
Vertical IP Protection of the Next-Generation
Devices: Quo Vadis?

Shubham Rai1, Siddharth Garg2, Christian Pilato3, Vladimir Herdt4,5, Elmira Moussavi6, Dominik Sisejkovic6,
Ramesh Karri2, Rolf Drechsler4,5, Farhad Merchant6, Akash Kumar1

1Chair for Processor Design, TU Dresden, Germany, 2Center for Cybersecurity, New York University, USA,
3Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy,

4Institute of Computer Science, Univ. of Bremen, Germany, 5Cyber-Physical Systems, DFKI GmbH, Germany,
6Institute for Communication Technologies and Embedded Systems, RWTH Aachen University, Germany

Abstract—With the advent of 5G and IoT applications, there is
a greater thrust in terms of hardware security due to imminent
risks caused by high amount of intercommunication between
various subsystems. Security gaps in integrated circuits, thus
represent high risks for both—the manufacturers and the users
of electronic systems. Particularly in the domain of Intellectual
Property (IP) protection, there is an urgent need to devise security
measures at all levels of abstraction so that we can be one step
ahead of any kind of adversarial attacks. This work presents
IP protection measures from multiple perspectives—from system-
level down to device-level security measures, from discussing
various attack methods such as reverse engineering and hardware
Trojan insertions to proposing new-age protection measures such
as multi-valued logic locking and secure information flow tracking.
This special session will give a holistic overview at the current
state-of-the-art measures and how well we are prepared for the
next generation circuits and systems.

I. INTRODUCTION

Security has emerged as an equally important metric along
with area, power, and delay while designing ASICs [1]. Design-
ers worldwide see the need to incorporate security measures in
their designs and verification; hence, adding security benefits
is a welcome cost. However, with the globalization of the
supply chain for electronic circuits, giving security guarantees
with CMOS-based circuits often comes with huge area and
performance overheads [2]. On top of that, this distributed setup
of fabrication, foundry and testing allows several points where
adversaries can attack the chip design or make illicit copies.
Hence, various attacks such as inclusion of a particular hardware
Trojans, IP piracy, IC overbuilding, reverse engineering, IC
counterfeiting and side-channel attacks are prevalent which can
be detrimental for both the design-houses as well as the end-
user. While the design-houses face the issue of infringement of
their intellectual properties (IP), the end-user faces the ultimate
risk of losing secret or private information. Researchers around
the world have worked on various countermeasures like logic
encryption, IP watermarking, IC camouflaging etc. to cope with
such attacks [3].

With the growing proliferation of electronic circuits owing
to the demand of autonomous vehicles and IoT applications,
hardware security needs to be ensured at all levels of abstrac-
tion [4]. Hence, in this work, we tackle the challenges of IP
protection with a vertical approach – from system to device
level. We first discuss system-level IP protection. Section II
details obfuscation techniques for semantics-aware IP protection.
Section III discusses how information flow tracking can be
used for security validation at Virtual Prototype (VP) level.

We then describe techniques which are possible at lower
abstractions. While Section IV introduces multi-valued technique
for future generation computing systems, Section V describes an
emerging reconfigurable nanotechnology which allows building
of polymorphic circuits from bottom-up. At each level, we
describe the techniques, present the current results, but also
pose ourselves the research question Quo vadis?, reasoning
about the future trends.

II. RTL OBFUSCATION OF SEMANTICS OF IP

Next-generation integrated circuit (IC) designs will be in-
creasingly composed of off-the-shelf components (COTS) and
specialized intellectual property (IP) blocks. While COTS
represent pre-existing components (e.g., processors, memory
controllers, etc.), the specialized IP blocks often represent the
added value of the product. For example, they can implement
proprietary algorithms for digital signal processing or data
analytics. Due to the increasing cost of IC manufacturing, design
houses are forced to outsource the fabrication to a third-party
foundry, exposing the IP to security vulnerabilities. Protecting
the IP of these IC components is vital not only for the economy
of the company but also for the safety and security of the end
product. If malicious attackers are able to reverse engineer the IP
functionality, they can replicate and re-sell the IC at a lower cost.
They can introduce malicious modifications to harm the normal
execution of the legitimate ICs. However, integrating security
protections must fit into the existing/established industrial design
flows to avoid compromising the time-to-market and quality
of the final ICs without affecting the security guarantees. For
example, high-level obfuscation can be performed during high-
level synthesis but requires custom tools [5].

In this section we present a new direction in obfuscation to
protect the semantics of an IP against an untrusted foundry to
fit into existing EDA flows1. We present ASSURE [6] approach
that operates at the register-transfer level (RTL) to obfuscate
behavioral IP.

A. ASSURE RTL Obfuscation

ASSURE is compatible with industrial design flows, as shown
in Fig. 1, and assumes the attackers are in the foundry. They
have access to an obfuscated netlist. A functional IC – oracle –
is unavailable (oracle-less model). This is a legitimate threat
model for low-volume ICs, like those used in defense systems,
where a working IC is unavailable to the attackers.

1Not requiring any changes to the EDA flows.

1905978-3-9819263-5-4/DATE21/ c©2021 EDAA

Fig. 1: IC design flow with ASSURE RTL Obfuscation. ASSURE
provides semantic-aware IP protection against an untrusted foundry.

Given a behavioral RTL design, ASSURE produces a ob-
fuscated version and the corresponding bitstream to make
it functional post-fabrication. ASSURE obfuscates semantic
elements like constants, operations, and branches with opaque
predicates as in software obfuscation [7]. ASSURE opaque
predicates depend on the locking bitstream, which is known
during obfuscation but unknown during attack. Fig. 2 shows
the complete process. We discuss two representative designs,
AES and DFT from the MIT-LL Common Evaluation Platform2

(CEP) to motivate our conclusions on RTL obfuscation. AES
requires a total of 819,726 bits for obfuscation, mostly due to
the S-box constants. Obfuscating these elements is interesting
in case of a secret S-box. For example, there are alternative
s-boxes and a nation-state may use one from among those and
redact them. Discrete Fourier Transform (DFT) requires, instead,
8,697 bits distributed across the three types.

For each input design, we generated several variants obtained
by activating different obfuscation techniques and providing
different key budgets. ASSURE operates directly on abstract
syntax tree (AST) of input HDL description and is so indepen-
dent of the input flow. First, we determine which elements to
protect. Obfuscating all elements may not exceed the numbers of
bits available in the tamper-proof memory (TPM). For the table-
based implementation of AES, for instance, all 819,726 bits can
be obfuscated. DFT can be entirely obfuscated with a large TPM.
ASSURE performs a depth-first analysis and obfuscates elements
as long as there there are sufficient bits. This method generates
always feasible designs, letting the designer decide how many
bits to use. Once the elements are identified, ASSURE applies
obfuscation by manipulating the AST. Fig. 2 shows the AST
manipulation to extract one constant of the AES or obfuscate
an operation. Branches are obfuscated with XOR gates on the
predicates to disguise the identification of the true/false
blocks. The resulting AST enters into the RTL generation phase
that implements a Verilog backend. The output RTL design has
the same top interface as the original module, except for an
additional input port to deliver the locking bitstream.

ASSURE is an RTL-Verilog-In-RTL-Verilog-Out tool that
starts with a synthesizable RTL verilog IP without any additional
constraints. The output RTL can replace the original RTL in
any existing EDA flow, including during the simulation and
verification steps. We can formally verify the obfuscated design
by matching the input RTL and the output RTL when the correct
key bitstream is loaded. We verify that any other bitstream
introduces at least one failing point in the design during the
verification, proving that the obfuscated functionality is not
activated with a different bitstream. The obfuscated RTL can

2https://github.com/mit-ll/CEP

TABLE I: Overhead analysis for the AES and DFT designs using
different key bitstream sizes (Nangate 15nm).

Design Bits Area Power Critical Path

Original AES - 42,854.69 μm2 4.47 mW 136.75 ns
Obf. only consts 819,296 +446% +261% -29%
Obf. only ops 429 +6% +18% +2%
Obf. only branches 1 = +8% -1%
Obf. all elements 819,726 +499% +274% +6%

Original DFT - 81,865.94 μm2 10.46 mW 336.72 ns
Obf. only consts 8,414 +4% +3% -4%
Obf. only ops 151 +1% +2% +13%
Obf. only branches 132 = +2% -4%
Obf. all elements 8,697 +7% +8% +18%

be the golden reference in the rest of the IC design flow.

B. Security Analysis

ASSURE techniques offer provable security guarantees
against oracle-less attacks [6, 8]. Any opaque predicate we
generate during obfuscation involves a specific portion of the
input key bitstream. ASSURE generates a obfuscated circuit and
a bitstream K∗. The circuit is indistinguishable from the ones
generated with any other Ki �= K∗ when the attacker has no
prior information on the design. We performed an experimental
evaluation of these effects by applying correct and incorrect
bitstreams, and matching the resulting designs with the original
one. On one hand, obfuscated designs always match the original
ones when using the correct bitstreams. On the other hand,
incorrect bitstream always introduce at least one failing point
in equivalence checking.

C. Power, Performance, and Area Overheads

We synthesized the designs with Synopsys Design Compiler
J-2018.04-SP5 on the Nangate 15nm technology at standard
operating conditions. We evaluated the impact of obfuscating
constants, operations, and branches separately, as well as all
together. Table I shows area, power, and delay overheads
compared to the corresponding original, unprotected versions.
While timing effects mostly depends on where the obfuscation
is applied, area overhead is proportional to the size of the
key bitstream used for obfuscation. Obfuscating the constants
requires most of the key bitstream (e.e., 99% and 96% for
AES and DFT, respectively). However, the impact per bit
is lower than in operation obfuscation. Indeed, operation
obfuscation requires additional hardware resources and so is
more expensive. On the contrary, obfuscating constants do not
introduce extra logic but prevents logic-level optimizations like
constant propagation. Branch obfuscation is inexpensive in terms
of area, but introduces extra power consumption.

D. Discussion and Future Work

ASSURE is a provably-secure RTL obfuscation scheme.
Raising the abstraction level has multiple advantages: 1) it
allows us to protect the IP semantics before it is optimized
and embedded into the netlist by logic synthesis, and 2) it is
compatible with industrial EDA flows, making it valuable for
semiconductor design houses. Our next steps are:

1906 Design, Automation and Test in Europe Conference

8'h00: out <= 8'h63;

8'h00: out <= key[7:0];

...a+b...
...(key ? a + b : a – b)...

Fig. 2: ASSURE obfuscation flow.

• validate ASSURE on larger designs and with more structural
and functional metrics and attacks. We plan to use a red
team-blue team approach to create a virtuous cycle of attacks
and defenses [5, 9].

• include more obfuscation techniques, borrowing concepts
from software obfuscation, and methods to automatically
select which portions of the design to obfuscate with limited
key bitstream budgets and/or overhead constraints.

• extend the approach to thwart also oracle-guided, SAT-
based attacks. The extension demands methods to make SAT
instances and, in turn, key bitstream recovery exponentially
more complex if not impossible.

III. SECURITY VALIDATION AT VP-LEVEL USING

INFORMATION FLOW TRACKING

Security is a crucial aspect in modern embedded systems that
complements functional correctness to build safe and reliable
systems. A very effective technique to validate security policies
and thus protect a system against a broad range of security
related exploits is Information Flow Tracking (IFT) [10, 11].

In this section we present efficient IFT-based techniques at
the system-level using Virtual Prototypes (VPs). This allows
validation of security policies early in the design flow and hence
enables to prevent costly iterations later on. We present static
and dynamic IFT-based techniques for security validation of
the VP as well as the embedded SW running on the VP. Our
experiments demonstrate the effectiveness of our approach.

In the following, we start with an overview of VP-based IFT,
then summarize our experimental results and discuss the open
challenges and opportunities for future work in this domain.

A. Overview

Fig. 3 shows an overview on our VP-based IFT approaches.
Starting point is a security policy that needs to be validated at
the VP level. A security policy enables to specify fine grained
access control models, in particular to cover confidentiality and
integrity aspects from an execution perspective. Confidentiality
ensures that secret data (provided in secret memory or register
locations) does not leak to untrusted targets. Integrity ensures
that untrusted data (in particular coming through untrusted input
interfaces) does not affect sensitive data. IFT enables to protect
against a broad range of security related exploits (e.g. which
affect confidentiality or integrity) by tracking and checking the
information flow alongside the software execution. We consider
static and dynamic IFT for validation of security policies. Fig. 3
shows an overview on both approaches (static IFT on left side
and dynamic IFT on right side).

Security Policy

VP Dynamic IFT
Engine

+ Instrument.:
Inputs/Outputs

Taint Types
& Operations

Result
Test-Case

VP AST / CFG

Extracted
Information

Static IFT
Analysis

Clang

custom analyis

use

provide

Static IFT Dynamic IFT

Fig. 3: VP-based static and dynamic IFT for security policy validation.

1) Static IFT: Our static IFT approach essentially works
in three stages [12]. First the VP modules are transformed
into Abstract Syntax Tree (AST) and Control Flow Graph
(CFG) representations using the Clang compiler. In the second
step multiple static analysis techniques are performed on these
intermediate representations to extract relevant information
for the subsequent IFT analysis step. This includes binding
information, call graphs and data flow relations such as def-use
pairs (i.e. connection a variable definition with it’s use). Based
on this local information a global IFT analysis is performed that
essentially propagates data flow information between modules
and from different inputs to outputs. We perform a conservative
analysis, which considers all static paths in the VP, hence the
analysis is sound but may produce false positives by finding
spurious information flows which may never occur at runtime.

2) Dynamic IFT: Dynamic IFT essentially works by tracking
information flow at runtime alongside the normal VP execu-
tion [13]. The VP is instrumented to tag all registers and memory
locations with data flow information. These tags are initialized
at input devices or at pre-defined memory locations. During
execution the tags are propagated according to the security policy.
This requires instrumentation of the instruction set simulator
and the peripherals. A dynamic IFT engine provides data types
and operations to implement the tagging. By leveraging C++
operator overloading and templates, a mostly non-intrusive
integration is achieved, which is compatible with the TLM
2.0 communication standard. The propagated tags are checked
at runtime to detect and prevent security policy violations. A
comprehensive evaluation requires a set of test-cases which
provide the VP input stimuli.

B. Experimental Results

We now summarize the main results obtained by our VP-
based static and dynamic IFT, from [12] and [13], respectively.

Design, Automation and Test in Europe Conference 1907

1) Static IFT: We evaluated this approach using the LEON3
based SoCRocket VP [14] which is available at GitHub [15].
The VP integrates several components around an AHB/APB
AMBA-2.0 bus system. As part of the evaluation we considered
the integration of different additional TLM IP components.

In particular, we investigated a Crypto AES IP which is
a hardware accelerator for the AES-128 algorithm, an NFC
interface IP for near field communication of two devices in
close proximity, and a smart card reader IP which reads data
from a card and stores it into a secure location. The VP-based
static IFT approach has been very effective in finding intricate
security policy violations. This included access to secret data
through an open debug interface or using DMA to bypass
the normal memory access. The approach also works very
efficiently requiring around 50 to 75 seconds, depending on the
IP, to construct and analyze all available static paths. Since the
analysis is conservative, it is able to prove that a specific data
flow is indeed not possible.

2) Dynamic IFT: We have implemented our dynamic IFT
approach for security policy evaluation on top of the open
source RISC-V VP [16, 17] available at GitHub [18] that is
implemented in SystemC TLM. For the evaluation we considered
three different experiments.

In the first experiment we considered an ECU of a car engine
immobilizer as a case-study. The immobilizer holds a secret PIN
in memory for authentication purposes with the ECU by means
of a challenge/response protocol. For encryption purposes the
AES protocol is utilized. The security policy is to ensure that the
secret PIN is neither leaked (which would be a confidentiality
violation) nor modified by unauthorized access (which would
be an integrity violation). In our VP-based evaluation we
demonstrated that several common attack scenarios are detected
and prevented by the dynamic IFT approach. Our manually
performed attacks included buffer overflows, attempts to override
the PIN with external data and using the PIN in control flow
statements (which could leak it indirectly). Our approach is
very beneficial for early validation of security policies.

In the second experiment we demonstrated that a dynamic
IFT approach enables strong protection against code injection
attacks. For evaluation purposes we used the Wilander-Kamkar
buffer overflow attack suite [19] which has been ported to
RISC-V by [20]. It includes several attack pattern to achieve
code injection or remote code execution by triggering a buffer
overflow on stack or heap regions. Such a buffer overflow can
for example be used to overwrite the return pointer address.
With an appropriate security policy, all attack scenarios have
been detected and thus prevented.

The third and last experiment measured the performance
overhead added by the dynamic IFT engine to the normal VP-
based execution. Fig. 4 shows the results on seven benchmarks
that range from pure CPU benchmarks (qsort, dhrystone, primes,
sha512) to full system benchmarks (simple-sensor, immo-fixed)
and operating systems (freertos-tasks). The left side compares
the execution time in seconds and the right side the obtained
MIPS (Million Instructions Per Second) for the normal VP
(blue color) and the VP with dynamic IFT integration (orange
color). On average they achieve 33.2 MIPS and 17.0 MIPS,
respectively, which corresponds to a performance overhead of

around 2x.
Compared to static IFT, false positives are avoided by tracking

precise runtime information, however, dynamic IFT relies on
test-cases to achieve comprehensive evaluation results.

C. Discussion and Future Work

VP-based IFT enables early validation of security policies
to protect against a broad range of security attacks. Static and
dynamic IFT have been shown very effective and complementary
in this regard. To further improve them, we plan to:

• Consider automated test generation techniques that are
tailored for validation of security policies to boost the
dynamic IFT approach further. Techniques based on fuzzing
and symbolic execution, e.g. the VP-based SW verification
techniques [21, 22, 23], seem promising. Modern fuzzing-
based approaches are guided by code coverage and employ
randomized mutations. It would be interesting to investigate
feedback methods that consider data flow relations to boost
the test generation process with respect to security policies.
Concolic testing is another promising technique that tracks
constraints alongside the program execution to continuously
generate new inputs to drive the execution towards new
paths. A specialized exploration strategy can improve the
bug hunting capabilities significantly.

• Investigate more precise static analysis techniques for the
static IFT approach to further reduce the detection of spuri-
ous security policy violations by providing less conservative
results. A complementary direction is to investigate compiler
extension techniques to annotate information to the software
program that enable to provide accurate results without
over-approximation. Conceptually, this follows the idea of
safe C dialects that offer language extensions to provide a
framework that enables efficient protection against certain
error classes such as buffer overflows.

• Devise a unified framework that efficiently combines static
and dynamic IFT at the VP level. Such an approach would
introduce benefits of both techniques: a sound and complete
analysis as offered by static IFT and a precise analysis based
on runtime information as offered by dynamic IFT. Moreover,
as an intermediate step, both approaches are complementary
and can benefit from each other. Dynamic IFT strongly relies
on good test generation methods which can significantly
benefit from available static information. Static IFT can
utilize runtime information collected for specific paths to
make the analysis techniques more precise.

IV. MVLOCK: A MULTI-VALUED LOGIC LOCKING SCHEME

FOR FUTURE-GENERATION COMPUTING SYSTEMS

The future-generation computing systems will require so-
phisticated security mechanisms to prevent a variety of attacks.
Especially with the emergence of neuromorphic computing, the
underlying computations are not purely digital anymore. The
complexity of the future-generation computing systems also
increases the attack surface for the bad actors. The vulnerability
of the designs while in the production at a third-party foundry
is going to be a major concern. Logic locking is an emerging
technique able to provide various measures to protect against
foundry attacks such as hardware Trojan insertion, IP piracy,

1908 Design, Automation and Test in Europe Conference

Fig. 4: Dynamic IFT performance overhead evaluation results - the left side shows the execution time in seconds and the right side the achieved
MIPS for the normal VP (blue color) and the VP with dynamic IFT integration (orange color).

and counterfeiting. In this section, we discuss the impact of
post-CMOS technologies on security and how various logic
locking paradigms can help us overcome hardware security
challenges. Here, in particular, we propose integrating soft
(biological) intelligent systems as high-density building-blocks
to store information and create a subset of multi-valued logic
locking (MVLock), and discuss increasing difficulty level in
breaking the logic locked circuits. Classical Boolean satisfiability
test-based attacks and novel machine learning based attacks are
analysed for key retrieval and prediction.

Due to the prohibitive cost and complexity of constructing
and maintaining a semiconductor foundry with high capability
in fabrication, most integrated circuit (IC) design houses are
becoming fabless. Moreover, the importance of time-to-market
is also compelling the IC design companies to rely on the third
party IC intellectual property (IP) blocks and utilizing them in
their system-on-chip and outsourcing the fabrication to advanced
offshore foundries. The globalization of IC fabrication supply
chain has raised risk of various kinds of adversarial attacks
ranging from IP piracy to hardware Trojans [24].

A. CMOS-based Logic Locking

Logic locking performs a functional and structural manipula-
tion of a hardware design through the insertion of additional
obfuscation logic, thereby creating a dependency on a secret
key [25]. If a correct activation key is provided, the design
behaves as expected. Otherwise, an incorrect key ensures the
generation of faulty outputs for at least some input patterns. This
process is typically performed on a gate-level netlist. One of the
first logic locking schemes is known as EPIC [26]. This scheme
randomly disseminates XOR/XNOR gates in the netlist. These
gates are typically known as key gates (KGs). To understand
how EPIC operates, let us consider the example in Fig. 5. Here,

(a) Original IC (b) Locked IC

Fig. 5: Example: XOR/XNOR-based logic locking

Fig. 6: Logic locking in the IC design flow

the original circuit is locked through the insertion of a single
XOR key gate KG1 driven by the key input k1. If k1 = 0, the
value of the output s of gate G1 is preserved. Otherwise, the
value of s is inverted, effectively corrupting the functionality
of the netlist. The same is true for an XNOR gate and a key of
value 1. Note that the security of this scheme relies on the fact
that a simple removal of the key gates is not possible, since
the attacker cannot distinguish whether an inverter is part of
the original circuit or the key gate. In the past years, a wide
range of locking schemes has been proposed, thereby operating
with XOR, XNOR, AND, OR, MUX gates or more complex
structures [27, 28].

Logic locking plays a vital role in the IC design and
fabrication flow [29, 30, 31]. As depicted in Fig. 6, first, the
IP owner (trusted regime) deploys logic locking on a gate-
level netlist and performs another logic synthesis round. The
resynthesis is often a crucial step to further integrate any changes
induced by the locking mechanism. Afterwards, the locked
netlist proceeds into the layout generation stage which can
be performed in-house (trusted) or outsourced to a third-party
design house (untrusted). In both scenarios, the generated layout
is dispatched to a foundry (untrusted). All untrusted parties can
potentially steal the IP or insert malicious modifications into the
design before fabrication. To overcome this vulnerability, logic
locking binds the design to a secret key which is only known
to the IP owner. Therefore, the IP is concealed throughout the
untrusted regime, as it forces the untrusted parties to first recover
the key before being able to reverse engineer, understand and
intelligible modify the IP.

B. Post-CMOS Technologies for Logic Locking

With the advent of post-CMOS devices such as nanowire
transistors, carbon based, spin-based devices, smaller electronics
with lower power overheads can be achieved as compared
to CMOS counterparts [32]. In addition, these emerging de-
vices can improve hardware security based on the aspect of

Design, Automation and Test in Europe Conference 1909

TABLE II: Signed-Ternary Multi-Value Logic

A -1 0 +1
not A +1 0 -1

polymorphism. A polymorphic logic gate is able to perform
distinct Boolean logic functions, i.e., AND/NAND, OR/NOR,
XOR/XNOR, by configuring internal/external keys at the
run-time. Recently, polymorphic logic gates have played a
crucial role in addressing IC-related security issues, including
counterfeiting and reverse engineering, as well as supporting
camouflaging and locking [33]. Firstly, having a uniform device-
level layout can make it harder to determine the functional-
ity, specifically for optical-imaging-based reverse engineering.
Secondly, the intrinsic functionality of a polymorphic gate is
dependent on the control key input [34].

Memristors are emerging electronic devices which have
two-terminal resistive switches and can improve security by
leveraging the unique properties of memristors [35]. Properties
of memristors such as non-volatility, fast switching behavior,
nanoscale dimensions, CMOS compatibility and low power
consumption present new opportunities for realizing ultra
high-density memory arrays and building security primitives.
Memristive devices enable the integration of security, memory
and computing functionalities into the same circuits based on the
inherent reconfigurability and variability of the memristors [36].
Polymorphic electronics are introduced based on the idea of
having multiple functionalities built in the same cell, controlling
the input-output relation in the circuit to hide the original design
functionality in the form of hardware obfuscation.

Obfuscation techniques can also involve camouflaged cells
to increase the effort needed by an attacker to reverse engineer
the logic by determining the functionality of the cell from
its layout or introduce additional gates to lock the proper
functionality of the protected circuit. However, it still remains
a challenge to achieve immunity against reverse engineering,
especially in the presence of IC imaging methods [37]. To
address these challenges, there is a growing interest to leverage
the intrinsic characteristics of the transistors in order to create
camouflaged gates, e.g., by leveraging multi-threshold-voltage
transistors for design obfuscation. Therefore, multi-valued logic
gates (MVLGs) introduce the aspect of polymorphism to circuit
inputs/outputs by leveraging post-CMOS devices. This feature
rises the complexity of performing major attacks on the design,
where current logic-locking approaches fail at gate level.

C. MVLock

We introduce the advantage of leveraging multi-valued gates
to protect a design on circuit level and to support both logic
locking and camouflaging. We can improve camouflaging of
logic cells by utilizing the same physical structure to implement
a large number of different logic functionalities based on
a secret key. To implement various logic functions, a truth-
table can be generated with all input combinations of the
transistors, which ideally has rrn possible functions, where n is
the number of inputs and r is the radix. In other worlds, the logic-
locking circuitry can be designed with other logic gates (apart
from Boolean logic) in a multi-valued design framework. One
example of multi-valued logic for r = 3 (ternary) is presented

in Table II. The input variable A can take the value of -1, 0
or 1. Consequently, the value of not A takes the value of 1, 0
and -1. This concept can be ported to locking methodologies
using multi-valued logic. Herewith, MVLock brings another
level of complexity for the hardware obfuscation and also for
the attacker.

In the context of implementing MVLGs, system integrated
ion-sensitive field effect transistors (ISFETs) are interesting
due to their well-established fabrication and identical sensor
characteristics at wafer scale for biodetection [38]. Hereby,
silicon nanowires (SiNWs) have been fabricated for biosensing
applications based on top-down processed ISFETs. SiNW-arrays
exhibit superior sensor characteristics, thereby enabling differen-
tial readout and multichannel capabilities [39, 40]. Furthermore,
ISFETs are compatible with a CMOS integration [41]. One of
the attractive approaches of utilizing non-metalized silicon FET-
microarrays has been reported as a method to detect and monitor
DNA hybridization, which can enable a fast, fully electronic
and stable differential AC readout free of side parameters and
detected point-mutations (or nucleotide polymorphisms) of short
DNA sequences [42]. The complementary silicon nanowires field
effect transistors can be used to develop label free, ultra sensitive
biosensor applications, representing bio-nanoelectronics-based
logic locking for security systems.

D. Attack Scenarios

The paradigm shift in computational architectures, especially
with evolving neuromorphic computation with biochemical
reactions, brings new security challenges in designing processors.
Interestingly, multi-valued logic operations are likely to become
a common feature of next-generation processor architectures.
Hereby, the polymorphic characteristic of MVLGs can help to
overcome major attacks where current logic locking structures
fail. Since traditional logic locking is limited to binary CMOS-
based logic, it is open to a variety of key-recovery attacks,
including the Boolean satisfiability (SAT) attack [43] and
structural analysis attacks utilizing novel machine learning
methods [44]. Therefore, the proposed bio-nanoelectronics-based
approach using post-CMOS computational building blocks offers
a novel approach to hardware integrity protection.

E. Discussion and Future Work

We identified the binary nature of logic key gates as a
fundamental limitation of traditional logic locking. Therefore,
we propose integrating biologically activated nanoscale field-
effect transistors as functional key gates alongside a locked
CMOS netlist. By utilizing multi-layer MVLGs in the form
of unique biological activation keys, MVLock is a promising
approach for protecting the integrity of future-generation circuits
against malicious actors in the IC supply chain. Future work
directions include:

• Establishing provable security guarantees with MVLock
• Exploring a variety of MVLG-based locking mechanisms

as well as novel key-recovery attacks.
• Developing solutions based on emerging technologies to

supprt MVLock

1910 Design, Automation and Test in Europe Conference

V. HARNESSING SECURITY THROUGH RUNTIME

RECONFIGURABLE TRANSISTORS

While the previous sections described various hardware
security schemes at system or circuit level, in this section,
we look at an emerging nanotechnology which can provide
hardware security from the device level.

A. Reconfigurable Nanotechnologies

Ambipolarity or ambipolar conduction is a natural physical
phenomenon observed in technology nodes below 45nm where
both charge carriers can flow in the channel on application of
voltage potential [45]. Hence, transistors based on materials
such as silicon or germanium tend to exhibit both p- and n-
type of conduction at lower technology nodes. In conventional
manufacturing process, one of the charge carriers is intentionally
suppressed using dopant concentration to enable only one type of
conduction characteristics. However, recently several emerging
nanotechnologies based on materials such as silicon [46,
45], germanium [47], graphene [48] and carbon [49] exploit
this ambipolarity to enable devices which can exhibit both
kind of conduction on application of an external potential.
Devices which can exploit this ambipolarity are often termed as
Reconfigurable Field Effect Transistors (RFETs). Based on their
device geometry, RFETs can be broadly classified as 1D devices
such as silicon or germanium nanowires or 2D devices based
on materials such as graphene [48] or other transition metal
dicalchogenide (TMD) materials like MoTe2 [50], WSe2 [51].

1D RFETs are more mature as compared to 2D devices due
to their similarity to CMOS manufacturing process [52, 53, 54].
The stacked nanowire or nanosheet geometry is also considered
as a successor to the FinFET geometry that is promoted to
be used at lower technology nodes [55]. Additionally, silicon
and germanium are one of most common materials used in
conventional MOSFET technology. Owing to the similarity to
CMOS integration process, RFETs are one of the commercially
feasible emerging nanotechnologies.

One of the standout features for RFETs which makes them
distinct from conventional CMOS, is that transistors based on
these nanotechnologies consist of two or more gate terminals
to allow runtime reconfiguration between the p- and n-type
electrical characteristics. One of the gate types which is called
the Control Gate (CG) is analogous to the gate terminal in
conventional CMOS and controls the flow of charge carriers.
The other gate type is called the Program Gate (PG) and it
controls the type of charge carriers in the channel. The PG plays
the major role in programming the device to function either as
the p-type or n-type. Further details about the device physics
of RFETs can be found in [54].

These reconfigurable properties form the very basis, why
RFETs are so widely applicable in hardware security [56, 57,
58, 59]. We look at few of the security schemes which are
possible due to this inherent reconfiguration.

B. Polymorphic Logic Gates and Logic Locking

At the logical abstraction, the runtime-reconfigurable prop-
erties offered by RFETs can be used to build logic gates with
extended functionality [61, 52, 57, 62, 63]. These logic gates
can be configured to deliver different logic functionalities on

a) 2NAND(P=0)
 2NOR(P=1)

Out

P

P

P

P P

P P

B

A

P P

P

P P

A
P

B
P

P

B

A
B

AA

Out

B

b) 2XOR(P=1)
 2XNOR(P=0)

c) 2-1 AOI (P=1)
 2-1 OAI (P=0)
 AOI-OAI (P = input)

P

Out

C B

A

P

P

C
B

A

PA
B
P P

XOR3 (P = input)MIN(P = input)

Fig. 7: Reconfigurable logic gates using RFETs [60]

G3 G4

G1

G2 G5 Y
C

B
A

P1

P2

P3

K1 K2 K3

Fig. 8: The program gate (PG) acts as the key-input for RFET-based
logic locking. Polymorphic logic gates realizes logic locking without
additional of additional logic gates.

application of an external potential. Some of the logic gates
based on RFETs are shown in Fig. 7. We can notice that the
functionality of individual logic gates changes depending upon
the value of the program gate terminal P . In this direction, it was
also shown recently that RFETs are more efficient to implement
Self-Dual logic functionality with inherent reconfigurability than
conventional CMOS [64].

This functional reconfigurability can be used in various IP
protection schemes as it allows efficient and cost-effective
polymorphic logic gates [65, 66]. These polymorphic logic gates
can be used for logic locking schemes [56]. The conventional
locking scheme as shown in Fig. 5 can easily be realized without
additional logic gates as shown in Fig. 8. Evaluation of any
logic-locking scheme using the seminal SAT-based attack [67]
is essential to analyze its efficacy. Hence, we evaluated RFET-
based logic locked circuit using the SAT-based attacks and found
that the RFET-based circuits are capable enough to provide
practical security against such SAT-based attacks. We have used
ITC-99 benchmarks [68] and show that beyond 30% locking,
the SAT-based attacks reach to time-out and were not able to
detect the key [56].

C. Robustness against side-channel effects

Side-channel attacks using effects such as magnetic effects,
temperature effects or electrical effects are potential mechanism
generally used during reverse engineering [3]. Circuits exposed
to these attacks often lead to leakage of information and
other security compromises [69, 70]. Of these, differential
power analysis is one of the most common side-channel attack
technique which exploits the relationship between input and

Design, Automation and Test in Europe Conference 1911

VDD
A

Out

(a)

VDD
A

Out
P=0

(b)

VDDA

Out
P=1

(c)

A

Out

P

¬P

¬P

P
(d)

Fig. 9: Connections for inverters [60] (a) Static design. The drain,
source and program gate are hard fixed to Vdd and Vss (b) One
transistor’s program terminal is connected to 0 (c) One transistor’s
program terminal is connected to 1 (d) Fully reconfigurable design.

the output of a particular logic gate. In particular, XOR logic
gates which are heavily used in most of the cryptographic
domain application has a representative power trace which is
easy to recognize during reverse engineering. Additionally, for
CMOS devices, the skew in electrical characteristics between
p- and n-type (and hence in pull-up and pull-down operation)
makes it easier for power differential analysis. One of the
effective countermeasures for such differential power analysis
is to employ complementary logic operation (such as XOR
and XNOR or OR and NOR) that allows mixing of input data
patterns which makes it difficult for side-channel attacks to
figure out the power trace of the underlying logic operation. In
this direction, RFETs can be used to prevent such attacks.

In RFETs-based circuits, the skew between the pull-up and
pull-down network for a given circuit has almost vanished.
Hence, complementary logic such as XOR-XNOR are much
more efficient to realize in RFETs [71, 72, 60]. As discussed,
complementary circuits such as Boolean functions which are
dual to each other can also be efficiently realized using RFETs.
These logic gates can contribute in building circuits based on
RFETs that are inherently robust as compared to CMOS-based
circuits with minimal area, delay or power overheads [71].

D. The curious case of RFET-based inverters

Due to this inherent possibility to configure individual RFETs,
inverters present an interesting case. Multiple variants of RFETs-
based inverters can be realized depending upon the connection
to the program and control gate of individual transistors. These
multiple variants are shown in Fig. 9. Hence, RFETs-based
inverters present polymorphism from an altogether different
angle, where the functionality remains the same but structurally
they are different. Such multiple variants of the same logic gate
can be used in watermarking schemes [73] or camouflaging
techniques [74].

E. Security vulnerability

While RFETs-based circuit topology blurs the distinction
between pull-up and pull-down network to enable logic gates
and circuits with multiple functionalities, the same feature can
be exploited in terms of a potential security vulnerability which
can prove detrimental for the circuit functionality. RFETs, just
like CMOS work in the same circuit paradigm which requires
complementary networks (pull-up and pull-down) to enable logic
1 and logic 0. However, unlike CMOS, individual RFETs (or
group of RFETs) can be independently configured to render p-
type or n-type behavior. A detrimental scenario arises when one

0
0

0

Vdd

Vss

P-type

P-type

 I

1
1

1

Vdd

Vss

N-type

N-type

II
(a)

0
V

V

dss

dPP

- type1

- type1

 I

V
0

0

dss

dPP

Ntype1

Ntype1

II
(b)

Fig. 10: Short-circuit and open-circuit configurations in RFETs-based
inverters.

P

Q

P

P

P

A

P B

A B
P P

P P

P

P

P P

P

P
OUT-NAND

OUT-INV

OUT-NOR

P

P

Short Circuit Path Functionality a ected

Trigger Signal

Fig. 11: A sub-circuit consisting of NAND, INVERTER and NOR,
where the INVERTER is misconfigured.

or more RFETs in a logic gate are intentionally misconfigured
to disrupt this complementary network. We demonstrate this
intentional misconfiguration in case of RFETs-based inverters
as shown in Fig. 10. One can notice that two separate circuit
configurations – Open-Circuit and Short-circuit can arise if the
gates of an RFETs are not configured correctly. Such open-
and short-circuit scenarios can be enabled at any given time in
otherwise normal functioning RFETs-based circuit to render it
error-prone.

The unique aspect of such RFET-based circuits is that these
intentional misconfigurations can be realized in any RFET-
based logic gate at any given time. Additionally, such intentional
misconfigurations also evade the testing phase because the circuit
behaves normally with normal configurations. Only in case of
explicit perturbation, such misconfiguration can manifest leading
to adversarial scenarios. Such perturbations can be triggered
either by some external rare events or some internal faults or
aging effects.

We evaluate such intentional misconfigurations in a small
subcircuit as shown in Fig. 11. The TABLE III shows the circuit
level simulation for the circuit shown in Fig. 11. Intentional
misconfigurations are carried in the middle inverter by changing
the potential at Q. We can notice, that due to the intentional
misconfiguration, both the RFETs of the inverter can be
configured as p-type or n-type thereby creating a direct path
or an open path. This causes the point OUT INV to be at
indeterminate potential which disrupts the successive stages of
the combinational path. This can be ascertained by looking at
the voltages of the final output in TABLE III.

Such disruption in the circuit can lead to derailment of logic
values at the output. Additionally, due to short circuit scenarios,
large amount of current can be drawn from Vdd. This discharge
of current can lead to much more adverse reliability effects [56].
These effects have greater repercussions as scenario are far more
severe as it can present itself in the form of higher dynamic

1912 Design, Automation and Test in Europe Conference

TABLE III: Simulation results showing current drawn and voltage values for different cases of inputs and configurations

Overall Current
Drawn through INV At Node OUT-INV At final Output

Normal
Operation

Both
n-type

Both
p-type

Normal
Operation

Both
n-type

Both
p-type

Normal
Operation

Both
n-type

Both
p-type

INV-INV-INV
Output-1 = 0V 389pA 3.05uA 8.19pA 0V 31.13mV 686mV 0V 700mV 0V

Output-1 = 700mV 83pA 251pA 2.5uA 700mV 106.7mV 609mV 700mV 700mV 0V

XOR-INV-NAND
OUT-XOR = 0V 414 pA 251.8pA 2.5uA 700mV 31.06mV 610 mV 0V 700mV 0V

OUT-XOR = 700mV 11.58pA 3.0 uA 7.17pA 0V 100mV 688mV 700mV 700mV 0V

NAND-INV-NOR
OUT-NAND = 0V 414pA 251pA 2.5uA 700mV 31mV 609mV 0V 700mV 0V

OUT-NAND = 700mV 11.8pA 3.055uA 29.01pA 0V 106mV 688mV 700mV 700mV 0V

and static power dissipation.

F. Discussion and Future Work

RFETs-based circuits provide unique features which can be
applied for various security measures. While the inherent poly-
morphism can be applied to a range of security measures such
as logic locking, watermarking and camouflaging techniques,
the same polymorphism is also its main vulnerability and can
prove to be detrimental. Probable future directions include:

• Explore how self-dual logic functions based on RFETs can
contribute towards logic-locking and robustness against
side-channel attacks.

• Devise measures to circumvent the security vulnerability
so as to ensure circuit durability and correctness.

• Explore probable applications of such security vulnera-
bility in terms of realizing hardware Trojans [1] or kill-
switch [75].

VI. CONCLUSION

In the present work, we looked at various security schemes at
different levels of abstraction. Firstly, we introduced ASSURE,
an approach for RTL obfuscation, that allows designers to
protect the semantics of hardware IP blocks at a higher level
of abstraction. ASSURE is a Verilog-to-Verilog processing step
that enables more semantically-meaningful protection without
any changes to the existing industrial design flows.

Secondly, we discussed the requirements to evaluate the
security policies at the system-level as they can detect and avoid
security vulnerabilities early in the design flow. We presented
static and dynamic IFT-based techniques tailored for VPs which
enable the security validation of the VP as well as the embedded
SW running on the VP, as demonstrated by our experiments.

Thirdly, at the circuit and architecture level, overcoming the
fundamental limits of binary logic in key gates for logic locking
described in MVLock can thwart foundry attacks on future-
generation IPs. The MVLock technique can make it nearly
impossible for an attacker to identify the design’s functionality
while unwarranted actors have access to the design.

Lastly, we introduced an emerging reconfigurable nanotechnol-
ogy that exhibits functional polymorphism at the very transistor
level. Transistors being the most fundamental piece in electronic
circuits, polymorphism at this level can help in providing strong
bottom-up security. We discussed how runtime-reconfigurability

at the transistor-level manifests itself into interesting circuit
paradigms by offering more functionality per computation unit.
We demonstrate how transistor-level reconfigurability can be
used for designing security primitives such as true random
number generators. Finally, we introduced the underlying
security vulnerability in RFETs-based circuits, which is more
disruptive as it is innocuous and completely hidden in normal
circuit operation. Such security vulnerability can be used to
design hardware Trojans or kill-switch.

This paper aimed at giving an overview of various security
practises across various abstraction levels and to introduce the
readers to the state-of-the-art in IP protection. We also presented
few interesting techniques which are applicable in the near future
(Quo Vadis) to provide further security guarantees.

VII. ACKNOWLEDGMENTS

Herdt’s and Drechsler’s research is supported in part by the
German Federal Ministry of Education and Research (BMBF)
within the project VerSys under contract no. 01IW19001 and
within the project SATiSFy under contract no. 16KIS0821K.
Karri’s research is supported in part by NSF 1526405, ONR
N00014-18-1-2058, NYU CCS, and NYU Abu Dhabi CCS-
AD. Rai’s and Kumar’s research is supported by the German
Research Foundation (DFG) funded project SecuReFET (Project
Number: 439891087).

REFERENCES

[1] S. Bhunia et al. “Hardware Trojan Attacks: Threat Analysis and
Countermeasures”. In: Proc. of the IEEE 102.8 (2014), pp. 1229–1247.

[2] J. Rajendran et al. “Nano Meets Security: Exploring Nanoelectronic
Devices for Security Applications”. In: Proc. of the IEEE 103.5 (2015).

[3] M. Rostami, F. Koushanfar, and R. Karri. “A Primer on Hardware
Security: Models, Methods, and Metrics”. In: Proc. of the IEEE (2014).

[4] M. Yasin et al. “Hardware Security and Trust: Logic Locking as a
Design-for-Trust Solution”. In: The IoT Physical Layer: Design and
Implementation. Ed. by I. A. M. Elfadel and M. Ismail. Cham: Springer
International Publishing, 2019, pp. 353–373.

[5] C. Pilato et al. “TAO: Techniques for Algorithm-Level Obfuscation
during High-Level Synthesis”. In: DAC. 2018, pp. 1–6.

[6] C. Pilato et al. “ASSURE: RTL Locking Against an Untrusted Foundry”.
In: arXiv (2020).

[7] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating
transformations. Tech. rep. 148. Department of Computer Science, The
University of Auckland, New Zealand, 1997.

[8] M. E. Massad et al. “Logic Locking for Secure Outsourced Chip
Fabrication: A New Attack and Provably Secure Defense Mechanism”.
In: arXiv (2017).

[9] C. Karfa et al. “Is Register Transfer Level Locking Secure?” In: DATE.
2020, pp. 550–555.

Design, Automation and Test in Europe Conference 1913

[10] G. E. Suh et al. “Secure Program Execution via Dynamic Information
Flow Tracking”. In: ASPLOS. 2004, pp. 85–96.

[11] D. Hedin and A. Sabelfeld. “A Perspective on Information-Flow
Control”. In: Software Safety and Security - Tools for Analysis and
Verification. 2012, pp. 319–347.

[12] M. Hassan et al. “Early SoC Security Validation by VP-based Static
Information Flow Analysis”. In: ICCAD. 2017, pp. 400–407.

[13] P. Pieper et al. “Dynamic Information Flow Tracking for Embedded
Binaries using SystemC-based Virtual Prototypes”. In: DAC. 2020.

[14] T. Schuster et al. “SoCRocket - A virtual platform for the European
Space Agency’s SoC development”. In: ReCoSoC. 2014, pp. 1–7.

[15] SoCRocket: Transaction-Level Modeling Framework for Space Applica-
tions. https://socrocket.github.io/.

[16] V. Herdt et al. “Extensible and Configurable RISC-V based Virtual
Prototype”. In: FDL. 2018, pp. 5–16.

[17] V. Herdt et al. “RISC-V based Virtual Prototype: An Extensible and
Configurable Platform for the System-level”. In: JSA (2020).

[18] RISC-V VP. https://github.com/agra-uni-bremen/riscv-vp.
[19] J. Wilander and M. Kamkar. “A Comparison of Publicly Available

Tools for Dynamic Buffer Overflow Prevention”. In: NDSS. 2003.
[20] C. Palmiero et al. “Design and Implementation of a Dynamic Infor-

mation Flow Tracking Architecture to Secure a RISC-V Core for IoT
Applications”. In: HPEC. 2018.

[21] V. Herdt et al. “Early Concolic Testing of Embedded Binaries with
Virtual Prototypes: A RISC-V Case Study”. In: DAC. 2019, pp. 1–6.

[22] V. Herdt et al. “Verification of Embedded Binaries using Coverage-
guided Fuzzing with SystemC-based Virtual Prototypes”. In: GLSVLSI.
2020, pp. 101–106.

[23] S. Tempel, V. Herdt, and R. Drechsler. “An Effective Methodology for
Integrating Concolic Testing with SystemC-based Virtual Prototypes”.
In: DATE. 2021.

[24] D. Šišejković et al. “Control-Lock: Securing Processor Cores Against
Software-Controlled Hardware Trojans”. In: GLSVLSI. 2019, 27–32.

[25] D. Šišejković et al. “A Unifying Logic Encryption Security Metric”.
In: SAMOS. 2018, 179–186.

[26] J. A. Roy, F. Koushanfar, and I. L. Markov. “EPIC: Ending Piracy of
Integrated Circuits”. In: DATE. 2008, pp. 1069–1074.

[27] M. Yasin and O. Sinanoglu. “Evolution of logic locking”. In: VLSI-SoC.
2017, pp. 1–6.

[28] D. Šišejković et al. “Inter-Lock: Logic Encryption for Processor Cores
Beyond Module Boundaries”. In: ETS. 2019, pp. 1–6.

[29] S. Amir et al. “Comparative Analysis of Hardware Obfuscation for IP
Protection”. In: GLSVLSI. 2017, 363–368.

[30] D. Šišejković et al. “Scaling Logic Locking Schemes to Multi-module
Hardware Designs”. In: ARCS. 2020, pp. 138–152.

[31] D. Šišejković et al. “A Secure Hardware-Software Solution Based on
RISC-V, Logic Locking and Microkernel”. In: SCOPES. 2020, 62–65.

[32] D. E. Nikonov and I. A. Young. “Overview of Beyond-CMOS Devices
and a Uniform Methodology for Their Benchmarking”. In: Proc. of the
IEEE 101.12 (2013), pp. 2498–2533.

[33] F. Parveen et al. “Hybrid Polymorphic Logic Gate with 5-Terminal
Magnetic Domain Wall Motion Device”. In: ISVLSI. 2017, pp. 1–6.

[34] S. Patnaik et al. “Advancing hardware security using polymorphic and
stochastic spin-hall effect devices”. In: DATE. 2018, pp. 97–102.

[35] Y. Gao et al. “Emerging Physical Unclonable Functions With Nanotech-
nology”. In: IEEE Access 4 (2016), pp. 61–80.

[36] H. Jiang et al. “A provable key destruction scheme based on memristive
crossbar arrays”. In: Nature Electronics 1.10 (2018), pp. 548–554.

[37] V. C. Patil and S. Kundu. “On Leveraging Multi-threshold FinFETs for
Design Obfuscation”. In: ISVLSI. 2020, pp. 108–113.

[38] P. Estrela, V. Pachauri, and S. Ingebrandt. “Biologically sensitive
field-effect transistors: from ISFETs to NanoFETs”. In: Essays in
Biochemistry 60.1 (June 2016), pp. 81–90.

[39] X. T. Vu et al. “Top-down processed silicon nanowire transistor arrays
for biosensing”. In: physica status solidi (a) 206.3 (2009), pp. 426–434.

[40] S Schäfer et al. “Time-dependent observation of individual cellular
binding events to field-effect transistors”. In: Biosens. Bioelectron. 24.5
(2009), pp. 1201–1208.

[41] A. Müller et al. “Wafer-Scale Nanoimprint Lithography Process Towards
Complementary Silicon Nanowire Field-Effect Transistors for Biosensor
Applications”. In: physica status solidi (a) 215.15 (2018).

[42] S Ingebrandt et al. “Label-free detection of single nucleotide poly-
morphisms utilizing the differential transfer function of field-effect
transistors”. In: Biosens. Bioelectron. 22.12 (2007), pp. 2834–2840.

[43] K. Zamiri Azar et al. “Threats on Logic Locking: A Decade Later”.
In: GLSVLSI. 2019, 471–476.

[44] D. Sisejkovic et al. “Challenging the Security of Logic Locking Schemes
in the Era of Deep Learning: A Neuroevolutionary Approach”. In: CoRR
abs/2011.10389 (2020). arXiv: 2011.10389.

[45] M. D. Marchi et al. “Polarity control in double-gate, gate-all-around
vertically stacked silicon nanowire FETs”. In: IEDM. 2012.

[46] A. Heinzig et al. “Reconfigurable Silicon Nanowire Transistors”. In:
Nano Letters (2012).

[47] J. Trommer et al. “Material Prospects of Reconfigurable Transistor
(RFETs)–From Silicon to Germanium Nanowires”. In: MRS Online
Proceedings Library Archive (2014).

[48] S. Tanachutiwat et al. “Reconfigurable multi-function logic based on
graphene p-n junctions”. In: DAC. 2010, pp. 883–888.

[49] Y.-M. Lin et al. “High-performance carbon nanotube field-effect
transistor with tunable polarities”. In: IEEE TNANO 4.5 (2005),
pp. 481–489.

[50] S. Nakaharai et al. “Electrostatically reversible polarity of ambipolar
α-MoTe2 transistors”. In: ACS Nano 9.6 (2015), pp. 5976–5983.

[51] G. V. Resta et al. “Polarity control in WSe2 double-gate transistors”.
In: Scientific reports 6 (2016), p. 29448.

[52] S. Rai et al. “A physical synthesis flow for early technology evaluation
of silicon nanowire based reconfigurable FETs”. In: DATE. 2018.

[53] M. Simon et al. “Top-Down Technology for Reconfigurable Nanowire
FETs With Symmetric On-Currents”. In: IEEE TNANO (2017).

[54] T Mikolajick et al. “The RFET-a reconfigurable nanowire transistor
and its application to novel electronic circuits and systems”. In: SST
(2017).

[55] P. Ye, T. Ernst, and M. V. Khare. “The last silicon transistor: Nanosheet
devices could be the final evolutionary step for Moore’s Law”. In: IEEE
Spectrum 56.8 (2019), pp. 30–35.

[56] S. Rai et al. “Security Promises and Vulnerabilities in Emerging
Reconfigurable Nanotechnology-Based Circuits”. In: IEEE TETC
(2020).

[57] S. Rai et al. “Emerging reconfigurable nanotechnologies: Can they
support future electronics?” In: ICCAD. 2018, pp. 1–8.

[58] Q. Alasad, J.-S. Yuan, and P. Subramanyan. “Strong Logic Obfuscation
with Low Overhead against IC Reverse Engineering Attacks”. In: ACM
TODAES 25.4 (2020), pp. 1–31.

[59] A. Chen et al. “Using emerging technologies for hardware security
beyond PUFs”. In: DATE. 2016.

[60] S. Rai et al. “Designing efficient circuits based on runtime-
reconfigurable field-effect transistors”. In: IEEE TVLSI 27.3 (2018),
pp. 560–572.

[61] J. Trommer et al. “Functionality-Enhanced Logic Gate Design Enabled
by Symmetrical Reconfigurable Silicon Nanowire Transistors”. In: IEEE
TNANO (2015).

[62] M. Raitza et al. “Exploiting transistor-level reconfiguration to optimize
combinational circuits”. In: DATE. 2017.

[63] S. Rai, M. Raitza, and A. Kumar. “Technology mapping flow for
emerging reconfigurable silicon nanowire transistors”. In: DATE. 2018,
pp. 767–772.

[64] S. Rai et al. “DiSCERN: Distilling Standard-Cells for Emerging
Reconfigurable Nanotechnologies”. In: DATE. 2020, pp. 674–677.

[65] J. T. McDonald et al. “Functional polymorphism for intellectual property
protection”. In: HOST. 2016.

[66] A. Rupani, S. Rai, and A. Kumar. “Exploiting Emerging Reconfigurable
Technologies for Secure Devices”. In: DSD. 2019, pp. 668–671.

[67] P. Subramanyan. Evaluating the Security of Logic Encryption Algorithms.
https://bitbucket.org/spramod/host15-logic-encryption. 2017.

[68] F. Corno, M. S. Reorda, and G. Squillero. “RT-level ITC’99 benchmarks
and first ATPG results”. In: IEEE Design & Test of computers 17.3
(2000), pp. 44–53.

[69] P. C. Kocher. “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems”. In: CRYPTO. 1996, pp. 104–113.

[70] P. Kocher, J. Jaffe, and B. Jun. “Differential power analysis”. In:
CRYPTO. 1999, pp. 388–397.

[71] M. M. Sharifi et al. “A novel TIGFET-based DFF design for improved
resilience to power side-channel attacks”. In: DATE. 2020, pp. 1–6.

[72] E. Giacomin and P.-E. Gaillardon. “Differential Power Analysis Mitiga-
tion Technique Using Three-Independent-Gate Field Effect Transistors”.
In: VLSI-SoC. 2018, pp. 107–112.

[73] S. Rai et al. “Hardware Watermarking Using Polymorphic Inverter
Designs Based On Reconfigurable Nanotechnologies”. In: ISVLSI. 2019.

[74] Y. Bi et al. “Emerging Technology-Based Design of Primitives for
Hardware Security”. In: J. Emerg. Technol. Comput. Syst. (2016).

[75] S. Adee. “The hunt for the kill switch”. In: IEEE Spectrum 45.5 (2008),
pp. 34–39.

1914 Design, Automation and Test in Europe Conference

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

