis of each PTP shows that IMM, MEM, and
CNTRL are composed of a regular structure of SBs, composed
of a few instructions (15 to 18). More in detail, IMM and MEM

have a similar size and duration, but MEM has the highest
compaction rates. This behavior can be explained when
considering that the compaction of MEM is performed after
IMM, so those faults already detected by the IMM are
discarded from MEM. Therefore, the compaction keeps only
those essential instructions that can produce suitable patterns
and provoke additional fault detection in the decode unit. On
the other hand, the compaction was slightly less for CNTRL
than in IMM and MEM. This moderate compaction is mainly
caused by the original reduced number of instructions and the
inadmissible region that contains conditional and control-flow
instructions.

TABLE II. THE COMPACTION RESULTS IN THE TEST PROGRAMS
FOR THE DECODER UNIT

PTP
Compaction

Size Duration Diff FC
(%)

Compaction
time (hours) instr (%) (ccs) (%)

IMM 884 -97.30 92,423 -95.85 +0.06 2.28
MEM 442 -98.64 50,144 -98.42 -1.79 2.62

CNTRL 89 -73.51 447,689 -36.95 -0.00 0.91
IMM+MEM+CNTRL 1,415 -97.84 590,256 -90.36 -0.05 5.81

TABLE III. THE COMPACTION RESULTS IN THE TEST PROGRAMS
FOR THE FUNCTIONAL UNITS

PTP
Compaction

Size Duration Diff FC
(%)

Compaction
time (hours) instr (%) (ccs) (%)

TPGEN 4,742 -75.81 452,401 -68.75 -1.31 0.28
RAND 1,215 -97.79 112,030 -96.74 -17.07 1.12

TPGEN+RAND 5,957 -92.02 564,431 -88.44 -3.13 1.40
SFU IMM 9,910 -41.20 662,524 -44.79 0.0 0.31

Regarding the FC, the compaction approach for PTPs
targeting the DU has a negligible impact (reduction of up to
0.05%). However, the FC can be improved sometimes, as
observed in the IMM case with +0.06% of FC. Those effects on
the FC are produced by the removal of a sequence of SBs, but
producing a more favorable test sequence (in case of increasing
FC) or an adverse sequence (decreasing FC) of instructions for
fault detection purposes.

The results in Table III show that the reported compaction
rates for the execution units are outstanding and reached a size
reduction of up to 97.79% for the analyzed PTPs. Similarly, the
duration reduction was up to 96.74%.

It is important to underline that the compaction method
successfully reduced PTPs created resorting to test patterns
generated by an ATPG tool: TPGEN (75.81% in size and
68.75% in duration) and SFU_IMM (41.20% in size and
44.79% in duration). These compaction results for SFU_IMM
were obtained applying the test patterns in reverse order during
the fault simulation of stage 3 in our compaction approach. The
selected PTPs' compaction implies 80.71% size and 64.43%
duration reduction rates for the whole STL.

Interestingly, the RAND PTP compaction produces a
reduction in the FC by 17.07%. This figure is due to the fault
dropping performed during the previous compaction of the
TPGEN PTP. This means that several instructions in RAND
PTP detect some faults that also TPGEN detects; therefore,
these instructions are redundant and can be removed during the
compaction of the RAND PTP. The combined FC of the
complete PTPs for SP-cores was affected by only 3.13%.

460 Design, Automation and Test in Europe Conference (DATE 2022)

It is worth notice that the compaction strategy preserves the
faults detection capabilities of the PTPs for the SP cores after
the compaction. The FC difference is caused by changes in the
computation of the signature-per-thread (SpT). The SpT is
updated by the SP-cores, applying a MISR-like algorithm,
taking each test operation's result. This SpT procedure detects
additional faults in the SPs. Therefore, due to the compaction,
the result value of one missing SB changes the SpT calculation
for subsequent SBs, limiting the ability of detecting the faults
previously detected.

On the other hand, the results show that for the SFU_IMM
PTP, the FC is not affected by the compaction procedure.
Clearly, this happens because the SFU unit performs
transcendent floating-point operations, only. Therefore,
removing a non-essentials SB from the SFU_IMM does not
affect the fault detection capabilities of the other SBs, since
there is no data dependence among SBs.

In the case of the PTPs for the DU, the compaction of the
PTPs (CNTRL, IMM and MEM) required 0.91, 2.18, and 2.62
hours, respectively. In contrast, the required time to apply the
compaction method on PTPs for Functional units (TPGEN,
RAND, and SFU_IMM) reached only 1.71 hours.

It is worth noting that the proposed compaction method
only requires a fraction of the time to analyze and process the
compaction on PTPs of an STL. In the performed experiments,
the PTPs included thousands of instructions. Moreover, the
target modules in the GPU (DU, and functional units) contain
more than a hundred thousand faults. Our compaction method
only resorts to one logic and one fault simulation to perform the
compaction. Previous works [13]–[16] addressed only CPUs to
compact TPs in STLs using techniques that require as many
fault simulations as the number of instructions in a TP.
Therefore, the computational complexity and required
compaction processing time of those methods are proportional
to the number of fault simulations needed, usually in the order
of hundreds or thousands of them.

V. CONCLUSIONS

We proposed a compaction method to reduce the size and
duration of PTPs in STLs for GPUs. According to the results,
the proposed method reaches a high compaction ratio: up to
98.64% in terms of size and up to 98.42% in terms of duration
when compacting PTPs with regular structure, excluding those
regions with parametric loops. The compaction method showed
a minimal impact on the achieved FC for the evaluated PTPs.
The compaction of the selected PTPs implies 80.71% size and
64.43% duration compaction rates for the complete STL
analyzed. This compaction method is suitable to reduce the
size, and the duration of the target PTP, developed via
pseudorandom or ATPG-based methods. The main advantage
of the proposed compaction method is the limited required
computational time, due to the minimum number of logic and
fault simulations required to perform the compaction. This
method only uses one RTL logic simulation to trace the
behavior of a target PTP and one GL fault simulation to identify
helpful instructions able to detect and propagate faults.

As future works, we plan to extend the compaction
capabilities to more elaborated programming styles and test

programs in other accelerator’s and processor’s architectures, as
well as targeting other fault models.

REFERENCES

[1] M. Psarakis, et al., “Microprocessor software-based self-testing,” IEEE
Des. Test Comput., vol. 27, no. 3, pp. 4–19, May 2010.

[2] ARM Technologies, “Safety – Arm.” [Online]. Available:
https://www.arm.com/why-arm/technologies/safety. [Accessed: 11-Jun-
2021].

[3] Microchip Technology Inc, “DS52076A 16-bit CPU Self-Test Library
User’s Guide.” Microchip Technology, 2012.

[4] ST Microelectronics, “AN3307 Application note Guidelines for obtaining
IEC60335 Class B certification for any STM32 application.” ST
Microelectronics, 2016.

[5] Infineon Technologies, “Hitex: Selftest Libraries (Safety Libs).” [Online].
Available: https://www.hitex.com/tools-components/software-
components/selftest-libraries-safety-libs/. [Accessed: 11-Jun-2021].

[6] J. E. Rodriguez Condia and M. Sonza Reorda, “Testing the Divergence
Stack Memory on GPGPUs: A Modular in-Field Test Strategy,”
IEEE/IFIP Int. Conf. VLSI Syst. VLSI-SoC, pp. 153–158, Oct. 2020.

[7] B. Du, et al., “About the functional test of the GPGPU scheduler,” 24th
Int. Symp. On-Line Test. Robust Syst. Des. IOLTS 2018, pp. 85–90, 2018.

[8] J. E. Rodriguez Condia and M. Sonza Reorda, “On the testing of special
memories in GPGPUs,” 26th IEEE Int. Symp. On-Line Test. Robust Syst.
Des. IOLTS 2020, Jul. 2020.

[9] S. Di Carlo, et al., “An On-Line Testing Technique for the Scheduler
Memory of a GPGPU,” IEEE Access, vol. 8, pp. 16893–16912, 2020.

[10] J. D. Guerrero-Balaguera, et al., “On the Functional Test of Special
Function Units in GPUs,” 24th Int. Symp. Des. Diagnostics Electron.
Circuits Syst. DDECS 2021, pp. 81–86, Apr. 2021.

[11] S. Di Carlo et al., “A software-based self test of CUDA Fermi GPUs,”
18th IEEE Eur. Test Symp. ETS 2013, 2013.

[12] M. Abdel-Majeed and W. Dweik, “Low overhead online periodic testing
for GPGPUs,” Integration, vol. 62, pp. 362–370, Jun. 2018.

[13] M. S. Vasudevan, et al., “Automated Low-Cost SBST Optimization
Techniques for Processor Testing,” International Conference on VLSI
Design, 2021, vol. 2021-February, pp. 299–304.

[14] M. Gaudesi, et al., “New techniques to reduce the execution time of
functional test programs,” IEEE Trans. Comput., vol. 66, no. 7, pp. 1268–
1273, Jul. 2017.

[15] A. Touati, et al., “An effective approach for functional test programs
compaction,” IEEE 19th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems, DDECS 2016, 2016.

[16] R. Cantoro, et al., “An evolutionary approach for test program
compaction,” 16th Latin-American Test Symposium, LATS 2015, 2015.

[17] R. Cantoro, et al., “Automated test program reordering for efficient
SBST,” 32nd Conference on Design of Circuits and Integrated Systems,
DCIS 2017 - Proceedings, 2018, vol. 2017-Novem, pp. 1–6.

[18] J. D. Guerrero-Balaguera, et al., “A Novel Compaction Approach for
SBST Test Programs,” accepted in Asian Test Symposium (ATS), 2021, p.
6. available in arXiv:2109.00958.

[19] J. E. Rodriguez Condia, et al., “FlexGripPlus: An improved GPGPU
model to support reliability analysis,” Microelectron. Reliab., vol. 109, p.
113660, Jun. 2020.

[20] E. Lindholm, et al., “NVIDIA Tesla: A unified graphics and computing
architecture,” IEEE Micro, vol. 28, no. 2, pp. 39–55, Mar. 2008.

[21] J. E. Rodriguez Condia and M. Sonza Reorda, “Testing permanent faults
in pipeline registers of GPGPUs: A multi-kernel approach,” 25th Int.
Symp. On-Line Test. Robust Syst. Des. IOLTS 2019, pp. 97–102, Jul. 2019.

[22] P. Bernardi, et al., “Development flow for on-line core self-test of
automotive microcontrollers,” IEEE Trans. Comput., vol. 65, no. 3, pp.
744–754, Mar. 2016.

[23] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative
approach. Elsevier, 2011.

[24] NVIDIA Corporation, “CUDA Toolkit Documentation,” 2021. [Online].
Available: https://docs.nvidia.com/cuda/. [Accessed: 29-Aug-2021].

[25] J. Perez Acle, et al., “Observability solutions for in-field functional test of
processor-based systems: A survey and quantitative test case evaluation,”
Microprocess. Microsyst., vol. 47, pp. 392–403, Nov. 2016.

[26] M. Martins et al., “Open Cell Library in 15nm FreePDK Technology,”
Symposium on International Symposium on Physical Design, 2015.

Design, Automation and Test in Europe Conference (DATE 2022) 461

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

