HMD-Hardener: Adversarially Robust and Efficient
Hardware-Assisted Runtime Malware Detection

Abhijitt Dhavlle*, Sanket Shukla*, Setareh Rafatirad®, Houman HomayounT, Sai Manoj Pudukotai Dinakarrao*
*George Mason University, Fairfax, VA, USA.
TUniversity of California Davis, Davis, CA, USA.
Email: {adhavlle, sshukla4, spudukot} @gmu.edu, {srafatirad, hhomayoun} @ucdavis.edu

Abstract—To overcome the performance overheads incurred
by the traditional software-based malware detection techniques,
machine learning (ML) based Hardware-assisted Malware De-
tection (HMD) has emerged as a panacea to detect malicious
applications and provide security. HMD primarily relies on the
generated low-level microarchitectural events captured through
Hardware Performance Counters (HPCs). This work proposes an
adversarial attack on the HMD systems to tamper the security
by introducing perturbations in performance counter traces with
an adversarial sample generator application. To craft the attack,
we first deploy an adversarial sample predictor to predict the
adversarial HPC pattern for a given application to be misclassified
by the deployed ML classifier in the HMD. Further, as the attacker
has no direct access to manipulate the HPCs generated during
runtime, based on the adversarial sample predictor’s output,
devise an adversarial sample generator wrapped around the victim
application to produce HPC patterns similar to the adversarial
predictor’s estimated trace. With the proposed attack, malware
detection accuracy is reduced to 18.1% from 82%. To render the
HMD robust to such attacks, we further propose adversarially
training the HMD to demonstrate that hardening can render HMD
resilient against attacks; the detection accuracy post hardening
raises to 81.2%.

I. INTRODUCTION

The ever-increasing complexity of modern computing sys-
tems has resulted in the growth of security vulnerabilities,
making such systems an appealing target for sophisticated
attacks. Computing systems today are employed to deliver
high performance and efficiency while protecting users’ data.
Attackers take advantage of malware’s capabilities to harm the
system, steal users’ data, disrupt the system, or a combination
of it. Malware, also known as malicious software, is a program
or application to infect the computing systems without the user
agreement for serving harmful purposes such as stealing sen-
sitive information, unauthorized data access, destroying files,
running intrusive programs on devices to perform Denial-of-
Service attack, and disrupting essential services.

A plethora of works focus on detecting malware, but the
downside of using software-based approaches is the over-
head, owing to computational complexity. Also, software-based
detection utilizes signature-based detection that matches the
behavior signature of the application to its database. This
approach fails to recognize zero-day attacks, and signatures that
do not match its database, given an outdated database. We focus
on hardware-based detection approach.

To overcome shortcomings such as latency and computa-
tional complexity of traditional malware detection techniques,
including signature and semantics-based software-driven tech-
niques [1], [2], Hardware-Assisted Malware detection (HMD)

978-3-9819263-5-4/DATE21/©)2021 EDAA

approaches are proposed [3]. HMD refers to utilizing the
low-level microarchitectural hardware events for detecting and
classifying the malware from benign applications. Browsers,
utility applications, text editors, C-based programs were some
of the benign applications that we profiled as a part of the
dataset. In contrast, applications embedded with Trojan, worm,
virus, and other malwares were profiled as part of the malign
traces. The HMD delivers reduced malware detection latency
by orders of magnitude with smaller hardware cost [3].

This work proposes an adversarial attack on HMDs in which
the adversarial samples are generated through a benign code
that is wrapped around a benign or malware application to
produce a desired output class from the embedded ML-based
malware detector. One of the main challenges to address
is that the attacker or user has no direct access to modify
the HPC and manipulation of HPCs is highly complex to
perform despite employing techniques like code obfuscation for
executing malware [3]. First, we assume the victim’s defense
system is unknown and perform reverse engineering to mimic
the embedded HMD’s behavior and build a machine learning
(ML) classifier. To determine the required number of HPCs
to be generated through the application to be misclassified,
we employ an ‘adversarial sample predictor’ which predicts
the number of HPC traces to be generated to misclassify an
application by the HMD. by the attacker. To perturb the HPCs,
we craft an ‘adversarial HPC generator’ application (code)
that generates the required number of HPCs. This adversarial
HPC generator application is wrapped around the application
that needs to be misclassified by perturbation.

This work discusses a novel way of crafting adversarial HPC
traces through a benign application and proposes a methodol-
ogy on how to craft such an application to obtain adversarial
behavior. The main focus of this work is to generate false
alarms (malware classified as benign and benign classified as
malware) to weaken the trust on the embedded defenses, which
increases the scope for attacks. The proposed work benefits
from the following: a) no need to tamper or modify the source
code of the application around which the proposed adversarial
sample generator code is wrapped; b) the crafted application
has no malicious features embedded, thus not detectable by
malware detectors; ¢) scalable and flexible, i.e., the crafted
application can generate events required to create a powerful
adversary. With these adversarial attacks, the HMD delivers un-
acceptable performance. To make the HMD robust and resilient
to such adversarial attacks, we propose to perform adversarial

1769

1770

learning by training the HMD on adversarial samples. This
method has proven successful for different types of adversarial
attacks and can boost the HMD performance to classify malign
applications from their benign counterparts reliably. We then
present hardware implementation of the ML classifiers used in
the HMD for analysis purposes.

II. STATE-OF-THE-ART

Recent works [3]-[10] have shown that by deploying Ma-
chine Learning (ML) techniques fed with the low-level microar-
chitectural events (features) captured by Hardware Performance
Counters (HPCs) can aid in differentiating benign and malware
applications. HPCs were introduced to aid debugging but were
exploited later by attackers and their counterparts. Performance
counters are a set of special-purpose registers built into modern
microprocessors to capture the trace of hardware-related events
such as LLC misses, branch instructions, branch misses, and
executed instructions while executing an application.

The work in [3] was one of the preliminary works proposed
to utilize the HPC data for malware detection. It demonstrated
the effectiveness of offline ML algorithms in malware classifi-
cation. The researchers in [11] and [4] discuss the feasibility of
employing unsupervised learning method on low-level features
to detect Return-Oriented programming (ROP) and buffer over-
flow attacks by finding an anomaly in the information received
from the hardware performance counters. The work in [12] uses
logistic regression to classify malware into multiple classes
and train a specialized classifier for detecting malware class.
The ML-based malware detectors (HMD) can be implemented
in a microprocessor hardware with significantly low overhead
compared to the software-based methods, as detection inside
the hardware is very fast (few clock cycles) [2]. In summary,
it is seen that a large body of works have been dedicated
to employing low-level microarchitectural events fed to ML
classifiers to make the systems secure.

On the other hand, despite the ML classifiers being deployed
in numerous applications and shown robustness against random
noises, the exposed vulnerabilities have shown that the outcome
of ML classifiers can be modified or controlled by adding
specially crafted perturbations to the input data [13]-[18], often
referred to as Adversarial samples. A plethora of works on
adversarial attacks exist, focusing specifically on computer
vision applications [13]-[16], where the number of features are
often substantial. Recently, a few works on crafting adversarial
malware are as well proposed in [19]. However, works such as
[19] consider the application features in a binary format (feature
exists or not) for showcasing the attack and defense. Though the
application features (in binary format) are manipulated, tradi-
tional techniques such as semantic and signature analysis based
methods can detect these adversaries [20]. Similarly, authors in
[21] present the efficiency of detecting malware through HPCs.
Though the presented experimental results in [21] are in favor
of efficient malware detection through HPCs, they claim that
if HPC traces of malware and benign applications are similar,
it is hard to detect malware. However, no details on crafting
such malware are provided, limiting its practical application.

Train application binary BayesNet KNN
ﬁ RF SGD
Decision
Feature reduction Tree SYM Benign
P 2 : \
. [Correlation | () (5)
Capturing HPCs " Feature ML binary
via perf tool e e scoring classifiers e
L) \attribute evaluation N) \)
" . S " Mol N

Malware vs. Benign
Classification

Feature extraction
Malware

Fig. 1: Overview of the proposed hardware-based malware
detection process

III. HARDWARE ASSISTED MALWARE DETECTION

This section briefly discusses the overview of hardware-
assisted malware detectors, referring to Figure 1. The prelimi-
nary step in the training process requires profiling applications
and generate a dataset that can be later used for training
machine learning models - the heart of the HMD. The dataset
comprises captured features that describe the hardware’s mi-
croarchitectural state at different time instances for applications
executing on the system. The process of profiling of appli-
cations is described in the figure as the “Feature Extraction”
block. These HPCs are used to build the dataset comprising all
the applications with the corresponding features (performance
counters). We train and deploy multiple ML-models in the
HMD to observe the model that delivers the best performance
in detecting malware.

TABLE I: Microarchitectural events important for runtime
malware detection

Rank Event name
dTLB_store_misses
LLC_prefetch_misses
L1_dache_stores
cache_misses

Rank Event name

1 Branch Instructions
2 Branch Loads
3 iTLB_load_misses
4 dTLB_load_misses

0| 2| o L

A. Feature Selection

Representing programs at a low microarchitectural level pro-
duces a very high dimension dataset. Running ML algorithms
with a large dataset are complex and slow. Therefore, instead
of considering all captured features, irrelevant data is identified
and removed using a feature reduction algorithm. A subset of
captured traces is selected that includes the most important
features for classification. We collected 44 performance coun-
ters, as they were all the hardware events our experimental
setup allowed. We first use Correlation Attribute Evaluation on
our training set to monitor the most vital microarchitectural
parameters to capture application characteristics. Next, the fea-
tures are scored based on their importance and relevance to the
target variable through the feature scoring process. The eight
most related hardware performance counters are determined
and numbered in order of importance for malware detection
by applying the feature reduction method. These HPCs are
listed in Table I. Most modern processors allow recording 4 or
8 events simultaneously. Hence, to suit the detection process,
given the hardware limitation on the number of events that
can be collected, we constant the feature size to four. The
HMD delivers high performance in detecting malware with four
features, and collecting four features in runtime generates less
overhead compared to eight.

Design, Automation and Test in Europe Conference

(Original)

Training dataset
| detector |
[original | ML o
_detector ‘ algorithm ETraumng dataset | Comparator
(Reverse)
engineered
detector
(a) (b)

Fig. 2: (a) Process of reverse engineering an HMD; (b) Testing
Performance of Reverse-Engineered Detector

B. Training & Testing the Malware Detectors

The training/testing of the HMD involves feeding the pre-
viously selected HPCs (performance counters) in runtime. It
is important to note that the input variables in our classifiers
are the HPCs extracted every 10 ms interval from the running
applications, and the output variable is the class (malware
or benign) of an application. The 10 ms sampling interval
is chosen based on the frequency versus overhead trade-off.
For each ML classifier, we construct general ML models to
detect the malware. In order to validate each of the utilized
ML classifiers, a standard 70%-30% dataset split for training
and testing is followed. The accuracy of each ML classifier is
presented in Section VII.

IV. ADVERSARIAL SAMPLE PREDICTION

In this section, we discuss the adversarial attack on HMD,
our proposed adversarial sample predictor, and the adversarial
sample generator to degrade HMD performance.

A. Adversarial Attacks on ML-Classifiers

In this work, the terms ‘adversarial malware’ and ‘adversarial
attack’ are used interchangeably. Similarly, ‘adversarial de-
fense’ and ‘hardening’ have been used interchangeably. Works
in [14], [22] describe the process of different adversarial attacks
on ML classifiers. The fundamental idea is to perturb the inputs
such that the performance of the classifier is degraded. We
propose to exploit the concept of input sample perturbation to
attack the HMDs, as will be discussed further.

B. Reverse Engineering an HMD

Under the assumption where the victim malware detector
is unknown, we perform reverse engineering to mimic the
functionality of the victim' HMD detector. Thus, as a first step
to craft adversarial malware, we perform reverse engineering
of the victim’s HMD similar to that proposed in [20]. The
performed reverse engineering is described in Figure 2.

We first create a training dataset that comprises benign and
malware applications. Nearly 10,000 benign and 10,000 mal-
ware applications are used in the reverse engineering process.
The victim’s HMD (Original HMD) is fed with all the appli-
cations, and the responses are recorded. These responses are
utilized for training different ML classifiers to mimic the func-
tionality of the victim’s HMD, as shown in Figure 2(a). Further,
it is tested by comparing the outputs from the victim’s HMD
response and the reverse-engineered ML classifier’s response,
as shown in Figure 2(b). Reverse engineering is non-trivial as
the adversaries generated on a closely functional model will

'Victim HMD is the detection mechanism under the proposed adversarial
attack

Design, Automation and Test in Europe Conference

be highly effective compared to a weakly developed adversary.
To ensure reverse engineering is performed efficiently, we train
multiple ML classifiers and choose the classifier that yields
high performance, i.e., mimics the victim’s HMD with high
accuracy.

C. Process of Crafting the Adversarial Malware

Once the reverse-engineered HMD is built, such as MLP
(or any victim defense classifier), the hyperparameters are
determined. To launch and craft an adversarial malware, it is
non-trivial to determine the level of perturbations that need
to be injected into performance counter traces to get the
applications misclassified. To determine the number of such
HPC events to be generated, we deploy (offline) an adversarial
sample predictor. As the ML classifiers are robust to random
noises, perturbing the HPC patterns is sophisticated. To perturb
HPC patterns, we employ a low-complex gradient loss-based
approach, similar to Fast-Gradient Sign Method (FGSM) [23],
which is widely employed in image processing.

To craft the adversarial perturbations, we consider the reverse
engineered ML classifier with 6 as the hyperparameter, x being
the input to the model (HPC trace), and y is the output for
a given input x, and L(f,x,y) be the cost function used to
train the reverse-engineered classifier. The perturbation required
to misclassify the HPC trace is determined based on the
cost function gradient of the chosen classifier. The adversarial
perturbation generated based on the gradient loss, similar to the
FGSM [14] is given by

.’L'adv =x + Gslgn(vIL(ea z, y)) (1)

where € is a scaling constant ranging between 0.0 to 1.0 is
set to be very small such that the variation in =z (dx) is
undetectable. In the case of FGSM, the input x is perturbed
along each dimension in the direction of the gradient by a
perturbation magnitude of e. Considering a small e leads to
well-disguised adversarial samples that successfully trick the
machine learning model. In contrast to the images where the
number of features are large, the number of features, i.e., HPCs
are limited. Thus the perturbations need to be crafted carefully
and also made sure that they can be generated during runtime
by the applications.

In contrast to works that assume the application features to be
binary, such as [19], this work aims to predict and determine
the adversaries for the microarchitectural event patterns, i.e.,
HPCs, to generate during runtime with the aid of a benign code,
which is one of the primary distinctions from existing works.
It needs to be noted that determining the required perturbation
for a given application is done offline. The process of crafting
the adversarial application to generate the perturbations in the
HPC trace during runtime is presented next.

V. ADVERSARIAL HPC GENERATION

To generate the required number of HPCs, we craft an appli-
cation (benign) that wraps the victim application and generates
additional performance counter traces that make the overall
trace (of the victim application) similar to the predicted HPC
trace. We discussed the adversarial HPC predictor previously.

1771

1772

Modify adversarial
attack parameters

Adversarial {
sample
predictor |]| No
ML- model —> Testing
: Yes | generator
Hardware Adversarial parameter testing
events from
application
(a)
[1110
o
: L]
Adversarial [
code wrapper PMU
ettt 5 Performance counters HMD
'l Adversarial E Performance Cetecte]
' generator n counters from
' ' \ adversary
' @ ; application
: ' +
|| Application |1 / Performance Classification
1| (benign/malware)|: counters from performance
' v original application

(b)

Fig. 3: (a) Determining adversarial code generator parameters
with the aid of adversarial HPC predictor; (b) Process of
adversarial sample generation with adversarial code to force
HMD performance degradation through misclassification of
benign/malware applications

We do not know any works in the past that have employed the
same approach as our work.

Algorithm 1 Pseudocode for generating adversarial HPCs

Require: Application ‘App()’
Ensure: Adversarial microarchitectural events
1: cache_miss_function() {Sample pseudo code that generates required num-
ber of adversarial LLC misses}

2: #define array[n] % Size of array and loop define amount of variation
3 load i #0

4: Loop I: cmp i #n {Compare i with n}

5: array[i]=i

6: jump Loopl

7 end

8 loadi#0

9: Loop 2: cmp i #k {k <=n}

10: Ild rax &array[i] # load array address in register rax

11: cflush (rax) {Instruction as a function of array size and loop size}
12: Jjump Loop2

13: end

14: branch_misses_function() {Code that generates required number of ad-
versarial branch instructions and branch misses}

15: #define int a, b, ¢, d

16: a<b<c<d<n

17: Loop 3: cmp i #a { --- function - - - }
18: Loop 4: cmp i #b { --- function -- -}
19: Loop 5: cmp i #c { --- function -- -}
20: Loop 6: cmp i #d { --- function -- -}
21 Loop 7: cmp i#n{ --- function -- -}

22: jump Loop 3; end ;

23: {Similar functions to generate other HPCs as predicted by adversarial
sample predictor}

24: APP() {User/Attacker’s application to be executed}

In Algorithm 1, we show the pseudo-code to create adversar-
ial LLC load misses and branch misses. The LLC load misses,
and branch misses are some of the pivotal microarchitectural
events that malicious applications [2]

To generate LLC load misses, an array of size n is loaded
from memory and flushed to generate LLC load misses. This
is outlined in Line 2-12 of Algorithm 1. The experiments
are repeated multiple times with different array sizes (n) and
the different number of elements flushed (k) to determine the
number of LLC load misses generated. Further, a linear model
is built to find the dependency of n and k on the number of LLC
load misses. Once the adversarial sample predictor predicts the
number of LLC load misses generated to craft an adversarial
sample, the n and k are accordingly determined. We employ
a linear model due to its low complexity and high accuracy
(<3% error) to determine the dependency between n and k for
our experiments.

Example: For instance, the crafted application similar to that
depicted in Line 2-12 of Algorithm 1 with n and k set to 100K
leads to an LLC load miss of 73K, whereas when n and k is
set to 500K, around 287K LLC load misses are generated. The
flushing of the data has been verified by executing attack code
with and without flushing the cache lines - the execution time
is around 1.5x when the data is flushed compared to the case
when data is not flushed.

In a similar manner, branch misses and branch instructions
are generated as shown in Line 15-22 of Algorithm 1. To
increase the branch misses, a set of conditional statements, i.e.,
comparison statements, are embedded into the application to
create branch misses. The branch instructions depend on the
number of conditional statements evaluated. In the presented
pseudo code, we have five conditional statements for generating
branch-misses (Line 15-22). For the attack code on branch miss
events, with a loop size of 20K and integer values assigned to a,
b, ¢, and d, branch misses’ value is around 255K. An increase in
branch misses is observed by inserting not taken (not executed)
dummy loops.

The process flow of adversarial sample predictor is shown in
Figure 3(a), where the performance counters from the victim
application are combined (offline) with the predicted samples.
These are fed to the ML model to gauge its performance.
Suppose the ML model classifies the malware and benign with
high accuracy. In that case, the adversarial attack parameters are
modified; else the predicted samples are utilized for adversarial
sample generation during application execution, as shown in
Figure 3(b). In Figure 3(b), the overall performance counters
seen by the system are a result of the original application and
the adversarial code. The HMD profiles the applications in
runtime. If the predicted HPC values are smaller than those
generated by original applications, we insert delay elements to
smoothen the HPC trace and reduce the HPC values. It needs
to be noted that using this process we generate adversaries to
force the HMD to misclassify benign as malware and malware
as benign applications.

VI. HARDENING HMD AGAINST ADVERSARIAL MALWARE

We have discussed how attacks are performed to trick the
HMD and force misclassification. The adversarial malware is
crafted to perturb the HPC patterns and hence trick the victim
HMD. Although HMD-Hardener can be employed for different
defense strategies to ensure hardening for best performance

Design, Automation and Test in Europe Conference

under different adversarial attack types, we keep the discussion
limited to ‘FGSM’ type attack and ‘Adversarial Training’
(FGSM 1in this work) type defense for conciseness. Adversarial
training is one of the initial solutions introduced as a way for
ML classifiers and deep learning classifiers to battle against
adversarial samples. The method of adversarial training focuses
on having adversarial samples used to train the model/classifier.
They obtain the adversarial information in the training stage
itself and stay robust against such attacks. We retrained the
HMD using adversarial samples, and it is observed to deliver
robust performance under an adversarial attack. The assumption
is that we know the type of attack that can happen and the attack
parameters.

%
o3

O4HPC §2HPC

9 »
S & S

Accuracy (%)

o =
by

SGD

il

SVM Decision
Tree

Fig. 4: Accuracy results for various ML classifiers with feature
size (HPCs) of two and four

>N
S

MLP

KNN

VII. RESULTS AND EVALUATION

In this section, we present the accuracy of HMD in classi-
fying malware and benign applications. Further, we give the
impact of an adversarial malware attack on the HMD and
attack resiliency post hardening. Finally, we present hardware
implementation results for the ML classifiers.

A. Experimental Setup and Data Collection

The applications (both malware and benign) are executed on
an Intel Xeon X5550 machine running Ubuntu 18.04. We exe-
cute more than 3000 benign and malware applications for HPC
data collection. Benign applications include MiBench bench-
mark suite [24], Linux system programs, browsers, text editors,
and word processor. For malware applications, Linux malware
is collected from virustotal.com [25] and virusshare.com [26].
Malware applications include five classes of malware compris-
ing of 607 Backdoor, 532 Rootkit, 2739 Virus, 1264 Worm and
7221 Trojan samples. All the applications (malign/benign) are
profiled in Linux Containers. The adversarial sample predictor
is implemented in Python using the Cleverhans library. The
linear model is derived using the traditional statistical curve
fitting technique. The adversarial sample generator is imple-
mented using C and executed on a Linux terminal.

B. HMD Classification Accuracy

Figure 4 shows a comprehensive accuracy comparison of
various ML classifiers used for malware detection. We imple-
mented six general ML classifiers. The accuracy of malware
detection with two feature sizes (4 and 2) are reported. As
seen in Figure 4, MLP, random forest (RF) and decision tree
classifiers perform very well for both the 4HPC and 2HPC as
feature sizes. High performance with fewer features enables
the HMD-Hardener to classify applications and detect malware
in runtime with less overhead on the system, making repeated
calls to the Perf tool. For instance, as shown, MLP achieves

Design, Automation and Test in Europe Conference

close to 82% accuracy, 80% for random forest (RF), 79%
for SVM, and so on with four HPCs. However, we observe
that reducing the number of vital performance counters to 2
results in similar classifiers’ accuracy. We also observe that
the HMD achieves detection accuracy in the range of 84-90%
with 16 and 8 features. The higher gain results in overhead;
results not shown for conciseness. For this work, we will
consider the accuracy with 4HPCs with which the classifiers
such as MLP, RF, decision tree, and KNN perform well with
around 82% detection accuracy on an average. Four HPCs are
easily possible to be captured in runtime to allow malware
detection. We also evaluated the aforementioned classifiers’
performance by observing the Precision, F1-Score, and Recall
metrics. These metrics’ values are approximately similar to the
accuracy metric’s values shown in Figure 4.
TABLE II: Impact of adversarial attack on HMD

Accuracy | Precision | Fl-score | Recall

Before attack 82% 78.1% 78.1% 82.1%
After attack 18.1% 45.0% 10.0% 18.0%
After hardening 81.2% 80.1% 80.1% 81.2%

TABLE III: Post synthesis hardware results of different ML
classifiers (@100MHz) when deployed in HMD-Hardener

Classifier Power (mW) | Energy (mJ) | Area (mm?)
MLP 90.45 5.12 4.5
RF 40.64 2.35 2.25
SVM 45.63 2.79 1.81
Decision Tree 36.54 2.29 1.55
SGD 54.46 3.21 1.46
KNN 44.81 3.37 1.27

C. Impact of Adversarial Attack

We depict the impact of adversarial sample generator on the
performance counters in Figure 5 that shows the LLC load
misses for a benign application (ISCAS’85). The adversarial
pattern predicted by the adversarial sample predictor is shown
in Figure 5(a). We observe that there exist some spikes in the
pattern as marked in the figure. Figure 5(b) shows the HPC
pattern generated when the application is integrated (wrapped)
with the adversarial HPC generator. On average, there is an
error of 2.2% between the trace predicted by the adversarial
sample predictor and the trace generated by the adversarial
sample generator. This indicates the adversarial generator can
efficiently generate the required number of perturbations in
the HPC traces. The MLP classifier delivers 82% accuracy
on average in detecting malware. Post adversarial attack, the
accuracy of the MLP drops to 18.1%, indicating that the
adversarial sample generator degrades the HMD performance.
The results of the MLP classifier’s accuracy, precision, F1, and
recall metrics are presented in Table II. We observe similar
results, shown in Figure 5, for branch miss type adversarial
perturbations.

D. Adversarial Learning - Hardening

For hardening the HMD, it needs to be trained on normal
samples and adversarial samples as well. For MLP classifier,
the accuracy is restored close to the original accuracy before the
attack, as presented in Table II. We observe similar results with
other classifiers after hardening, thus verifying that the HMD
can become resilient against an adversarial attack, provided it
is trained on adversarial samples. The HMD is trained on a

1773

1774

Fig. 5: (a)LLC load miss trace of the application predicted by
adversarial sample predictor; (b) Generation of LLC load miss
trace by adversarial sample generator

new dataset, containing the original and adversarial samples
combined. As the HMD is robust against adversarial samples, it
delivers high performance in detecting the malware and benign
samples, as shown in Table II. Hence, if the HMD deployed in
a system is adversarially trained on the perturbed HPC traces
generated by using the process discussed thus far, the HMD
is hardened against adversarial malware samples. This ensures
the HMD delivers high performance against the normal and
adversarial attack samples in runtime.

E. ASIC Implementation of Classifiers in HMD-Hardener

We conduct comprehensive hardware implementation of the
classifiers embedded into HMD on ASIC. All the experiments
are implemented on a Broadcom BCM2711, quad-core Cortex-
A72 (ARM v8) 64-bit, 28 nm SoC running at 1.5 GHz. The
power, area, and energy values are reported at 100MHz. We
used Design Compiler Graphical by Synopsys to obtain the
area for the models. Power consumption is obtained using
Synopsys Primetime PX. The post-layout area, power, and
energy are summarized in Table IIIl. Among all the classifiers,
MLP consumes highest power, energy and area on-chip (Table
IIT). The post-layout energy numbers were almost 2x higher
than the post-synthesis results. This increase in energy is mainly
because of metal routing resulting in layout parasitics. As the
tool uses different routing optimizations, the power, area, and
energy values keep changing with the classifiers’ composition
and architecture.

VIII. CONCLUSION
In this work, we propose an adversarial attack on microar-

chitectural event-based malware detection systems (HMD).
The HMD systems are utilized for detecting and classifying
malware. This work employs an adversarial sample predic-
tor to determine the HPC count required to degrade HMD
performance. Post determining the required number of HPC
count, using the proposed adversarial sample generator, the
required HPC trace is generated without intervening with the
original application and eventually leading to misclassification.

Furthermore, the malware detection accuracy is reduced from
82% to 18.1%. To make HMDs resilient to adversarial attacks,
we proposed training with the adversarial samples (HMD hard-
ening), promisingly boosting the HMD performance close to
the original performance before attack to 81.2%. The hardware
implementation results are presented to demonstrate latency and
area overheads per ML model to select a more suited model
for runtime detection.
REFERENCES

[1]1 G. Jacob et al., “Behavioral detection of malware: from a survey towards
an established taxonomy,” Journal in Computer Virology, vol. 4, no. 3,
pp. 251-266, Aug 2008.

[2] N. Patel et al., “Analyzing hardware based malware detectors,” in Design
Automation Conf., 2017.

[3] J. Demme and et al., “On the feasibility of online malware detection with
performance counters,” SIGARCH Comput. Archit. News, vol. 41, no. 3,
pp. 559-570, Jun 2013.

[4] A. Tang et al., “Unsupervised anomaly-based malware detection using
hardware features,” in Research in Attacks, Intrusions and Defenses, 2014.

[5] H. Sayadi and et al., “Ensemble learning for effective run-time hardware-
based malware detection: A comprehensive analysis and classification,”
in Design Automation Conference, 2018.

[6] F. Brasser and et al., “Advances and throwbacks in hardware-assisted
security: Special session,” in Int. Conf. on CASES, 2018.

[7]1 S. Dinakarrao and et al., “Lightweight node-level malware detection
and network-level malware confinement in iot networks,” in Design
Automation and Test Con. in Europe, 2019.

[8] H. Sayadi and et al., “2SMaRT: A two-stage machine learning-based
approach for run-time specialized hardware-assisted malware detection,”
in Design Automation and Test Con. in Europe, 2019.

[9] X. Wang et al., “Malicious firmware detection with hardware performance
counters,” IEEE Transactions on Multi-Scale Computing Systems, vol. 2,
no. 3, pp. 160-173, 2016.

[10] S. M. P. Dinakarrao et al., “Cognitive and scalable technique for securing
iot networks against malware epidemics,” IEEE Access, vol. 8, pp.
138 508-138 528, 2020.

[11] A. Garcia-Serrano, “Anomaly detection for malware identification using
hardware performance counters,” CoRR, vol. abs/1508.07482, 2015.

[12] K. Khasawneh and et al., “EnsembleHMD: Accurate hardware malware
detectors with specialized ensemble classifiers,” IEEE Trans. on Depend-
able and Secure Computing, 2018.

[13] C. Szegedy and et al., “Intriguing properties of neural networks,” in Int.
Conf. on Learning Representations, 2014.

[14] 1. Goodfellow et al., “Explaining and harnessing adversarial examples,”
in International Conference on Learning Representations, 2015.

[15] N. Papernot and et al., “The limitations of deep learning in adversarial
settings,” in IEEE European Symp. on Security and Privacy, 2016.

[16] Y. Liu et al., “Delving into transferable adversarial examples and black-
box attacks,” in Int. Conf. on Learning Representations, 2017.

[17] S. M. P. Dinakarrao et al., “Adversarial attack on microarchitectural
events based malware detectors,” in Design Automation Conference, 2019.

[18] A. P. Kuruvila er al., “Defending hardware-based malware detectors
against adversarial attacks,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 2021.

[19] A. Huang and et al., “Adversarial deep learning for robust detection of
binary encoded malware,” CoRR, vol. abs/1801.02950, 2018.

[20] K. Khasawneh and et al., “RHMD: Evasion-resilient hardware malware
detectors,” in IEEE/ACM Int. Symp. on Microarchitecture, 2017.

[21] B. Zhou and et al., “Hardware performance counters can detect malware:
Myth or fact?” in ASIACCS, 2018.

[22] A. Kurakin et al., “Adversarial examples in the physical world,” CoRR,
2016.

[23] I.J. Goodfellow et al., “Explaining and harnessing adversarial examples,”
2014.

[24] M. R. Guthaus and et al., “MiBench: A free, commercially representative
embedded benchmark suite,” in IEEE Int. W. on Workload Characteriza-
tion, 2001.

[25] (2020) Virustotal intelligence service. Last accessed: 05-Dec-2020.
[Online]. Available: www.virustotal.com/intelligence

[26] (2020) Virusshare team. Last accessed: 05-Dec-2020. [Online]. Available:
www.virusshare.com

Design, Automation and Test in Europe Conference

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

