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Abstract — Nowadays, Graphics Processing Units (GPUs) are 
effective platforms for implementing complex algorithms (e.g., for 
Artificial Intelligence) in different domains (e.g., automotive and 
robotics), where massive parallelism and high computational 
effort are required. In some domains, strict safety-critical 
requirements exist, mandating the adoption of mechanisms to 
detect faults during the operational phases of a device. An 
effective test solution is based on Self-Test Libraries (STLs) 
aiming at testing devices functionally. This solution is frequently 
adopted for CPUs, but can also be used with GPUs. Nevertheless, 
the in-field constraints restrict the size and duration of acceptable 
STLs. This work proposes a method to automatically compact the 
test programs of a given STL targeting GPUs. The proposed 
method combines a multi-level abstraction analysis resorting to 
logic simulation to extract the microarchitectural operations 
triggered by the test program and the information about the 
thread-level activity of each instruction and to fault simulation to 
know its ability to propagate faults to an observable point. The 
main advantage of the proposed method is that it requires a single 
fault simulation to perform the compaction. The effectiveness of 
the proposed approach was evaluated, resorting to several test 
programs developed for an open-source GPU model 
(FlexGripPlus) compatible with NVIDIA GPUs. The results show 
that the method can compact test programs by up to 98.64% in 
code size and by up to 98.42% in terms of duration, with 
minimum effects on the achieved fault coverage. 
Keywords—Functional Testing, Graphics Processing Units 
(GPUs), Self-Test Libraries (STLs), Test Compaction 

I. INTRODUCTION 

Currently, Graphics Processing Units (GPUs) are effective 
platforms used in several data-intensive applications, 
sometimes in safety-critical domains. Safety-critical 
applications increasingly employ GPUs as the main workhorse 
to perform complex operations and process large amounts of 
information (e.g., for Artificial Intelligence and sensor fusion 
operations). However, in this domain, effective methods to 
identify possible faults arising in a device and to face their 
effects are crucial goals set by the functional safety standards. 

One feasible test solution corresponds to the Software-
Based Self-Test (SBST) strategy, which is based on developing 
special test programs (TPs) able to detect faults. These TPs 
comprise Self-Test Libraries (STLs) [1]. 

STLs implement a functional at-speed test strategy to detect 
faults with a functional test run at the maximum operating clock 
frequency and in operational conditions.  Furthermore, STLs 
are suitable for in-field testing (during the operative life of a 
device) and allow, in particular, the periodic testing of most 
internal modules. Currently, manufacturers, such as 
STMicroelectronics, Arm, NXP, Infineon, Renesas, Cypress, 

and Microchip (among the others), provide their customers with 
STLs, thus offering in-field test capabilities for their processor-
based products targeting several domains (industrial, medical, 
aerospace, and automotive) [2]–[5]. 

An STL for processors and microcontrollers includes one or 
more TPs developed with different approaches and 
programming styles to achieve a given structural fault coverage 
(FC), e.g., in terms of stuck-at faults. Similarly, STLs for GPUs 
are composed of several ‘Parallel Test Programs’ (PTPs), 
which provide the same features as TPs in processors. These 
PTPs are designed to exploit the intrinsic parallelism of GPUs 
to perform the test. 

In the past, several works demonstrated the feasibility of 
developing PTPs for control units [6], [7] memory modules [6], 
[8], [9], and functional units [10]–[12] in GPUs, achieving a 
good FC. Each PTP requires a given amount of time to be 
executed. However, it is possible that several application’s 
constraints might limit the available execution time. In this 
scenario, short and fast PTPs are desired. Thus, compaction 
methods can support the optimization of PTPs and simplify 
their adoption for in-field test. PTPs in STLs are generated 
using different approaches (e.g., custom, ATPG-based, 
pseudorandom, deterministic), so the compaction of a PTP can 
be a challenging task. Moreover, parallelism features and 
constraints of a given PTP must be considered when 
compacting their size and duration. 

Previously, several works proposed methods to compact 
TPs for processor-based systems. These methods effectively 
reduce the size and duration of TPs while maintaining the same 
FC [13]–[15]. In [16], the authors split TPs into sub-routines 
and remove individual instructions after analyzing the FC 
contribution of each sub-routine. Authors in [17] exploited 
reordering techniques among different pieces of a TP to 
maintain the FC and reduce the length of the TP. In both cases, 
a high computational effort is required to analyze and compact 
a given TP. In fact, the compaction process is based on the 
production of compacted TP candidates from the original TP, 
which are then fault simulated to assess the new FC. However, 
the required time and computational costs for the compaction of 
an individual TP are exceptionally high. It is worth noticing that 
none of the reported techniques in the literature face the 
compaction of PTPs and STLs for GPUs, and some of them can 
hardly be extended from CPUs to GPUs. 

In this work, we present a method to perform the 
compaction of PTPs for GPUs by combining the information 
about the microarchitectural operation performed by a PTP, the 
individual thread operation, and the fault propagation abilities 
of each test pattern to any visible point. This method follows 
and extends the basic idea of the time-efficient compaction 
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approach presented in [18], which was developed targeting 
STLs for CPUs only, and employs different abstraction levels 
(software, RT level, gate level) to perform only ONE logic 
simulation and ONE fault simulation, thus significantly 
reducing the required compaction time and with minimum 
impact on the FC.  

In both logic and fault simulations, several parameters are 
collected and extracted to support the compaction of STLs. 
Firstly, a logic simulation using the RT-level model of a GPU is 
used to gather detailed tracing information about the executed 
PTP on every clock cycle. Secondly, a fault simulation is 
performed using the gate-level version of the circuit. This fault 
simulation also records the number of faults detected at each 
clock cycle. The results obtained in both simulations are used to 
identify those instructions in the PTP unable to stimulate or 
propagate fault effects in a target module, so listing them as 
candidates for elimination. To the best of our knowledge, the 
proposed compaction method is the first attempt to address the 
compaction of STLs in GPUs. 

For the purpose of this work, an open-source GPU model 
(FlexGripPlus) was used to quantitatively evaluate and validate 
the proposed compaction method. FlexGripPlus is compatible 
with the NVIDIA GPU architecture and programming flow. 
The experimental results show that the compaction method is 
highly effective in compacting PTPs with continuous and 
regular structural descriptions. The reduction in the size of 
PTPs reached up to 98.64% and up to 98.42% in the duration 
while minimally affecting the fault detection capabilities in the 
STL.  

The paper is organized as follows: Section II introduces the 
background. Then, Section III describes the proposed 
compaction method for STLs in GPUs. Section IV reports the 
experimental results. Finally, Section V presents the main 
conclusions and future works. 

II. BACKGROUND  

A. GPU organization  
The architecture of a GPU is based on arrays of parallel 

execution units (also called Streaming Multiprocessors or SMs) 
in the NVIDIA’s terminology. An SM is the main operative 
core inside a GPU, and it implements the Single-Instruction 
Multiple-Data (SIMD) paradigm or variations, such as the 
Single-Instruction Multiple-Thread (SIMT). More in detail, 
each SM includes several functional units (Streaming 
Processors or SPs), which are used to execute the same 
instruction in parallel for several threads. The number of SPs 
(from 8 to 128) directly depends on the GPU architecture and 
the number of parallel threads to be processed simultaneously. 
Moreover, the SM also includes several functional units, such 
as Special Function Units (SFUs) and Tensor Core Units 
(TCUs), to perform specific operations and support multimedia 
and artificial intelligence applications. The GPU architecture 
also includes a memory hierarchy mainly used to reduce latency 
during the kernel execution. The memory resources include a 
‘General Purpose Register File’ (GPRF), a shared memory, a 
local memory, a constant memory, and an external global/main 
memory. 

A parallel program (kernel), executed by the GPU and 
called by the Host, is divided into parts by a general controller 
and assigned to the available SMs. Then, each SM loads one 
instruction from the code and processes it in parallel through 
the available SPs. During the execution, the SM processes in 
parallel a set of threads (or Warps). 

B. FlexGrip GPU Architecture 
FlexGripPlus [19] is an open-source GPU model based on 

the description of one NVIDIA’s microarchitecture (G80) [20]. 
This GPU model supports up to 52 assembly instructions and is 
compliant with the programming flow of NVIDIA. 
FlexGripPlus is organized as a set of arrays of SMs. One 
general controller controls the tasks submitted to every SM. In 
each SM, a local controller manages the task by dispatching a 
warp into the available SPs. The SM is divided into five 
pipeline stages and executes one instruction following the 
Single-Instruction Multiple-Thread (SIMT) paradigm. More in 
detail, the SM includes 8 SPs, 8 Floating Point Units (FP32), 
and two SFUs. The flexibility of the GPU model allows the 
selection of the number of execution units (8,16, or 32) in the 
SM. 

C. Software-Based Self-Test 
SBST [1] is a flexible and noninvasive strategy aiming at 

detecting faults in internal modules of a processor-based 
system. SBST can be used at the end of the production phase 
and is also widely employed for in-field test. This strategy is 
based on executing specially crafted TPs using selected 
instructions at maximum operational clock speed. 

In parallel architectures, such as GPUs, the SBST strategy 
can also be adopted to develop PTPs. Each PTP is built 
employing the available Instruction-Set Architecture (ISA) of a 
target GPU. Each instruction in the PTP is intended to apply 
one or more test patterns to one or several target modules in 
parallel. These instructions compose routines aiming at 
exciting, propagating, and detecting faults when operating 
warps in an SM. 

In general, a PTP is composed of three main parts: i) thread 
registers load, ii) parallel operation execution, and iii) 
propagation of the result to an observable point.   

In principle, these steps are repeated for each thread in the 
program. However, it is also possible that divergences could be 
present, so only a portion of the threads executes a given 
operation, meanwhile missing threads skip or perform different 
procedures. This divergence behavior is commonly used to 
excite control modules but may affect the test quality on 
functional units and regular structures in the GPU. In these 
parallel architectures, the fault detection of a PTP is commonly 
performed using exceptions and thread signatures [21] out of 
the values on any observation point or memory output of the 
GPU. A comprehensive overview of the main issues (and 
possible solutions) to be faced when generating STLs in an 
industrial environment can be found in [22]. 

Although several works have been published regarding the 
compaction of TPs for processors, to the best of our knowledge, 
there are no published works facing the compaction of PTPs for 
GPUs.  
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III. PROPOSED COMPACTION APPROACH 

The proposed compaction method assumes the availability 
of a Self-Test Library (STL) for a particular module in the GPU 
or for the complete GPU. The STL can be split into PTPs. Each 
PTP is composed of a given number of instructions, using the 
GPU’s assembly language, and targets a given fault model with 
a required execution time (clock cycles or ccs) and FC per 
target module in the GPU. 

Fig. 1. A general scheme of the proposed compaction approach for functional 
TPs in GPUs. 

The compaction approach proposed here works on PTPs 
targeting the stuck-at fault model. However, the same 
compaction approach can be adapted considering other fault 
models as well.  

The compaction approach is divided into five stages. i) PTP 
partitioning, ii) Logic tracing, iii) Fault detection analysis and 
labeling, iv) PTP reduction, and v) PTP reassembling. 

In the program partitioning stage, see (1) in Figure 1, the 
target PTPs are extracted and analyzed individually to perform 
the compaction procedure. This analysis consists in the 
identification of the portions of the PTP which are suitable for 
compaction: we called these portions of code Admissible 
Regions for Compaction (ARCs).  The identification of the 
ARC follows three steps. The first step defines and finds the 
Basic Blocks (BBs) of each PTP. One BB is a group of 
instructions that are always executed in sequence (no in/out 
jumps or loops in the BB) [23]. In the GPU case, a BB can be 
defined as a group of embarrassingly parallel plain sequence of 
SIMD or SIMT instructions [24]. The second step analyzes the 
control flow graph of the PTP and incorporates in the ARC all 
BBs in the PTP except those BBs involved in parametric loops 
whose iterative parameter is calculated by any BB inside or 
outside the loop. Once the ARCs are identified and chosen, the 
third step of the first stage of the compaction method, extracts 
these regions from the PTPs. In contrast, other regions of the 
PTPs are discarded as candidates for compaction and remain 
unaffected during the compaction process.  

The logic tracing stage, see (2) in Figure 1, performs two 
logic simulations (one RTL and one GL) with the PTPs in the 
microarchitectural description of the GPU and extracts 
information about the execution with the purpose of identifying 
the relationship between each instruction in the BBs and its 
effects in terms of fault detection per warp.  

On the one hand, the RTL logic simulation generates fine-
grain information for each clock cycle (cc) about the functional 
execution of a PTP in the GPU. This simulation produces one 
tracing report that collects the crucial details about the PTP 
execution and the interaction at the HW-SW level to identify 
the sequence of executed instructions and the correlation with 
functional effects on a target module. One hardware monitor is 
incorporated for tracing purposes in one SM of the GPU 
without any effect on the functional operation of the PTP. This 
monitor captures the instruction opcodes coming from the fetch 
stage and traces the execution of the instructions in the GPU, 
generating a report for the hardware module under analysis. 
The tracing report contains the following information for each 
cc: the decoded instruction, the program counter value, the 
executed instruction per warp, the warp identifier, and the cc 
value. 

On the other hand, the GL logic simulation executes the 
PTP in the GPU to extract the sequence of test patterns per 
clock cycle applied to the target module. These test patterns 
(binary values) are implicitly generated by each instruction of 
the PTP targeting a specific module in the GPU. The sequence 
of test patterns is extracted by observing the I/O switching 
activity in the target module under analysis. In the end, one test 
pattern report is generated and used in the subsequent stage. 

The third stage, (3) in Figure 1, performs two steps: i) the 
fault simulation and ii) the instruction labeling. Firstly, one 
optimized GL fault simulation per PTP is performed to analyze 
the fault detection effectiveness of each instruction in the target 
module. The proposed optimized fault simulation reduces the 
unmanageable fault simulation effort required by big and 
complex designs, such as GPUs, by only selecting a target 
module instead of fault simulating the complete GPU. 

This optimized approach takes advantage of the fact that 
test patterns unable to propagate fault effects to the outputs of a 
module are also unable to propagate these effects to the output 
of the complete GPU or a selected observation point of a PTP 
(i.e., the memory bus system in a GPU). Thus, the fault 
observability resorts to the outputs of the module (module-level 
fault observability [25]). The optimized fault simulation uses 
the test patterns report (generated in the previous step) as input. 
Moreover, one fault is detected when there is a discrepancy in 
the execution between the fault-free and the faulty versions of 
the module, since the selected observability point allows the 
trace of each propagated fault per cc. 

The output of the optimized fault simulation is a detailed 
report (Fault Sim Report), which contains a list of each test 
pattern injected, the number of activated faults, and the number 
of detected faults per pattern. In this stage, a fault dropping 
mechanism is employed to increase the compaction rate for 
several PTPs devoted to detecting faults in the same module of 
a GPU. In this case, one fault list report is employed as a 
supporting mechanism to perform the compaction. This fault 
list report initially includes all faults of a target module. Then, 
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after each fault simulation (one per PTP), the fault list is 
updated, and those detected faults are removed from the report, 
so subsequent fault simulations and PTPs applied to the same 
module of the GPU only target those missing undetected faults. 

Instruction labeling algorithm 
Input:  PTP composed of N instructions, Tracing clock cycle report QQ, Tracing 

program counter-report PC, tracing decoded instruction report DI, Warp 
identifier W, Fault sim test patterns report FSR 

Output: Labeled parallel test program (LPTP) 
for each instruction I in TP do 
|     LPTP{I}:=(‘unessential’)  
|     CC=match (I, PC, DI) 
|     for each warp Wj executed by I in a block, do 
|     |      for each clock cycle kth  in Wjth do 
|     |      |      if FSRCCk detects faults, then 
|     |      |      |     LPTP{I}:=(‘essential’) 
|     |      |      |     go to next instruction 
|     |      |      end if 
|     |      loop 
|     loop 
Loop 

Fig. 2. Pseudocode of the instruction labeling algorithm. 
The second step (instructions labeling) highlights the 

instructions of a PTP according to the observed fault detection 
capabilities reported during the fault simulation step. This 
labeling procedure tags each instruction as “essential” or 
“unessential” according to the analysis of the Tracing and Fault 
Sim reports generated in the previous stages.  

Fig. 2 presents the algorithm describing the labeling 
procedure for a PTP targeting a hardware module in a GPU. In 
this procedure, each Instruction I in the PTP is analyzed and 
matched by looking at the tracing report and matching each 
instruction with their program counter value. This matching 
procedure identifies the temporal life (start/end in ccs) of each 
instruction. 

As introduced in section II, one instruction in the PTP is 
executed by several groups of threads (warps in a block), Then 
for the jth warp in a block (Wjth), there is a test pattern 
correspondence between the kth clock cycle (CCk) and the test 
pattern stored in the fault simulation report (FSRCCk). 
Therefore, Instruction I is “essential” when its execution and 
its associated test pattern can detect faults in at least one of the 
executed warps.  Otherwise, Instruction I is labeled with an 
“unessential,” tag as a candidate to be removed in the next 
stage of the compaction method. The previous analysis 
produces a Labeled Parallel Test Program (LPTP).  

The fourth stage (test program reduction), see (4) in Fig. 1, 
processes and reduces the LPTP. Fig. 3 shows the reduction 
algorithm employed to remove unessential instructions from a 
LPTP. Firstly, the LPTP is divided into BBs. Each BB is 
divided in Small Blocks (SBs) of a sequence of instructions that 
comprises the load of test operands in the registers, execute an 
operation, and propagate the result to an observable point. Then 
each SB is analyzed Instruction by Instruction. One SB is 
removed from the LPTP when all instructions inside the SB are 
labeled as “unessential”. On the other hand, those SBs 
containing at least one “essential” instruction remain 
unchanged for the final Compacted PTP (CPTP). It is worth 
noting that removing an SB may also imply the additional 
removal and relocation of associated input data from the main 

memory, which depends on the parallel kernel parameters and 
the location of the SB in the PTP.  

Finally, the reassembling step (5) in Fig. 1, replaces the 
original PTPs using the generated CPTPs, so reassembling the 
STL. In this stage, a final fault simulation is employed to 
evaluate the FC features of the CPTPs in the new STL. 

Reduction Algorithm 
Input: Labeled Test program LPTP with N instructions divided into M consecutive BBs, 

and each BB is segmented in SBs (SB1, SB2, SB3, . . ., SBm); 
Output: Compacted Parallel Test Program CPTP 
for each SB in LPTP, do  
|    for each instruction, I in SB do 
|    |     if the label of I is ‘essential,’ then  
|    |    |    append SB to CPTP 
|    loop 
Loop 
Fig. 3. Pseudocode of the reduction algorithm to remove SBs from an LPTP. 

IV. EXPERIMENTAL RESULTS 

The proposed compaction approach was implemented as a 
tool written in Python language. This tool interacts with one 
logic simulator and one fault injector simulator, composing an 
environment to analyze and compact the GPU’s STLs. Both 
simulators (logic and fault injector) can handle the RTL and GL 
description of the FlexGripPlus model, which was configured 
with one SM and 8 SP cores.  

The simulations reports, employed during the compaction 
process, are generated as text files. The test patterns employed 
in the fault simulation of the target modules employ the VCDE 
format. The compaction procedures and experiments were 
performed on a workstation with two AMD EPYC 7301 16-
core processors running at 2.2GHz and equipped with 128 GB 
of RAM memory. 

In the experiments, one STL for GPUs was used to evaluate 
and validate the proposed compaction approach. The STL 
comprises several PTPs targeting diverse units inside the GPU, 
such as control units, memory modules, and functional units. In 
the STL, the PTPs devoted to testing the Decoder Unit (DU) 
and the parallel functional units occupy around 90.69% 
(157,113 instructions out of 173,241) of the size and 75.70% 
(12 million out of 16 million ccs) of the test duration in the 
STL. Thus, any compaction in those PTPs represents a 
meaningful reduction in the size and duration of the overall 
STL. Additionally, the programing structure employed to 
develop those PTPs fits the ARC definition explained in section 
III. It is worth noticing that 47.60% of overall faults of the GPU 
belong to the DU and the parallel functional units. Then the 
PTPs targeting these units in the GPU are good candidates to 
apply the compaction methodology devised in this work 
because they contain the most considerable size and duration of 
the whole STL and target a significant amount of faults of the 
GPU. The others PTPs are excluded of the compaction since 
they have been developed carefully to test control units and any 
instruction removal breaks the devised test algorithm.  

The first set of PTPs devoted to testing the DU comprises 
three PTPs (IMM, MEM, and CNTRL). The IMM PTP targets 
the execution of all instruction formats using at least one 
immediate operand. This PTP also includes the Register-based 
instructions. Similarly, the MEM PTP is composed of 
instructions that perform memory accesses (global memory and 
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shared memory). Finally, The CNTRL PTP uses immediate-
based instructions, memory-addressing instructions, and 
register-based instructions to generate special conditions to be 
used by the control flow instructions. The IMM and MEM 
PTPs are configured for parallel operation as one block and 32 
threads per block. On the other hand, the CNTRL PTP is 
configured as one block and 1024 threads per block. The PTPs 
were developed by a specialized test engineer resorting to a 
pseudorandom approach using all instructions formats of the 
supported assembly language (Streaming ASSembler language 
or SASS) in FlexGripPlus. 

TABLE I. MAIN FEATURES OF THE EVALUATED PTPS  
Target 
Module PTP Size 

(instructions) ARC (%) Duration 
(ccs) 

FC 
(%) 

Decoder 
Unit 

IMM 32,736 100.0 2,229,225 71.13 
MEM 32,581 100.0 3,186,236 76.59 

CNTRL 336 90.0 710,100 71.18 
IMM+MEM+CNTRL 65,653 99.0 6,125,561 80.15 

SP 
TPGEN 19,604 100.0 1,447,620 84.07 
RAND 55,000 100.0 3,434,235 83.99 

TPGEN+RAND 74,604 100.0 4,881,855 87.22 
SFU SFU_IMM 16,856 100.0 1,200,034 90.75 

The second set of PTPs targets the functional units, two 
PTPs (TPGEN and RAND) target the SP-Cores and one PTP 
(SFU_IMM) targets the SFUs. The TPGEN resorts to test 
patterns extracted from an ATPG. A parser tool converted the 
ATPG test patterns into valid instructions for the GPU. The test 
patterns are converted partially due to a lack of fully equivalent 
instructions of GPU and generated patterns. RAND is a 
pseudorandom-based PTP specially designed to test all SP 
cores of any SM in the GPU. The SFU_IMM employs an 
ATPG tool that generates the test patterns to test the SFU; then, 
a parser tool converts those test patterns into GPU instructions. 
The kernel configuration of each PTPs is one block and 32 
threads per block. Table I reports the main features of the PTPs 
considered for compaction 

The analyzed modules in the GPU (DU, SPs and SFUs) 
were synthesized using the 15nm Nangate OpenCell library 
[26]. In the validation fault injection campaigns, 12,834,  
191,616, and 180,540 faults were injected into the decode unit 
and functional units, respectively. 

Tables II and III report the results after applying the 
proposed compaction approach to the considered PTPs. In both 
tables, the second column reports the final size for the 
compacted version of each PTP. Moreover, the third column 
reports the compaction percentage obtained for each PTP 
concerning their original length. Similarly, the fourth and fifth 
columns show the compacted PTPs and the percentage of 
reduced duration. Finally, the sixth column provides the 
difference in the FC between the original PTP and the 
compacted one. The last column reports the required time to 
perform the compaction of each PTP. 

The reported results in Table II show that the compaction 
approach can considerably reduce the size (up to 90.36%) and 
duration (up to 97.84%) for the evaluated set of PTPs targeting 
the DU. 

A deep analysis of each PTP shows that IMM, MEM, and 
CNTRL are composed of a regular structure of SBs, composed 
of a few instructions (15 to 18). More in detail, IMM and MEM 

have a similar size and duration, but MEM has the highest 
compaction rates. This behavior can be explained when 
considering that the compaction of MEM is performed after 
IMM, so those faults already detected by the IMM are 
discarded from MEM. Therefore, the compaction keeps only 
those essential instructions that can produce suitable patterns 
and provoke additional fault detection in the decode unit. On 
the other hand, the compaction was slightly less for CNTRL 
than in IMM and MEM. This moderate compaction is mainly 
caused by the original reduced number of instructions and the 
inadmissible region that contains conditional and control-flow 
instructions. 

TABLE II. THE COMPACTION RESULTS IN THE TEST PROGRAMS 
FOR THE DECODER UNIT 

PTP 
Compaction 

Size Duration Diff FC 
(%) 

Compaction 
time (hours) instr (%)  (ccs) (%) 

IMM 884 -97.30 92,423 -95.85 +0.06 2.28 
MEM 442 -98.64 50,144 -98.42 -1.79 2.62 

CNTRL 89 -73.51 447,689 -36.95 -0.00 0.91 
IMM+MEM+CNTRL 1,415 -97.84 590,256 -90.36 -0.05 5.81 

TABLE III. THE COMPACTION RESULTS IN THE TEST PROGRAMS 
FOR THE FUNCTIONAL UNITS 

PTP 
Compaction 

Size Duration Diff FC 
(%) 

Compaction 
time (hours) instr (%)  (ccs) (%) 

TPGEN 4,742  -75.81 452,401 -68.75 -1.31 0.28 
RAND 1,215 -97.79 112,030 -96.74 -17.07 1.12 

TPGEN+RAND 5,957 -92.02 564,431 -88.44 -3.13 1.40 
SFU IMM 9,910 -41.20 662,524 -44.79 0.0 0.31 

Regarding the FC, the compaction approach for PTPs 
targeting the DU has a negligible impact (reduction of up to 
0.05%). However, the FC can be improved sometimes, as 
observed in the IMM case with +0.06% of FC. Those effects on 
the FC are produced by the removal of a sequence of SBs, but 
producing a more favorable test sequence (in case of increasing 
FC) or an adverse sequence (decreasing FC) of instructions for 
fault detection purposes.  

The results in Table III show that the reported compaction 
rates for the execution units are outstanding and reached a size 
reduction of up to 97.79% for the analyzed PTPs. Similarly, the 
duration reduction was up to 96.74%.  

It is important to underline that the compaction method 
successfully reduced PTPs created resorting to test patterns 
generated by an ATPG tool: TPGEN (75.81% in size and 
68.75% in duration) and SFU_IMM (41.20% in size and 
44.79% in duration). These compaction results for SFU_IMM 
were obtained applying the test patterns in reverse order during 
the fault simulation of stage 3 in our compaction approach.  The 
selected PTPs' compaction implies 80.71% size and 64.43% 
duration reduction rates for the whole STL. 

Interestingly, the RAND PTP compaction produces a 
reduction in the FC by 17.07%. This figure is due to the fault 
dropping performed during the previous compaction of the 
TPGEN PTP. This means that several instructions in RAND 
PTP detect some faults that also TPGEN detects; therefore, 
these instructions are redundant and can be removed during the 
compaction of the RAND PTP. The combined FC of the 
complete PTPs for SP-cores was affected by only 3.13%.  
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It is worth notice that the compaction strategy preserves the 
faults detection capabilities of the PTPs for the SP cores after 
the compaction. The FC difference is caused by changes in the 
computation of the signature-per-thread (SpT). The SpT is 
updated by the SP-cores, applying a MISR-like algorithm, 
taking each test operation's result. This SpT procedure detects 
additional faults in the SPs. Therefore, due to the compaction, 
the result value of one missing SB changes the SpT calculation 
for subsequent SBs, limiting the ability of detecting the faults 
previously detected.  

On the other hand, the results show that for the SFU_IMM 
PTP, the FC is not affected by the compaction procedure. 
Clearly, this happens because the SFU unit performs 
transcendent floating-point operations, only. Therefore, 
removing a non-essentials SB from the SFU_IMM does not 
affect the fault detection capabilities of the other SBs, since 
there is no data dependence among SBs. 

In the case of the PTPs for the DU, the compaction of the 
PTPs (CNTRL, IMM and MEM) required 0.91, 2.18, and 2.62 
hours, respectively. In contrast, the required time to apply the 
compaction method on PTPs for Functional units (TPGEN, 
RAND, and SFU_IMM) reached only 1.71 hours.  

It is worth noting that the proposed compaction method 
only requires a fraction of the time to analyze and process the 
compaction on PTPs of an STL. In the performed experiments, 
the PTPs included thousands of instructions. Moreover, the 
target modules in the GPU (DU, and functional units) contain 
more than a hundred thousand faults. Our compaction method 
only resorts to one logic and one fault simulation to perform the 
compaction. Previous works [13]–[16] addressed only CPUs to 
compact TPs in STLs using techniques that require as many 
fault simulations as the number of instructions in a TP. 
Therefore, the computational complexity and required 
compaction processing time of those methods are proportional 
to the number of fault simulations needed, usually in the order 
of hundreds or thousands of them. 

V. CONCLUSIONS 

We proposed a compaction method to reduce the size and 
duration of PTPs in STLs for GPUs. According to the results, 
the proposed method reaches a high compaction ratio: up to 
98.64% in terms of size and up to 98.42% in terms of duration 
when compacting PTPs with regular structure, excluding those 
regions with parametric loops. The compaction method showed 
a minimal impact on the achieved FC for the evaluated PTPs. 
The compaction of the selected PTPs implies 80.71% size and 
64.43% duration compaction rates for the complete STL 
analyzed. This compaction method is suitable to reduce the 
size, and the duration of the target PTP, developed via 
pseudorandom or ATPG-based methods. The main advantage 
of the proposed compaction method is the limited required 
computational time, due to the minimum number of logic and 
fault simulations required to perform the compaction. This 
method only uses one RTL logic simulation to trace the 
behavior of a target PTP and one GL fault simulation to identify 
helpful instructions able to detect and propagate faults. 

As future works, we plan to extend the compaction 
capabilities to more elaborated programming styles and test 

programs in other accelerator’s and processor’s architectures, as 
well as targeting other fault models. 
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