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Abstract–WiFi fingerprinting-based indoor localization on 
smartphones is an emerging application domain for enhanced 
positioning and tracking of people and assets within indoor lo-
cales. Unfortunately, the transmitted signal characteristics from 
independently maintained WiFi access points (APs) vary greatly 
over time. Moreover, some of the WiFi APs visible at the initial 
deployment phase may be replaced or removed over time. These 
factors are often ignored and cause gradual and catastrophic 
degradation of indoor localization accuracy post-deployment, 
over weeks and months. We propose a Siamese neural encoder-
based framework that offers up to 40% reduction in degrada-
tion of localization accuracy over time compared to the state-of-
the-art in the area, without requiring any re-training.    
 

I. INTRODUCTION 
 

Owing to the localization technologies of today, our phys-
ical outdoor reality is now augmented by an additional layer 
of virtual map-based reality. Such a revolutionary shift has 
dramatically changed many aspects of human experience: 
geo-location data is now used for urban planning and devel-
opment (roads, location of hospitals, telecom network design, 
etc.), augmented reality video games (e.g., Pokémon Go, In-
gress Prime) and has even helped realize entirely new socio-
cultural collaborations (e.g., Facebook marketplace) [1].  

Unfortunately, due to the limited permeability of GPS 
signals within indoor environments, such services cannot be 
easily extended into buildings such as malls, hospitals, 
schools, airports, etc. Indoor localization services can provide 
immense value, e.g., during emergency evacuations or when 
locating people indoors in need of critical medical attention. 
Driven by such goals, indoor localization is experiencing a 
recent upsurge in interest [2], including from industry (e.g., 
Google [3], Apple [4]). Recent works suggest fingerprinting-
based indoor localization as the most favorable solution com-
pared to alternatives [2], [5]-[10]. While any form of radio 
fingerprinting works, the ubiquitous deployment of WiFi 
Access Points (APs), and the superior localization accuracies 
achieved through it make WiFi the clear choice of radio in-
frastructure for indoor fingerprinting.  

Conventionally, fingerprinting-based indoor localization 
consists of two phases. The first phase (offline phase), com-
prises of capturing WiFi signal characteristics, such as RSSI 
(Received Signal Strength Indicator) at various indoor 
locations or Reference Points (RPs) in a building. The RSSI 
values from all APs observable at an indoor RP can be cap-
tured as a vector and represents a fingerprint associated with 
that RP. Such fingerprints collected across all RPs form a 
dataset, where each row in the dataset consists of an RSSI 
fingerprint along with its associated RP location. The collec-
tion of fingerprints to form the dataset is known to be a very 
time-consuming endeavor [11]. Consequently, publicly avail-
able datasets only contain a few fingerprints per RP (FPR). 
Using such datasets, a machine learning (ML) model can be 
trained and deployed on mobile devices equipped with WiFi 
transceivers. In the second phase (online phase), WiFi RSSI 

captured by a user is sent to the ML model running on the 
user-carried device, and used to compute the user’s location 
on a map on the user’s device display, in real time. Deploying 
such models on the user device instead of the cloud enables 
better data privacy, security, and faster response times [2]. 

Recent works report improved indoor localization 
accuracy through the use of deep learning-based classifiers 
[5]-[6]. This is attributed to their superior ability at discerning 
underlying patterns within fingerprints. Despite these im-
provements, factors such as human activity, signal interfer-
ences, changes to furniture and materials in the environment, 
and also removal or replacement of WiFi APs (in the online 
phase) introduce changes in the observed RSSI fingerprints 
over time that can degrade accuracy [8]-[10]. For instance, 
our experiments suggest that in frameworks designed to de-
liver mean indoor localization error of 0.25 meters, these fac-
tors degrade error to as much as 6 meters (see Section V.C) 
over a short period of 8 months. Most prior efforts in the in-
door localization domain often overlook the impact of such 
temporal variations during the design and deployment stages, 
leading to significant degradation of accuracy over time.  

In this paper, we introduce STONE, a framework that de-
livers stable and long-term indoor localization, without any 
re-training. The main contributions of this work are: 

 

 Performing an in-depth analysis on how indoor localiza-
tion accuracy can vary across different levels of temporal 
granularity (hours, days, months, year); 

 Adapting the Siamese triplet-loss centric neural encoders 
and proposing variation-aware fingerprint augmentation 
for robust fingerprinting-based indoor localization; 

 Developing a floorplan-aware triplet selection algorithm 
that is crucial to the fast convergence and efficacy of our 
Siamese encoder-based approach; 

 Exploring design tradeoffs and comparing STONE with 
state-of-the-art indoor localization frameworks. 
 

II. BACKGROUND AND RELATED WORK 
 

Broadly, indoor localization methodologies can be classi-
fied into three categories: (i) static propagation model-based, 
(ii) triangulation/trilateration-based, and (iii) fingerprinting-
based. Static propagation modeling approaches depend on the 
correlation between distance and WiFi RSSI gain, e.g., [12]. 
They are functionally limited to open indoor areas, and also 
require the cumbersome creation of a gain model for each in-
dividual AP. Triangulation/Trilateration-based methods use 
geometric properties such as the distance between multiple 
APs and the mobile device [13] (trilateration) or the angles at 
which signals from two or more APs are received [14] (trian-
gulation). While such methodologies may be resistant to mo-
bile device specific variability (device heterogeneity), they 
are not resilient to multipath and shadowing effects [6]. WiFi 
fingerprinting-based approaches associate sampled locations 
(RPs) with the RSSI captured across several APs [5]-[10], 
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[23]-[25]. These techniques are known to be resilient to 
multi-path reflections and shadowing as the RP fingerprint 
captures the characteristics of these effects leading to more 
accurate localization than with the other two approaches.  

Recent work on improving WiFi fingerprinting exploits 
the increasing computational capabilities of smartphones. For 
instance, Convolutional Neural Networks (CNNs) have been 
proposed to improve indoor localization accuracy on 
smartphones [5]-[6], [15]-[17]. One major concern with fin-
gerprinting is the enormous effort required to manually col-
lect fingerprints for training. Open-source fingerprint datasets 
often have low FPR [10]. This motivates the critical need for 
frameworks that require fewer fingerprints to be deployed.   

An emerging challenge for fingerprinting-based indoor 
localization (especially WiFi-based) arises from the fluctua-
tions that occur over time in the RSSI values of APs [8]-[9], 
[18], [23]-[25]. Such temporal-variations in RSSI arise from 
the combination of many environmental factors, such as hu-
man movement, radio interference, changes in furniture or 
equipment placement, etc. This issue is further intensified 
when WiFi APs are removed or replaced by network admin-
istrators, changing the underlying fingerprint considerably 
[10]. This leads to a catastrophic loss in localization accuracy 
over time (discussed in Section V.B). 

An intuitive approach to overcome temporal variation is 
to capture a large number of fingerprints over a long period 
of time in the offline phase.  An ML model trained using such 
a dataset would demonstrate resilience to degradation in lo-
calization accuracy as it witnesses (learns) the temporal fluc-
tuations of RSSI values at various RPs. The work in [8] pro-
poses such an approach by training an ensemble of models 
with fingerprints collected over several hours. The authors 
then take a semi-supervised approach, where the models are 
refit over weeks using a mix of originally collected labeled 
fingerprints and pseudo-labeled fingerprints generated by the 
models. However, the collection of fingerprints at a high 
granularity of RPs (small distance between RPs) over a long 
period of time in the offline phase is not scalable in practice.  

To overcome the challenge of insufficient available tem-
porally diverse fingerprints per RP, the authors in [18] pro-
pose a few-shot learning approach that delivers reliable accu-
racy using a few FPRs. The contrastive loss-based approach 
prevents overfitting to the training fingerprints in the offline 
phase. Unfortunately, their approach is highly susceptible to 
temporal variations and removal of APs in the online phase, 
requiring re-training using new fingerprints every month.  

Attempting to achieve calibration-free indoor localiza-
tion, some researchers propose the standardization of finger-
prints into a temporal-variation resilient format. GIFT [9], 
utilizes the difference between individual AP RSSI values to 
form a new fingerprint vector. However, instead of being as-
sociated with a specific RP, each GIFT fingerprint is associ-
ated with a specific user movement vector from one RP to 
another. However, GIFT degrades in accuracy over the long-
term and is also highly susceptible to the removal of APs.  

Considering the general stability of simple non-paramet-
ric approaches over the long term, such as K-Nearest-Neigh-
bor (KNN), [21] proposes Long-Term KNN (LT-KNN), 
which improves the performance of KNN in situations where 
several APs are removed. However, LT-KNN fails to deliver 
the superior accuracies promised by deep-learning ap-
proaches and needs to be re-trained on a regular basis.  

In summary, most indoor localization solutions are unable 
to deliver stable localization accuracies over time. The few 
prior efforts that aim to achieve stable long-term localization 
either require large FPRs captured over time, or frequent re-
training (refitting) of the model using newly collected finger-
prints. Our proposed STONE framework provides a long-
term fingerprinting-based indoor localization solution with 
lower overhead and superior accuracy than achieved by prior 
efforts in the domain, without requiring any re-training.  

 

III.    SIAMESE NETWORK AND TRIPLET LOSS: OVERVIEW 
 

A Siamese network is a few-shot learning (requiring few 
labeled samples to train) neural architecture containing two 
or more identical networks [19]-[20]. The objective is to learn 
the similarity between two or more inputs. This prevents the 
model from overfitting to the sample-label relationship. The 
loss function for a Siamese network is often a Euclidean-
based loss that is either contrastive [19] or triplet [20].  

 

 
Figure 1: An example architecture of a Siamese encoder with triplet loss. A 
single CNN network is used, i.e., all the models share the same weights.  

 

A Siamese network encoder using contrastive loss was 
proposed in DeepFace [19] for facial recognition. DeepFace 
focuses on encoding the input faces such that they are either 
pushed together or pulled apart in the embedded space based 
on whether they belong to the same person or not. The work 
in FaceNet [20] further improved on this idea using triplet 
loss that simultaneously pushes together and pulls apart faces 
of the same person and different persons, respectively. 

An architectural representation of the Siamese model used 
in STONE (inspired by FaceNet) is presented in Fig. 1. The 
Siamese network consists of a single deep neural architecture. 
Note that given the specific model details (covered in Section 
IV.D), the model itself can be treated as a black-box system.  

The model in Fig. 1 can be represented as ( )  ∈  that 
embeds an image  into a -dimensional Euclidean embed-
ding space. Therefore, the images (anchor), (positive) 
and (negative) are embedded to form encodings ( ), ( ) and ( ) respectively, such that they belong 
in the same -dimensional embedded hyperspace, i.e., || ( )|| = 1. The anchor in a triplet is the reference label’s 
sample with respect to which other label’s samples are se-
lected for the triplet. The triplet-based approach enables few-
shot learning, as a single input to the training process is a 
combination of three different samples. Given a training set 
of k-classes and n-samples, the conventional classification 
approach [5]-[6], [15] has a total of k×n samples to learn 
from. In contrast, the triplet loss approach has 3 samples per 
input, where each sample can be selected in k×n ways, i.e., a 
total of (k×n)3 inputs generated from the same dataset. 
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The goal of the Siamese encoder is to ensure that the an-
chor image is closer to all other images of the same label (pos-
itives), than it is to any image of other labels (negatives). 
Based on this discussion, the embeddings should satisfy 
equation (1) 

 ( ) − ≤  ‖ ( ) − ( )‖       (1) 
 

However, note that equation (1) can be trivially solved if ( ) = 0. Therefore, the margin  is introduced to enforce 
the stability of equation (1). Finally, the triplet loss function ( , , ) that is to be minimized is given as: 

 =  ( ) − − ‖ ( ) − ( )‖ + ≤ 0    (2) 
 

The authors in [20] remark that to achieve rapid conver-
gence, select triplets that violate the constraint in eq. (1). 
Thus, for each triplet, we need to select a hard-positive  
that poses great dissimilarity with the anchor, and a hard-neg-
ative  that poses great similarity with the anchor  . This 
may require the selection of triplets that satisfy both: 

 ( ) − ,         
 ‖ ( ) − ( )‖      (3) 

 

Evaluating  and  across the whole da-
taset is practically infeasible. To overcome this challenge, we 
present a novel and low-complexity indoor localization do-
main-specific approach for triplet selection in Section IV. 

Once the embeddings for the training dataset have been 
produced, the embeddings and associated labels can be used 
to formulate a non-parametric model such as KNN. Later, this 
KNN model combined with the encoder can be used to clas-
sify an unlabeled sample as a known label.  

Based on our discussion above, there are three salient fea-
tures of Siamese networks that fit well to the challenges of 
long-term fingerprinting-based indoor localization: (i) In-
stead of associating a sample to its label, it learns the relation-
ship between the samples of labels, (ii) Learning relationships 
between samples promotes generalization and suppresses the 
model’s tendency to overfit the label-sample relationship, 
and (iii) It requires fewer samples per class/label to achieve 
good performance (few-shot leaning). Siamese networks will 
tend to avoid overfitting the training fingerprints and can 
minimize the offline fingerprint collection effort. The next 
section describes our framework that takes this approach for 
learning and classifying fingerprints. 

IV.    STONE FRAMEWORK 
A. Overview 

An overview of the proposed framework is presented in 
Fig. 2. We begin in the offline phase (annotated by red ar-
rows), where we capture RSSI fingerprints for various RPs 
across the floorplan. Each row in the fingerprint dataset con-
sists of the RSSI values for each AP visible across the floor-
plan and its associated RP. These fingerprints are used to train 
the Siamese encoder depicted in Fig. 1. Once the Siamese en-
coder is trained, the encoder network itself is then used to 
embed the RSSI fingerprints in a d-dimensional hyperspace. 
The encoding of each RSSI vector and its associated RP, from 
the offline phase, form a new dataset. This new dataset is then 
used to train a non-parametric model. For our work, we chose 
the KNN classifier. At the end of the offline phase, the Sia-
mese encoder and KNN model are deployed on a smartphone. 

 In the online phase (green arrows), the user captures an 
RSSI fingerprint vector at an RP that is unknown. For any 
WiFi AP that is not observed in this phase, its RSSI value is 
assumed to be -100, ensuring consistent RSSI vector lengths 
across the phases. This fingerprint is pre-processed (see Sec-
tion IV.B) and sent to the Siamese model. The encoding pro-
duced is then passed on to the KNN model, which finally pre-
dicts the user’s location. In the following subsections, we 
elaborate on the main components of the STONE framework.  

 

B. RSSI Fingerprint Preprocessing 
The RSSI for various WiFi APs along with their corre-

sponding RPs are captured within a database as shown in Fig. 
2. The RSSI values vary in the range of -100 to 0 dB, where 
-100 indicates no signal and 0 indicates a full (strongest) sig-
nal. The RSSI values captured are then normalized to a range 
of 0 (weakest) to 1 (strongest) signal. Finally, each RSSI vec-
tor is padded with zeros such that the length of the vector 
reaches its closest square. Each vector is then reshaped as a 
square image. At this stage, in the offline phase, we have a 
database of fingerprint images and their associated RPs (sim-
ilar to [6]), as shown in Fig. 2. 

 

C. Long-Term Fingerprint Augmentation 
A major challenge to maintaining long-term stability for 

fingerprinting-based indoor localization is the removal of 
WiFi APs post-deployment (i.e., in the online phase) [10]. In 
the offline phase, it would be impossible to foretell which 
specific APs may be removed or replaced in the future. In the 
STONE framework, once an AP is removed or replaced, its 
RSSI value is set to -100. This translates into a pixel turning 
off in the input fingerprint image. STONE enables long-term 

 
 

Figure 2: An overview of the STONE indoor localization framework depicting the offline (red arrows) and online (green arrows) phases. 
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support for such situations by emulating the removal of APs 
(turning off pixels of input images). When generating batches 
to train the Siamese encoder, we randomly set the value of a 
percentage of observable APs (p_turn_off) to 0. The value of 
p_turn_off is picked from a uniform distribution given by: 

 _ _ =  (0.0, _  )   (4) 
 

where, p_upper is the highest percentage of visible APs that 
can be removed from a given fingerprint image. For our ex-
periments, we chose an aggressive value of p_upper=0.90. 

 

D. Convolutional Neural Encoder 
An architectural overview of the CNN-based encoder is 

shown in Fig. 1. We use 2 convolutional layers (conv) with 
filter size of 2×2 with the stride set to 1 and consisting of 64 
and 128 filters, respectively. They are followed by a fully 
connected (FC) layer of 100 units. The length of the embed-
ding (encoder output or last layer) was empirically evaluated 
for each floorplan independently. Based on our analysis, we 
chose a value for this hyperparameter in the range of 3 to 10. 
To enhance the resilience of STONE to short-term RSSI fluc-
tuations, Gaussian noise (  = 0.10) is added to the model in-
put (see Fig. 1). Dropout layers are also interleaved between 
convolution layers to improve generalizability of the encoder. 
Note that while the presented convolutional architecture 
works well for our experiments, it may need modifications 
when porting to other datasets with a different feature space.  

 

E. Floorplan-aware Triplet Selection Algorithm 
As discussed in Section III, the choice of samples selected 

to form the triplets is critical. For a limited set of available 
FPRs (6-9 in our experiments), there are very few options in 
selecting a hard-positive. However, given an anchor finger-
print, selecting a hard-negative is a greater challenge due to 
the large number of candidate RPs across the floorplan. The 
motivation for our proposed triplet selection strategy is that 
RPs that are physically close to each other on the floorplan 
would have RSSI fingerprints that are the hardest to discern. 
This strategy is specific to the domain of fingerprinting-based 
indoor localization as the additional information of the rela-
tionship between different labels (location of labels with re-
spect to each other) may not be available in other domains 
(such as when comparing faces).  

 To implement our hard-negative selection strategy, we 
first pick an RSSI fingerprint from an anchor RP, chosen at 
random. For the given anchor , we then select the negative 

 using a probability density function. Given the set of all 
K RPs, { , , … }, the probability of selecting the ith 
RP as the hard-negative candidate is given by a bivariate 
Gaussian distribution around the anchor RP as described by 
the expression: 

 

                  ( )~ ( , ),   . . ( ) = 0          (5) 
 

where ( ) is the probability of selecting it as the hard-
negative and  represents a bivariate Gaussian probability 
distribution that is centered around the mean at the anchor 
( ). However, another anchor fingerprint should never be 
chosen as the hard-negative, and therefore we set the proba-
bility of selecting an anchor to zero. The expression in (5) 
ensures that the RPs closest to the anchor RP have the highest 
probability of being sampled. This probability then drops out 
as we move away from the anchor. The bivariate distribution 
is chosen based on the assumption that the indoor environ-
ment under test is two-dimensional (a single floor). Once the 

anchor and the negative RPs are identified for a given triplet, 
the specific RSSI fingerprint for each is randomly chosen. 
This is because we have only a few fingerprints per RP, and 
so it is easy to cover every combination. 

The proposed triplet selection strategy is subsequently 
used to train the Siamese model (Section IV.A), whose output 
is then used to train the KNN model in the offline phase.  

In the online phase, the encoder and the KNN model are 
deployed on the mobile device and used to locate the user on 
the floorplan, as illustrated in Fig. 2 (lower half). 

 
V. EXPERIMENTS 

A.   Experimental Setup   

1) Fingerprinting Test Suite: UJI 
STONE was evaluated on the public dataset UJI [10]. This 

dataset covers two floors within a library. However, due to 
high floorplan similarity across the two floors, we present the 
results for floor 3, for brevity. The dataset consists of finger-
prints that are collected for the RPs along paths, with multiple 
fingerprints per RP that are collected at different instances of 
time. We utilize RPs from the dataset for which the finger-
prints (up to 9) were collected on the same day for training 
the models we compared. The data from the following 15 
months is used for testing. The UJI floorplan is presented in 
Fig. 3 (bottom left of the figure). The RPs on the floorplan 
form a grid like structure over a wide-open area, which is dif-
ferent from the corridors evaluated for the Basement and Of-
fice indoor paths, discussed next.  

 

 
Figure 3: Indoor floorplans for long-term indoor localization evaluation, an-
notated with number of visible WiFi APs along the paths and RPs along the 
paths. Vertical scales show temporal granularities across months (left-UJI) 
and collection instances (right-Basement and Office).  

 

2) Fingerprinting Test Suite: Office and Basement 
We also evaluated STONE at finer and broader granularity 

levels of hours, days, and months. Details of the floorplans, 
captured from real buildings are presented in Fig. 3. The fin-
gerprints were captured from two separate indoor spaces: 
Basement (61 meters in length) and Office (48 meters in 
length). An LG V20 mobile device was used to capture fin-
gerprints along paths. The Office and Basement paths are 
unique with respect to each other (and also the UJI path) in 
terms of environmental noise and multipath conditions asso-
ciated with the paths. Each measured fingerprint location is 
annotated by an orange dot (Fig. 3) and measurements are 
made 1 meter apart. A total of 6 fingerprints were captured 
per RP at each collection instance (CI), under a span of 30 
seconds. The first three CIs (0–2), for both paths were on the 
same day, with each CI being 6 hours apart. The intention was 
to capture the effect of varying human activity across differ-
ent times in the day; thus, the first CI is early in the morning 
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(8 A.M), the second at mid-day (3 P.M), and the third is late 
at night (9 P.M). The following 6 CIs (3–8) were performed 
across 6 consecutive days. The remaining CIs (9–15) were 
performed on the following months (i.e., 30 days apart). 

Fig. 4 depicts the ephemerality of WiFi APs on the Base-
ment and Office paths across the 16 CIs (CIs:0–15 over a total 
span of 8 months). A black mark indicates that the specific 
WiFi AP (x-axis) was not observed on the indicated CI (y-
axis). While capturing fingerprints across a duration of 
months, we did not observe a notable change in AP visibility 
up to CI:11. Beyond that, ≈20% of WiFi APs become una-
vailable. Note that the UJI dataset shows an even more sig-
nificant change in visible WiFi APs of ≈50% around month 
11; however, this change occurs much sooner in our paths, at 
C1:11, which corresponds to month 4 after the first finger-
print collection in CI:0. For the Office and Basement paths, 
we utilized a subset of CI:0 (fingerprints captured early in the 
morning) for the offline phase, i.e., training occurs only on 
this subset of data from CI:0. The rest of the data from CI:0 
and CIs:1–15 was used for testing.  
 

 
Figure 4: Ephemerality of WiFi APs across various collection instances for 
the Basement and the Office indoor paths. 

 

3) Comparison with Prior Work 
We identified four state-of-the-art prior works to compare 

against our proposed STONE framework. The first work, 
LearnLoc or KNN [11] is a lightweight non-parametric ap-
proach that employs a Euclidean distance-based metric to 
match fingerprints. The technique in the work is incognizant 
of temporal-variation. The second work, LT-KNN [21], is 
similar to [11] but has enhancements to maintain localization 
performance as APs are removed or replaced over time. LT-
KNN achieves this by imputing the RSSI values of APs that 
have been removed (are no longer observable on the floor-
plan) using regression. The KNN model is re-trained using 
the imputed data. The third work, GIFT [9], achieves tem-
poral-variation resilience by matching the change in the gra-
dient of WiFi RSSI values as the user moves along a path on 
the floorplan. Fingerprint vectors are used to represent the 
difference (gradient) between two consecutive WiFi scans 
and are associated with a movement vector in the floorplan. 
Lastly, the fourth work, SCNN [6], is a deep learning-based 
approach that has been designed to sustain stable localization 
accuracy in the presence of malicious AP spoofing.  

 

B.  Experimental Results: UJI 
Fig. 5 presents the mean localization error in meters 

(lower is better) for the proposed STONE framework and the 
four other prior fingerprinting-based indoor localization tech-
niques across 15 months of the UJI dataset. Between months 
1-2, we observe that most previous works (KNN, SCNN, LT-
KNN) experience a sharp increase in localization error. Given 
that there is no temporal-variation in the training and testing 
fingerprints for month 1, previous works tend to overfit the 

training fingerprints, leading to poor generalization over 
time. In contrast, STONE remains stable and delivers ≈1 me-
ter accuracy by not overfitting to the training fingerprints in 
month 1. We can also observe that GIFT provides the least 
temporal-resilience and has the highest localization error over 
time. The localization errors of STONE, SCNN, KNN and 
LT-KNN are around 2 meters (or less) up to month 10, fol-
lowed by a severe degradation for KNN and SCNN. In gen-
eral, STONE outperforms all frameworks from months 2–11 
with up to 30% improvement over the best performing prior 
work, LT-KNN, in month 9. Owing to the long-term finger-
print augmentation used in STONE, it remains stable and per-
forms very similar to LT-KNN beyond month 11. Over the 
entire 15-month span, STONE achieves ≈0.3-meter better ac-
curacy on average than LT-KNN. Most importantly, LT-KNN 
requires re-training every month with newly collected (anon-
ymous) fingerprint samples, whereas no re-training is re-
quired with STONE over the 15-month span.  

 

 

 
Figure 5: Comparison of localization error of various fingerprinting-based 
indoor localization frameworks over 15 months for the UJI indoor path.  

 

C.  Experimental Results: Office and Basement 
Fig. 6 depicts the contrast in mean indoor localization er-

rors across localization frameworks for the Office and Base-
ment indoor paths. Similar to the previous results, most 
frameworks (especially SCNN and GIFT) tend to overfit the 
training fingerprints in CI:0 followed by a sharp increase in 
localization error for CI:1. It is worth noting that there is 
merely a difference of 6 hours between CI:0 and CI:1. In con-
trast to previous works, STONE undergoes the least increase 
in localization error initially (CI:0–1), followed by a fairly 
slow increase in localization error. We observe that across 
both indoor paths, GIFT and SCNN tend to perform the worst 
overall. While both these techniques show some resilience to 
temporal variation at the hourly (CIs:0–2) and the daily scale 
(CIs:3–8), they both tend to greatly lose their efficacy at the 
scale of months (CIs:9–15). GIFT’s resilience to very short-
term temporal variation is in consensus with the analysis con-
ducted by its authors, as it is only evaluated over a period of 
few hours [9]. Both KNN and LT-KNN perform well (1–2 
meters of localization error) on the Basement path. However, 
the localization error of KNN tends to increase in later CIs, 
particularly on the Office path. STONE outperforms LT-
KNN across most collection instances, including up to and 
beyond CI:11. STONE delivers sub-meter of accuracies over 
a period of weeks and months and performs up to 40% better 
than the best-known prior work (LT-KNN) over a span of 24 
hours (CI:1–3 in Fig. 5(b)), with superior localization perfor-
mance even after 8 months. On average, over the 16 CI span, 
STONE achieves better accuracy than LT-KNN by ≈0.15 me-
ter (Basement) and ≈0.25 meter (Office). STONE achieves 
this superior performance without requiring re-training, un-
like LT-KNN which must be re-trained at every CI. 

Overall, we attribute the superior temporal-variation resil-
ience of STONE to our floorplan-aware triplet selection, long-
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term AP augmentation, and also the nature of Siamese encod-
ers that learn to differentiate between inputs instead of learn-
ing to classify a specific pattern as a label is also credited. 

 

                

 

(a) Basement 
 

 
(b) Office 

 

Figure 6: Localization errors of various frameworks over CIs for the Base-
ment and Office indoor paths. Results for CI:0 are enlarged in the inset.             
 

         

 
Figure 7: Sensitivity analysis on STONEs performance across varying num-
ber of fingerprints per RP (FPR) on UJI, Basement, and Office paths. Num-
bers in the heatmap cells show the obtained mean localization error. 

 

D.  Results: Sensitivity to Fingerprints Per RP (FPR) 
Considering that STONE is explicitly designed to deliver 

the best temporal-resilience using minimal fingerprints, we 
performed a sensitivity analysis by varying FPR across all in-
door paths considered, to study its impact on localization er-
ror. Fig. 7 depicts the mean localization error as a heatmap 
(x-axis: timescale, y-axis: FPR) for different variants of 
STONE, each trained using a different number of FPRs. The 
final column in Fig. 7 represents the mean localization error 
across the timeline. The experiment is repeated 10 times with 
shuffled fingerprints to avoid any form of fingerprint selec-
tion bias. From the figure, we observe that for all three indoor 
paths, the STONE framework when trained using 1 FPR per-
forms the worst; conversely increasing FPR beyond 4 does 
not produce notable improvements. Overall, these results 
show that STONE produces competitive indoor localization 
accuracy in the presence of temporal-variations using as few 
as 4 FPR. To contrast this with a conventional classification-
based approach, SCNN [6] is deployed using as many as 8 
FPR (2×) and is unable to deliver competitive localization er-
rors over time. Moreover, mobile devices can take several 
seconds to capture a single fingerprint (WiFi scan), thus re-
ducing the number of FPRs in the training phase can save 
several hours of manual effort.        

 

VI. CONCLUSION 
In this paper, we presented an effective temporal-variation 

resilient fingerprinting-based indoor localization framework 
called STONE. Our approach was evaluated against four 
state-of-the-art indoor localization frameworks across three 
distinct indoor paths. The experimental results indicate that 
STONE often delivers sub-meter localization accuracy and 
when compared to the best performing prior work, delivers 
up to 40% better accuracy over time, without requiring any 
re-training or model updating after the initial deployment. 
The ideas highlighted in this work, culminating in the STONE 
framework, represent promising directions for achieving low-
overhead stable and long-term indoor localization with high-
accuracy, while requiring the use of only a handful of finger-
prints per reference point.  
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