
The Road towards Predictable Automotive

High-Performance Platforms

Falk Rehm1, Jörg Seitter1, Jan-Peter Larsson3, Selma Saidi2, Giovanni Stea4, Raffaele Zippo5,4,

Dirk Ziegenbein1, Matteo Andreozzi3, and Arne Hamann1

1Robert Bosch GmbH, Germany, firstname.lastname@de.bosch.com
2Technical University of Dortmund, Germany, firstname.lastname@tu-dortmund.de

3Arm, UK, firstname.lastname@arm.com
4University of Pisa, Italy, firstname.lastname@unipi.it

5University of Florence, Italy, firstname.lastname@unifi.it

Abstract—Due to the trends of centralizing the E/E architec-
ture and new computing-intensive applications, high-performance
hardware platforms are currently finding their way into auto-
motive systems. However, the Systems-on-Chip (SoCs) currently
available on the market have significant weaknesses when it
comes to providing predictable performance for time-critical
applications. The main reason for this is that these platforms
are optimized for average-case performance. This shortcoming
represents one major risk in the development of current and
future automotive systems. In this paper we describe how high-
performance and predictability could (and should) be reconciled
in future HW/SW platforms. We believe that this goal can only
be reached via a close collaboration among system suppliers, IP
providers, semiconductor companies, and OS/hypervisor vendors.
Furthermore, academic input will be needed to solve remaining
challenges and to further improve initial solutions.

I. INTRODUCTION

There is a clear trend in the automotive domain towards

a new paradigm of centralized E/E architectures, where large

portions of formerly separated functionalities running on ded-

icated ECUs are integrated into centralized vehicle integration

platforms (VIP) [1]. At the same time, novel computation-

and data-intensive algorithms, such as, for instance, predictive

maintenance or automated driving (AD) functionalities, are be-

ing deployed on these centralized high-performance platforms.

In order to satisfy the tremendous demand of ”centralized”

computing power, heterogeneous SoCs are being increasingly

deployed in automotive systems. These SoCs are µP-based, fea-

turing a variety of integrated specialized accelerators, including

GPUs and FPGAs. Examples of this class of SoCs include

NXP’s S32V vision processor family, or the Tegra series offered

by Nvidia.

Compared to traditionally used micro-controllers, these het-

erogeneous SoCs are highly parallel and feature complex

memory systems, composed of multiple levels of on-chip

shared SRAM memories (caches or scratch-pads) and off-chip

DRAMs. Obviously, the increased complexity of the memory

system that is shared between multiple execution engines on

the SoC leads to a strong performance correlation between

parallel executed applications [2]. While programmatically data

is accessed transparently through virtual address spaces, it is

physically stored at different (shared) memory locations, with

different access latencies that are dynamically influenced by

complex access and caching schemes as well as mechanisms for

ensuring data coherency and consistency. For instance, in [2]

it has been shown that the average (sequential) read access

latency can vary by a factor of up to 8x on a Nvidia Tegra X1

platform.

When looking especially at mixed-criticality systems with

high ASIL levels, it becomes clear that shared hardware

resources, such as a memory subsystem with caches and

DRAM, must be controlled to ensure predictable performance

and achieve freedom from interference in space and time as

requested by ISO26262. While spatial separation can be con-

trolled, e.g. with a hypervisor and Memory Management Units

(MMU/MPU), resource-efficient temporal isolation providing

timing predictability while preserving performance is much

harder to achieve.

In this paper, we discuss different ideas involving a combina-

tion of software mechanisms (Section II) and hardware features

(Section III) to address the problem of providing predictable

performance on embedded high-performance automotive plat-

forms. To achieve this, we believe that a close collaboration

is necessary among system suppliers, IP providers, semicon-

ductor companies, and OS/hypervisor vendors. Moreover, for

specific parts and setups, methods from formal performance

modeling and analysis can be leveraged in order to under-

stand performance effects and derive sensible system config-

urations (Section IV). To guarantee performance for complex

applications, multiple shared resources of a SoC must be

orchestrated and configured adequately (e.g. the interconnect

and the memory controller). Individual resources, however,

are arbitrated and configured independently of each other,

although the overall system performance is strongly influenced

by interactions and correlations among multiple resources.

This ”non-composability” makes system-wide configuration an

1915978-3-9819263-5-4/DATE21/ c©2021 EDAA

Fig. 1. Three classes of centralized automotive E/E architectures. While
domain-centralized and domain-fusion architectures group embedded ECUs
according to their function domain, vehicle-centralized architectures combine
embedded ECUs according to their mounting position in the vehicle.

extremely challenging and time consuming task. As possible

way out, we discuss the idea of admission control borrowed

from the networking domain [3] that has the potential to

greatly simplify achieving predictable performance in complex

SoCs considering a sequence of heterogeneous shared resources

accessed in an end-to-end (E2E) fashion (Section V).

II. PERFORMANCE PREDICTABILITY IN UPCOMING

CENTRALIZED AUTOMOTIVE E/E ARCHITECTURES

The traditional decentralized automotive E/E architectures

are the result of multiple years of evolution of vehicle function-

ality. By using dedicated hardware for additional and possibly

optional functionalities, decentralized architectures enabled and

followed the distributed development paradigm between vehicle

manufactures and suppliers. Decentralization also facilitated

the structural partitioning of the vehicle system into functional

domains. On the one hand, this is important for the planning,

design and implementation of vehicle functionality in a parallel

setup to minimize organizational interfaces. On the other hand,

the corresponding functional partitioning (one function - one

control unit) limits the functional interfaces and integration

effects to the communication networks.

This architectural approach obviously results in a very close

link between hardware and software since relocation of func-

tionality is not an architectural driver. While decentralized

architectures have carried the industry so far, new architectural

drivers have appeared as automotive mega-trends: electrified,

autonomous, connected and shared are the keywords that de-

scribe future expectations to a vehicle that must be backed by

the E/E architecture. Centralized E/E architectures (Figure 1)

bring the opportunity of cost and weight savings by reducing

the number of control units and promise to reduce complexity

in comparison to a distributed E/E architecture. However,

the complexity of managing distributed logic with dedicated

resources is merely replaced by the complexity of managing

centralized logic on a parallel hardware platform with shared

resources [1].

In addition, these centralized control units need to host

software categories which range from real-time safety-critical

embedded software all the way up to ”app”-like software

without safety requirements that can be updated in the field. In

this mixed-criticality setting, it is mandatory to have predictable

performance and isolation of applications from each other,

with respect to both space and time. This can be achieved by

actively managing Quality of Service (QoS) and limiting the

contention and interference on shared resources. Unfortunately,

the currently available COTS platforms are optimized for high

average performance and offer only limited and coarse-grained

support for configuring QoS for shared resources such as the

interconnect or the DRAM. In order to achieve predictable per-

formance, one has, thus, to resort to software-based methods.

While spatial isolation is well supported, e.g. at the level

of POSIX processes, several software measures have been pro-

posed to limit the temporal interference on levels of scheduling,

data caching and memory access bandwidth.

Scheduling is concerned with the distribution of CPU

resources to applications. In comparison to the well-

established priority-based scheduling approaches, reservation-

based scheduling approaches show advantages in offering

composable QoS guarantees to applications while allowing

more flexibility than TDMA-based scheduling [4]. In general,

partitioned scheduling, i.e. the pinning of application processes

to cores, shows better predictability than global scheduling

in multi-core settings as interference effects can be better

localized. However, this approach has limitations as well, since

in many SoCs the CPU cores are allocated in clusters of

multiple cores (usually 2 or 4). These clusters provide shared

infrastructure, e.g the L2 cache. So pinning a process on one

core of a cluster will still not resolve the interference between

cores of the same cluster on the L2 cache, unless that cache

is partitioned. Extreme isolation mechanisms such as a ”stop-

the-world” approach, where the execution of ASIL-D safety

application on a single CPU core will stall all other cores in the

system in order to generate a single-core equivalent scenario,

are not adequate due to their performance penalty.

The previously mentioned issue of interference through

caching can be addressed with cache coloring (e.g., [5]),

exploiting the fact that (depending on the organization of the

cache) certain address ranges will map to the same cache line.

By choosing the mapping of virtual memory pages to physical

pages with this in mind, performance-optimal memory alloca-

tion as well as cache partitioning can be achieved. However,

this comes at the price of a factual smaller cache for each

partition and additionally fine-grained page-mapping that can

1916 Design, Automation and Test in Europe Conference

cause side-effects in terms of page-table walks. Cache coloring

can be supported by software on operating system or hypervisor

level. Also, cache partitioning is directly supported by novel

HW mechanisms such as Arm DynamIQ, see Section III-A.

In order to address interference topics outside of a CPU clus-

ter, e.g. the access to DRAM, performance counters integrated

in the SoC can be used to actively limit the number of requests

and reserve memory bandwidth at the level of cores, hypervisor

partitions or single applications, using software-based mecha-

nisms such as Memguard [6]. This is an effective mechanism to

limit interference. However, the more fine-grained the objects to

be isolated get, the higher the overhead becomes. This overhead

could be reduced if the SoC exposed more information, e.g.,

the source of a particular request, or implemented less coarse-

grain resource partitioning mechanisms than those available

in current SoCs (where QoS mechanisms are available at the

cluster level, if at all) directly in HW, see Section III-B.

All these concepts are sophisticated approaches with their

individual drawbacks, such that their stand-alone configuration

is already quite intricate for an industrial practitioner in real-

world application scenarios. However, there are additional

interactions among these mechanisms. If you, e.g., use cache

coloring to reserve cache for real-time critical applications in

order to prevent cache thrashing by non-real-time applications,

you effectively reduce the cache size for all applications. This

could in turn lead to more DRAM traffic which will increase

the DRAM interference also towards the real-time applications.

Finding an optimal configuration for these interacting mecha-

nisms is highly dependent on the characteristics of applications

and the HW platform. Thus, automated profiling as well

as sophisticated configuration tools are required. Considering

updates in the field at operation time, it is absolutely crucial

that there is as little human intervention required in this as

possible.

In addition to these quantitative dependencies among these

resources, the different resources (e.g., interconnect and mem-

ory) need also to be available at the same time in order to avoid

interference due to resource contention. An approach to solve

this is the E2E admission control presented in Section V.

III. RESOURCE CONTENTION AVOIDANCE MECHANISMS IN

HIGH-PERFORMANCE ARM-BASED SYSTEMS

Hardware can do more to help software reduce contention in

shared resources by providing mechanisms that enable tighter

observability and controllability of the behaviour of individual

workloads than current software-based approaches are able to

achieve.

Such hardware mechanisms can be broadly classified into

three groups:

1) Identification mechanisms that allow software to label

traffic flows in the system, for example labelling traffic

belonging to a particular workload or virtual machine;

Fig. 2. Logical composition of a DynamIQ cluster, adapted from [7]

2) Monitoring mechanisms that allow software to observe

the behaviour of traffic flows within the shared resources

they pass through, for example in terms of their cache

occupancy or bandwidth utilisation;

3) Control mechanisms that allow software to configure

differential treatment of flows in shared resources, for

example by restricting cache occupation or influencing

arbitration policies in networks-on-chip (NoCs).

In the following paragraphs, we provide an overview of two

Arm technologies that implement hardware-based mechanisms.

We illustrate how the DynamIQ Shared Unit (DSU) and Mem-

ory System Partitioning and Monitoring (MPAM) architecture

extension can help reduce resource contention.

A. The DynamIQ Shared Unit

DynamIQ is a compute cluster technology that allows com-

patible cores to be integrated into a heterogeneous or homo-

geneous cluster alongside a DynamIQ Shared Unit (DSU).

The DSU is a subsystem that includes an optional shared L3

cache, control logic, and external interfaces [7]. Processors that

can form DynamIQ clusters include Cortex-A78 [8], Cortex-

A76AE [9] and Cortex-A65 [10]. Figure 2 shows a DynamIQ

cluster comprised of multiple cores integrated alongside a DSU.

The L3 cache in the DSU is shared between all processors

in the cluster, and the DSU supports hardware-based cache

partitioning to mitigate the risk of contention of data flows

in the cache. [7]

1) Scheme ID: The identification mechanism in the DSU

cache partitioning scheme is based on software-configurable

scheme IDs. Scheme IDs are comprised of 3 bits, allowing

software agents to be assigned into one of 8 scheme ID groups.

Scheme IDs can be set by privileged system software such as

operating systems or hypervisors. Hypervisors can delegate a

subset of scheme IDs to virtualised guest operating systems and

restrict their use of other scheme IDs by configuring mask and

override registers that replace part of the scheme ID set by the

guest operating system with equivalent override bits controlled

by the hypervisor.

2) L3 partitioning: The L3 cache in a DSU is 12- or 16-way

set-associative and is logically split into 4 partition groups of

3 or 4 ways each. Each group can be configured in one of two

ways:

Design, Automation and Test in Europe Conference 1917

Fig. 3. Assignment of partition groups to schemeIDs in the DynamIQ Shared
Unit L3 Cluster Partition Control Register

• Private to a scheme ID. This prevents allocations by other

scheme IDs into the group

• Unassigned. This allows the ways within the group to be

allocated by any scheme ID

Partitioning is configured by writing into a 32-bit register,

where each register bit corresponds to a combination of scheme

ID and partition group. Setting a bit in this register indicates

that a group is private to the corresponding scheme ID, and a

group for which none of the bits have been set is deemed to

be unassigned. Figure 3 shows the mapping of partition groups

to scheme IDs within the register.

The DSU partitioning mechanism can provide isolation be-

tween up to 4 traffic flows. As an example of a possible

configuration, consider a system with a hypervisor running two

virtual machines (VMs). The VMs run, respectively, a Real-

Time Operating System (RTOS) with two real-time workloads,

and a general-purpose operating system (GPOS). The hypervi-

sor assigns itself the schemeID 7 (0b111), the GPOS VM the

scheme ID 0 (0b000), and the RTOS VM the two schemeIDs

2 (0b010) and 3 (0b011). Assignment of schemeIDs within

the real-time VM is delegated to the RTOS using an override

mask of 0b110 and an override value of 0b01x. The GPOS

VM can be prevented from unilaterally changing its schemeID

by setting an override mask of 0b111.

The L3 cache is then partitioned between the hypervisor,

GPOS VM and RTOS VM by writing the value 0x80004201
into the partition configuration register. This sets partition group

3 to be private to schemeID 7 (the hypervisor), partition group

2 to be private to schemeID 0 (the GPOS VM) and partition

groups 1 and 0 to be private to schemeIDs 2 and 3 (the RTOS

VM).

B. MPAM

The Armv8.4-A Memory System Resource Partitioning and

Monitoring (MPAM) extension is an architectural approach

to resource contention avoidance. MPAM provides workload

identification of memory traffic throughout the system, as well

as standard monitoring and control interfaces for observation

of workload performance and apportioning of system resources

like cache capacity and memory bandwidth. MPAM identifiers

can be attached to memory system requests from CPUs [11] or

to device traffic going through a System Memory Management

Unit (SMMU) [12].

Fig. 4. Example of an MPAM system, with components highlighted according
to their MPAM capability

Figure 4 shows a system diagram of an example MPAM

system with CPUs and SMMU generating identification labels

and other providing monitoring and control functionality based

on MPAM labels.

1) Identification: Identification in MPAM is based on two

types of identifiers:

• Partition Identifiers (PARTID) that identify the partition

that generated a particular request for the purpose of

monitoring and control

• Performance Monitoring Group (PMG) identifiers that

identify agents within a partition for the purpose of

monitoring

For example, an operating system can assign a PARTID to a

workload to control its usage of a shared cache. The workload

may be comprised of multiple operating system processes or

execution threads, each of them possibly assigned an individual

PMG within the PARTID. This allows a control policy to

be applied to the entire workload, while monitoring can be

performed at the granularity of individual processes or threads.

2) PARTID spaces: PARTIDs exist in one of four spaces:

• Physical non-secure PARTIDs for non-virtualised non-

secure software

• Virtual non-secure PARTIDs for virtualised non-secure

software

• Physical secure PARTIDs for non-virtualised secure soft-

ware

• Virtual secure PARTIDs for virtualised secure software

The security space of a PARTID is determined by the

TrustZone security state of the agent that made the request.

The security space is encoded in an additional MPAM NS

bit alongside the PARTID and PMG. Restricting the ability of

non-secure software to set control policies that apply to secure

software mitigates the risk of side-channel information leaks

between the secure and non-secure world.

The PARTIDs that memory requests are labelled with are

termed physical PARTIDs (pPARTIDs). MPAM also provides

for virtual PARTIDs (vPARTIDs) in order to allow hypervisors

to delegate a subset of pPARTIDs to a guest operating system.

Each guest OS can then manage its own contiguous vPARTID

1918 Design, Automation and Test in Europe Conference

Fig. 5. Example assignment of cache portions to partitions using MPAM cache-
portion partition bitmaps

space, and vPARTIDs are automatically translated back into

pPARTIDs using mapping system registers [11] or translation

tables [12] under hypervisor control.

3) Monitoring interfaces: MPAM provides two standard

monitoring interfaces, both of which are optional:

• Cache-storage usage monitors that report the cache utili-

sation for a given PARTID and PMG

• Memory-bandwidth usage monitors that report the number

of bytes transferred for a given PARTID and PMG

Up to 216 monitors of each type can be implemented by each

memory system resource. Monitors can be configured to filter

requests by type, for example read or write, and by a choice

of PARTID and PMG or PARTID only. MPAM monitors can

optionally support capture registers that hold the monitor value

after a capture event, allowing the values in multiple registers at

a given point in time to be frozen and then read out sequentially.

Capture events can be external to a resource, for example driven

by a timer interrupt, or generated locally by writing into a

capture register.

4) Control interfaces: MPAM provides 6 types of standard

control interfaces, all of which are optional:

• Cache-portion partitioning

• Cache maximum-capacity partitioning

• Memory-bandwidth portion partitioning

• Memory-bandwidth minimum and maximum partitioning

• Memory-bandwidth proportional-stride partitioning

• Priority partitioning

Cache-portion partitioning subdivides a cache resource into a

number of portions of equal and fixed size, up to a maximum of

215 portions. The ability of a partition to allocate into a portion

Pn is determined by bit Bn in a memory-mapped cache-portion

bitmap register. This allows flexibility in portion assignment: a

portion can be shared by a group of partitions, be private to a

single partition, or remain open for allocation by any partition.

Figure 5 illustrates an example of an apportioning of a cache

with 8 portions between two PARTIDs, with two private cache

partitions and one shared.

Cache maximum-capacity partitioning limits the ability of

a partition to occupy more than a configurable fraction of

the cache capacity. Cache maximum-capacity partitioning can

be combined with cache-portion partitioning, for example to

restrict the ability of a single partition to occupy all of the

capacity of cache portions that have been made available to

multiple partitions.

Memory-bandwidth portion partitioning subdivides memory

bandwidth into a number of portions (quanta), up to a maximum

of 212 portions. The ability of a partition to use a bandwidth

quantum Qn is determined by bit Bn in a memory-mapped

memory-bandwidth portion bitmap register.

Memory-bandwidth minimum and maximum partitioning al-

low setting of a minimum guaranteed and maximum permitted

memory bandwidth that is applied to a partition in the presence

of contention.

Memory-bandwidth proportional-stride partitioning is based

on a configurable stride for each partition, permitting a partition

to consume bandwidth in proportion to its own stride relative to

the strides of other partitions that are competing for bandwidth.

Priority partitioning provides a way for resources to expose

partition-based configuration of internal arbitration policies.

These can be used by system software for fine-grained control

over scheduling and arbitration policies in the memory system.

C. Summary

The hardware mechanisms provided by the DSU and by

implementations based on the MPAM architecture offer im-

provements in efficiency and efficacy over software-based re-

source contention avoidance approaches like cache colouring.

By decoupling partitioning from memory management code,

hardware-based cache partitioning imposes fewer restrictions

on memory allocation and permits better utilisation of the

cache and downstream memory resources. In addition to cache

partitioning, MPAM provides several types of control interfaces

that can help limit memory bandwidth contention, for example

in networks-on-chip or memory controllers.

IV. SUPPORTING SYSTEM DESIGN WITH FORMAL

PERFORMANCE ANALYSIS

Systems meant for mission-critical environments, such as

automotive, aeronautical, robotic etc., must be designed so that

they meet pre-specified QoS requirements. In other words, it is

not sufficient that they are found to meet QoS requirements via

ex-post performance analysis, which is usually performed via

simulation, hence having limited coverage. They must instead

meet those requirements by design, ex-ante. This requires in

turn formal methods to be able to infer QoS guarantees from a

behavioral description of the system. In particular, worst-case,

deterministic bounds are the type of guarantees that best lend

themselves to ex-ante formal certification, since they do not rely

on assumptions on possible statistical patterns of a system’s

input, which might in turn not be verified in an operational

environment. This is also important for design considerations:

if you have a formal method to characterize the worst-case

behavior of a system, you can use it during its design phase

(e.g., to tune its parameters) so as to obtain a desired behavior.

Design, Automation and Test in Europe Conference 1919

As far as QoS is concerned, the most important bounds are

on the backlog, which allows system builders to dimension

buffer space at the elements so as to avoid losses, and on the

delay, which allows them to compute component-wise or E2E

guarantees on the response time of an application.

Network Calculus (NC, [13]) is a theory for computing

such bounds, which has been originally devised for QoS

in the Internet (laying the foundations for the IntServ and

DiffServ architectures), and has later found applications in

several domains, including avionic networks, time-sensitive

networks, industrial Ethernet. In the embedded and real-time

systems domain, a variant of network calculus, called real-

time calculus, is often used. In network calculus, the worst-

case service offered to a flow by a component is modeled

as a function of time, called service curve. By comparing a

service curve with an arrival curve, that bounds from the above

the traffic generated by that flow over time, bounds on the

backlog and delay can be computed. NC allows composable

E2E analysis: one can determine an E2E service guarantee by

composing per-node service curves. Being able to characterize

systems as service curves is the fundamental (and certainly non-

trivial) step that allows, on the one hand, to design systems that

meet pre-specified worst-case performance guarantees, and, on

the other hand, to setup service negotiation frameworks (e.g.,

admission control, route computation, resource reservation etc.)

between an application and the underlying system.

A. Worst-case analysis of a FR-FCFS DRAM controller

In this section, it is shown how to compute worst-case delay

(WCD) guarantees in a DRAM controller. The DRAM is a

shared resource, where contention among different masters

may affect performance and jeopardize deadlines. A First-

Ready, First-Come-First-Served (FR-FCFS) DRAM controller

is chosen as an example to show how to compute a service

curve for incoming read requests. First, an upper bound on the

WCD [14] is computed. Furthermore, it is shown that this upper

bound is not overly pessimistic by computing a lower bound

whose gap to the upper bound is null to negligible in practical

cases. It is worth noting that:

• The method described below can be applied to any mem-

ory technology (e.g., DDR3, DDR4, LPDDR4, etc.), by

changing the values of the timing parameters;

• deriving both bounds is computationally inexpensive (mil-

liseconds at most).

A DRAM module is used by multiple devices, that send their

read and write requests to a controller. The latter arbitrates

requests and schedules DRAM commands. The system is

pictured in Fig. 6

In order to capture the worst-case behavior, some assump-

tions need to be made, concerning all the mechanisms that

have been devised over the years to improve the average case:

therefore it is assumed that no short-circuit between reads and

writes occur (i.e., read requests whose response is already in a

Fig. 6. Model of the FR-FCFS DRAM controller

pending write, hence could be answered without going to the

DRAM); it is also assumed that all requests target the same

bank, hence the controller must serve them sequentially. The

focus is on read requests (instead of writes) since the former

are on the critical path for the master requesting them, whereas

the latter are not, and can be deferred. A FR-FCFS controller

maintains a separate queue for reads and writes, and alternates

between serving one queue or the other, also scheduling refresh

commands periodically. One must distinguish “row miss” and

“row hits” read requests (hereafter misses and hits for short).

The former pay a higher time overhead, since a “row open”

command has to be issued before being able to serve these

requests. For this reason, while misses are scheduled FCFS in

the read queue, hits are promoted to the front of the read queue.

The above prioritization is limited to a maximum of Ncap (this

is necessary to avoid starvation of misses). Moreover, switching

between the read and write queues incurs a time overhead,

hence frequent switching should be avoided. The FR-FCFS

controller serves writes in a batch, according to a watermark

policy, pictured in Fig. 7. The relevant parameters are the

high and low watermark thresholds, Whigh,Wlow, and the write

batch length Nwd. When in read mode, the controller switches

to serving writes when either of the following conditions holds:

1) The read queue is empty, and there are at least Wlow

write requests in queue;

2) There are at least Whigh write requests in queue.

When in write mode, the controller switches to serving reads

when either of the following conditions holds:

1) The read queue is empty, and write queue is below

max(Wlow −Nwd, 0);

2) The read queue is not empty, and Nwd writes have been

served.

In a worst-case scenario the read queue is never empty, hence

both conditions 1 can be neglected without loss of generality.

The only relevant parameters are Whigh and Nwd. Last, refresh

operations are needed to avoid loss of data at the DRAM. It is

assumed that they are scheduled when a refresh timer expires,

after the completion of the ongoing read or write request.

The aim is to bound the delay that a read miss experiences,

as a function of its position in the read queue. Call tN the time

at which a read miss entering the read queue at the Nth position

1920 Design, Automation and Test in Europe Conference

Fig. 7. Watermark policy for read/write switching.

is scheduled. The curve that joins points (tN , N) is a service

curve for this system, hence can be used in a compositional

analysis to obtain E2E performance metrics. The alert reader

can easily see that the rate at which writes arrive at the system

will impact time tN . If that rate is too high, a periodic pattern

of one read miss followed by a batch of Nwd writes will

soon establish, interrupted only by occasional refreshes. Based

on the above pattern, one could clearly establish a crude,

pessimistic upper bound with pen and paper. However, this will

not be representative of working conditions: masters tend not to

exhibit patterns of unlimited writes; physical rate limiters (e.g.,

token buckets) are often employed at the entrance of a shared

network, to avoid congestion; the interconnection network has a

finite capacity, hence acts as an implicit rate limiter for memory

requests anyway. Thus, knowledge of the write arrival rate at the

controller in the computation of the upper and lower bound is

integrated. This allows to compute tighter bounds, at the price

of complicating the analysis. A general – and enforceable –

model for limited arrival rates in NC is the token-bucket shaper,

with arbitrary but known parameters burst and rate. The burst

parameter b (the vertical offset) models the fact that concurrent

requests may arrive near-simultaneously. This happens, e.g.,

because of different masters sending requests that arrive at the

DRAM controller back-to-back, even though each individual

master is rate-limited. The rate parameter r (the slope of the

line) is the aggregate average rate of the masters that are using

the DRAM. The fact that a process R(t) is upper bounded by a

token-bucket shaper with a shaping curve α(τ) = b+rτ , τ > 0,

implies that ∀τR(t+τ) ≤ α(τ)+R(t). In other words, the only

legitimate processes are those that never intersect the shaping

curve. Besides being a useful model for an aggregate traffic

process, a token-bucket shaper can be practically implemented

in hardware. At a high level, the algorithm consists of the

following steps:

1) Compute the time TN it takes to serve N read misses.

2) Add the time TH that it takes to schedule Ncap read hits

back-to-back. This is because the time that it takes to

serve a batch of hits is convex with their number, hence

scheduling them back-to-back generates the largest delay.

Note that this may lead to an unrealistic schedule (hence,

an upper bound on the WCD), since there is no guarantee

that a gap large enough may exist between two write

batches to schedule Ncap read hits. Call T = TN + TH .

TABLE I
DRAM TIMING PARAMETERS (NS)

DDR3 1600

tCK 1.25
tBurst 5
tRCD 13.75
tCL 13.75
tRP 13.75

tRAS 35
tRRD 6
tXAW 30
tRFC 260
tWR 15

tWTR 7.5
tRTP 7.5
tRTW 2.5
tCS 2.5

tREFI 7800
tXP 6
tXS 270

TABLE II
UPPER AND LOWER BOUNDS ON THE WCD (NS)

Write rate Lower bound Upper bound

4 Gbps 1971.711 1977.542
5 Gbps 2957.983 2963.814
6 Gbps 3934.259 3950.086
7 Gbps 5886.811 6908.902

3) Compute the largest number of write batches that can be

scheduled within T , and add their time overhead to T ;

4) Compute the largest number of refreshes that can be

scheduled within T , and add their overhead to T .

Steps 3 and 4 – which only involve trivial algebra – must be

iterated until T converges to a stable value. This is because

every time that T is increased, new write batches or refreshes

may be included, that had not been considered at the previous

step. Convergence is reached within few iterations. Once T has

converged, assume that the read miss under study (the N th) is

at the end of the schedule, and mark (T,N) as a point in the

service curve.

Note that, if the above algorithm computes a feasible sched-

ule, delay T is the WCD (since it is both an upper bound

and a lower bound on the WCD itself). Otherwise, it can be

complemented via a lower bound that benchmarks it. As a

lower bound, one computed using steps 1, 3, and 4 above is

used, and scheduling Ncap hits as soon as possible, possibly

partitioning them among several batches. A bound on the

maximum difference between the lower and upper bound can

be computed, which is O(Ncap). The two bounds are in fact

quite near.

Table II reports the lower and upper bounds computed assum-

ing a DDR3 DRAM, with parameters taken from a DDR3-1600

4 Gbit datasheet, also reported in Table I. Controller parameters

are Whigh = 55, Nwd = 16, and Ncap = 16. The write arrival

rate varies between 4 and 7 Gbps, assuming a burst of 8.

The results clearly show that the bounding algorithms are

Design, Automation and Test in Europe Conference 1921

very effective, except when the write rate is very high (last

line). Through them, one can compute a service curve for the

DRAM technology being used, that can be composed with other

guarantees (e.g., a WCD on the transit of the interconnection

network) to compute E2E guarantees a priori. Moreover, one

can design controllers with appropriate parameter values (e.g.,

Whigh, Nwd, Ncap), so as to meet pre-specified guarantees. The

result of the last line shows that the bounding algorithms have

room for improvement.

V. ADMISSION CONTROL FOR GUARANTEEING E2E QOS

IN MPSOCS

Heterogeneous Multi-Processor Systems-on-Chip (MPSoCs)

feature a large number of tightly-coupled shared resources.

In order to conduct memory accesses, an application must

generally acquire several shared (interconnect and memory)

resources with independent arbiters and often provided by

different vendors. Each shared resource may be further divided

into sub-resources (i.e., managed by sub-arbiters). For instance,

many modern MPSoCs are equipped with Networks-on-Chips

(NoCs) featuring wormhole-switching and multi-stage arbitra-

tion (e.g. iSLIP). DRAMs feature as well complex internal

hierarchical structure. They are composed of multiple modules

which are further structured in a number of banks used to store

data. Each bank contains a matrix-like structure where data is

located along with a row buffer. The matrix-like structure is

not visible to the memory controller and all data exchanges are

performed through the corresponding row buffer.

Conventional network and memory resources do not take

into account interference between different threads/applications

when making scheduling decisions and resources are not re-

served in advance. Each router conducts its arbitration locally,

i.e. packets are switched as soon as they arrive and ongoing

transmissions compete for link bandwidth and buffer space,

independently of other routers. Memory accesses are translated

by the memory controller into internal DRAM commands used

to access data and read/write from row buffers. COTS memory

controllers are optimized for the average-case performance and

because of this they rely on the open-row policy. A FR-FCFS

scheduling policy, as described in the previous section, is often

used to prioritize memory requests accessing the same memory

region (i.e. the same row) over other requests, to maximize row-

hit rate, and thereby performance.

The granularity of application requests is therefore often

different from the shared resources’ granularity of arbitration.

While applications issue data transmissions (cache lines or

DMA), routers arbitrate data flits and packets, and memory

controllers schedule internal DRAM commands. An application

data transmission is decomposed into a number of flits or

packets and internal DRAM commands. This results in a

complex spectrum of direct and indirect interference between

data streams, which may jeopardize predictability and endanger

system safety.

Fig. 8. A logical view of E2E admission control considering different resources
services (i.e. regulation rates) configured by the resource manager (RM) for
shared resources.

Approaches like traffic shaping and memory throttling using

rate control are well-known methods to support QoS. However,

applying rate control in an E2E fashion in the presence of mul-

tiple heterogeneous resources operating at different granularity

requires fine-grained synchronization and proper configuration

of individual shapers to meet the E2E QoS requirements

dictated by a given application. This is even more complex

if dynamic adaptation is considered, to comply with changes

in the state of the system such as the number of applications

or changes in their requirements. Hence, there is a need for

abstractions to map QoS requirements from applications to

resources, and to orchestrate the configuration of regulation

parameters for provided resources services.

Admission control can be used as an alternative method

to provide applications with a global resource arbitration. It

allows one to decouple the data layer, where transmission is

performed, from the control layer, which is responsible for

allocation and arbitration of available resources, see Fig 8. The

idea of admission control is not new, it is often used in the

IT domain in combination with Software-Defined Networking

(SDN) to implement routing processes that are more dy-

namic and efficient than physical ones implemented in network

switches [3]. It has been used in different existing works to

provide real-time capabilities and facilitate adaptation and re-

configuration [15].

In [16], admission control was applied to provide real-time

guarantees for (mixed) critical communication and memory

traffic in MPSoC. The proposed approach provides an overlay

network built on top of existing NoC architectures. Whenever

an applications is granted admission, E2E access allocation of a

sequence of shared network and memory resources is achieved.

This control layer has a global view of current traffic in the

network and can dynamically adapt the rate control at which

running applications can access shared resources to the state of

the system [17].

In order to support admission control, standard NoC archi-

1922 Design, Automation and Test in Europe Conference

Fig. 9. Adaptive resource services defined by the RM as traffic injection rates
according to the system mode [17].

tectures are extended by introducing local supervisors, called

clients, at each node. The role of clients is to prevent non-

authorized accesses, adjust the access rates to the NoC for

each application, release the NoC resources (inform the RM

whenever an application terminates), and prevent unbounded

NoC accesses. Clients can be implemented fully in software or

as an independent hardware module controlling accesses before

they arrive to the network interface, to allow the integration

with existing commercially available components.

At each source node, a monitor regulates the rate at which

the source can inject traffic in the NoC. This regulation is

performed dynamically (at run-time) according to the system

load i.e. the number of simultaneously active applications using

a special scheduling unit called Resource Manager (RM). The

RM possesses knowledge of the global state of the NoC (i.e.,

which application is active) and which resources are occupied.

Using this information, the RM may decrease or increase the

injection rates for a particular node, as depicted in Fig 9,

depending on the current system mode. Each mode is defined

by the number of currently active applications, and determines

the minimum time separating every two transmissions issued

from the same application. The mechanism is capable of enforc-

ing symmetric guarantees, where transmission rates decrease

uniformly for all applications when the number of senders

running in parallel (system mode) increases. Non-symmetric

guarantees where transmission rates depend not only on the

current mode but also on the application’s importance can also

be enforced. The non-symmetric mode can be used in a mixed-

criticality system to maintain the critical application guarantees

while reducing best effort traffic (e.g., by allowing higher rates

for critical applications).

Dynamic rate regulation is performed using a protocol-

based access layer implemented within the existing NoC ar-

chitecture. The protocol consists of four control messages:

activation (actMsg), termination (terMsg), stop (stopMsg) and

configuration (confMsg). The RM must be informed about

the activation and termination of each application. Therefore,

whenever an application is activated and trying to conduct the

first transmission its request is trapped by the client. It remains

blocked until acknowledged by the RM with a confMsg.

Later, the corresponding client sends an activation message

to the RM. Similarly, when a client detects the termination

of an application it issues a terMsg message to the RM. The

activation and termination messages are processed by the RM

in order of arrival. Each of them initiates the transition of

the system to a different mode. Before changing the rates,

the RM sends to the clients supervising active applications a

stop message (stopMsg) to block all accesses to the NoC from

the corresponding node. Clients then wait for the confMsg

communicating the current system mode. After receiving the

confMsg, clients adjust the rate and unblock transmissions.

Note that a trade-off analysis is required at design time to

determine the overhead of the synchronization protocol and the

frequency at which mode changes can be performed to support

dynamics.

Providing E2E guarantees across computation and commu-

nication resources often requires complex analysis approaches,

such as compositional performance analysis [18], [19] for the

worst-case E2E timing behavior. By decoupling the data layer

where transmission is performed from the control layer respon-

sible for allocation and arbitration of available resources, data

transfers are established and scheduled at a higher logical level

before applications acquire access to physical shared resources.

Arbitration between multiple applications is then shifted from

individual (sub) resources to a centralized control unit which

has a global view of the system (i.e. both applications and

resources). This allows to simplify analytical timing analysis

models used to bound interference effects and compute timing

guarantees on the the E2E latency of individual transmissions.

Bounding the timing effects of shared resources requires a

careful analysis of requests arrival (that determine interference)

at every resource and its corresponding scheduling/arbitration

policy. With admission control, interference analysis can ac-

count for applications requests arrival at the centralized control

unit instead of individual flits/packets/commands arrival at

every (sub) resource. This, in turn, reduces the complexity of

coupling different resources timing analysis which usually leads

to pessimistic formal guarantees or decreased performance and

utilization.

VI. CONCLUSION

In this paper we discussed current efforts in the auto-

motive industry to use high-performance hardware platforms

for mixed-criticality and time-critical applications in high-

integration scenarios. We argued that, due to shortcomings of

available platforms in the market, software mechanisms are

currently the only way to retroactively equip them with required

predictable performance. Furthermore, we presented upcoming

Arm technologies, namely DynamIQ and MPAM, that when

used in future IPs will greatly contribute to overcome the

explained disadvantages of purely software-based measures.

Due to these developments, we are confident that a close

cooperation among system suppliers, IP providers, semiconduc-

tor companies, and OS/hypervisor vendors will enable future

Design, Automation and Test in Europe Conference 1923

automotive HW/SW platforms that combine high-performance

with predictability.

In addition, research is needed to further enhance the cur-

rently envisioned initial solutions. While it is desirable to have

formal analyses for configuring system components and give

formal guarantees at design-time, the lack of open specifica-

tions and the complexity of industrial-grade components often

lead to overly pessimistic analytic bounds which prevent the

wide-spread use of formal analysis. We showcased that for

individual components, such as a FR-FCFS DRAM controller,

it is in principle possible to derive tight performance bounds.

However, as interacting heterogeneous components are con-

sidered, E2E formal analysis is highly complex and hardly

feasible. Approaches such as admission control mechanisms

can allow to simplify the system view on tightly-coupled shared

hardware resources and simplify formal performance analysis.

REFERENCES

[1] S. Saidi, S. Steinhorst, A. Hamann, D. Ziegenbein, and M. Wolf.
Special session: Future automotive systems design: Research challenges
and opportunities. In International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pages 1–7, 2018.

[2] R. Cavicchioli, N. Capodieci, and M. Bertogna. Memory interference
characterization between CPU cores and integrated GPUs in mixed-
criticality platforms. In 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pages 1–10, 2017.

[3] J. Leguay, L. Maggi, M. Draief, S. Paris, and S. Chouvardas. Admission
control with online algorithms in SDN. In IEEE/IFIP Network Operations
and Management Symposium (NOMS), pages 718–721, 2016.

[4] A. Hamann, S. Saidi, D. Ginthör, C. Wietfeld, and D. Ziegenbein.
Building End-to-End IoT Applications with QoS Guarantees. In 2020
57th ACM/IEEE Design Automation Conference (DAC), 2020.

[5] Y. Ye, R. West, Z. Cheng, and Y. Li. COLORIS: A dynamic cache
partitioning system using page coloring. In 23rd International Conference
on Parallel Architecture and Compilation Techniques (PACT), pages 381–
392, 2014.

[6] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard:
Memory bandwidth reservation system for efficient performance isolation
in multi-core platforms. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 55–64, 2013.

[7] Arm DynamIQ Shared Unit Technical Reference Manual, October 2019.
Version r4p1. https://developer.arm.com/documentation/100453/0401.

[8] Arm Cortex-A78 Core Technical Reference Manual, May 2020. Version
r1p1. https://developer.arm.com/documentation/101430/0101.

[9] Arm Cortex-A76AE Core Technical Reference Manual, October 2018.
Version r0p0. https://developer.arm.com/documentation/101392/0000.

[10] Arm Cortex-A65 Core Technical Reference Manual, February 2019.
Version r1p1. https://developer.arm.com/documentation/100439/0101.

[11] Arm Architecture Reference Manual Supplement Memory System Re-
source Partitioning and Monitoring (MPAM) for Armv8-A, July 2020.
Version B.b. https://developer.arm.com/documentation/ddi0598/bb/.

[12] Arm System Memory Management Unit Architecture Specification,
SMMU architecture version 3, August 2020. Version D.a.
https://developer.arm.com/documentation/ihi0070/da.

[13] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet, volume 2050 of Lecture
Notes in Computer Science. Springer, 2001.

[14] Matteo Andreozzi, Frances Conboy, Giovanni Stea, and Raffaele Zippo.
Heterogeneous systems modelling with adaptive traffic profiles and its
application to worst-case analysis of a DRAM controller. In 44th IEEE
Annual Computers, Software, and Applications Conference, COMPSAC
2020, Madrid, Spain, July 13-17, 2020, pages 79–86. IEEE, 2020.

[15] Guy Durrieu, Gerhard Fohler, Gautam Gala, Sylvain Girbal, Daniel
Gracia Pérez, Eric Noulard, Claire Pagetti, and Simara Pérez. DREAMS
about reconfiguration and adaptation in avionics. In ERTS 2016, Toulouse,
France, January 2016.

[16] A. Kostrzewa, S. Saidi, L. Ecco, and R. Ernst. Dynamic admission control
for real-time networks-on-chips. In 21st Asia and South Pacific Design
Automation Conference, ASP-DAC 2016, pages 719–724. IEEE, 2016.

[17] Adam Kostrzewa, Sebastian Tobuschat, Rolf Ernst, and Selma Saidi.
Safe and dynamic traffic rate control for networks-on-chips. In Tenth
IEEE/ACM International Symposium on Networks-on-Chip, NOCS 2016,
Nara, Japan, August 31 - September 2, 2016, pages 1–8. IEEE, 2016.

[18] Robin Hofmann, Leonie Ahrendts, and Rolf Ernst. CPA: compositional
performance analysis. In Soonhoi Ha and Jürgen Teich, editors, Handbook
of Hardware/Software Codesign, pages 721–751. Springer, 2017.

[19] Arvind Easwaran and Insup Lee. Compositional schedulability analysis
for cyber-physical systems. SIGBED Rev., 5(1):6, 2008.

1924 Design, Automation and Test in Europe Conference

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

