
ESPRESSO-GPU: Blazingly Fast Two-Level Logic
Minimization

Hitarth Kanakia*, Mahdi Nazemi*, Arash Fayyazi, and Massoud Pedram
Department of Electrical & Computer Engineering, University of Southern California, Los Angeles, CA, USA

{kanakia,mnazemi,fayyazi,pedram}@usc.edu

Abstract—Two-level logic minimization has found applications
in new problems such as efficient realization of deep neural
network inference. Important characteristics of these new appli-
cations are that they tend to produce very large Boolean functions
(in terms of the supporting variables and/or initial sum of product
representation) and have don’t-care-sets that are much larger in
size than the on-set and off-set sizes. Applying conventional single-
threaded logic minimization heuristics to these problems becomes
unwieldy. This work introduces ESPRESSO-GPU, a parallel
version of ESPRESSO-II, which takes advantage of the computing
capabilities of general-purpose graphics processors to achieve
a huge speedup compared to existing serial implementations.
Simulation results show that ESPRESSO-GPU achieves an average
speedup of 97x compared to ESPRESSO-II.

I. INTRODUCTION

Although logic synthesis has grown increasingly sophisti-
cated, building complex optimization scenarios that span from
regular fabrics of restricted depth up to multilevel and multi-
valued logic realizations [1], two-level logic minimization still
plays a central role as a key procedure in more complex logic
optimization packages. The optimization of Boolean functions
with tens of thousands of product terms takes hours to complete
with existing two-level logic minimization methods. However,
applications have arisen that produce large sparse Boolean
functions with a large number of input variables and product
terms. Examples of such applications are found in [2] and [3]
where the problem of efficient processing of neural networks is
formulated as a two-level logic minimization problem, which
is optionally followed by multi-level logic minimization.

For example, the approach presented in [2] first discretizes
input and output activations of artificial neurons to binary
values while training a neural network. Next, during inference,
it applies training data points to the neural network and for
each neuron, records values of the binary inputs and outputs
encountered when processing each data point. Finally, it creates
an incompletely specified Boolean function for each neuron
using the encountered binary inputs and outputs and employs
logic synthesis to find a near-optimal realization of each neuron.
This, in fact, is equivalent to sampling the algebraic function
that represents each neuron and transforming that algebraic
function to a Boolean function that approximates it. However,
because neurons designed for state-of-the-art neural networks
include tens to hundreds of inputs, the input space is huge and
the samples only represent a tiny fraction of the input space
that matters to the neural network, hence the approximation.

Consider the eighth convolutional layer of the VGG16 neural
network [4] trained on the CIFAR-10 dataset [5]. This layer
consists of 512 3×3 filters that are applied to an input volume

*Hitarth Kanakia and Mahdi Nazemi contributed equally to this work.

of 4×4×256. Therefore, the number of inputs to each filter is
3×3×256 = 2, 304 while the number of input patches is 4×4 =
16. Using the training data to sample the function of each filter,
the number of minterms recorded for each filter is at most
16 ∗ 50, 000 = 800, 000 where 50,000 is the number of images
in the training set. Therefore, to realize this layer using the
approach presented in [2], one has to invoke ESPRESSO-II 512
times, once for each Boolean function which represents a filter,
where each function has 2,304 inputs and 800,000 minterms.
Optimizing Boolean functions in this one layer with ESPRESSO-

II would take weeks to complete.
This work introduces ESPRESSO-GPU, a parallel two-level

logic minimization heuristic based on ESPRESSO-II [6], which
benefits from computing capabilities of general-purpose graph-
ics processing units (GPUs) to achieve a considerable speedup
compared to existing serial implementations when optimizing
large sparse incompletely specified Boolean functions. In par-
ticular, we detail how the EXPAND step of ESPRESSO-II can
be parallelized on GPUs to speed up its computations by about
two orders of magnitude. Our GPU version is fully parallelized
with CUDA [7] and optimized for large sparse incompletely
specified Boolean functions.

The remainder of this paper is organized as follows. Sec-
tion II reviews preliminaries and related work while Sec-
tion III details the proposed parallelization techniques applied
to ESPRESSO-II. After that, Section IV presents experimental
results and finally, Section V concludes the paper.

II. PRELIMINARIES & RELATED WORK

This section reviews some basic definitions related to logic
minimization, explains different steps of ESPRESSO-II, details
its EXPAND step in addition to its internal data representation,
and provides background on capabilities of compute unified de-
vice architecture (CUDA) for parallelizing computer programs
on GPUs.

A. Two-Level Logic Minimization

A Boolean function ff of n input variables x = [x1 . . . xn]
and m output variables y = [y1 . . . ym] is a function

ff : Bn → Y m,

in which B = {0, 1} and Y = {0, 1, 2}, where each output
variable yi can assume a don’t-care value 2 in addition to the
usual 0 and 1 values. For each output variable yi, its on-set
is defined as XON

i ⊆ Bn, the set of all input values x such
that ff i(x) = 1. Similarly, the off-set of output yi is defined as
XOFF

i ⊆ Bn, the set of all input values x such that ff i(x) = 0.
Finally, the don’t-care-set is defined as XDC

i ⊆ Bn, the set of
all input values x such that ff i(x) = 2.

1038978-3-9819263-5-4/DATE21/ c©2021 EDAA

A cover F of the Boolean function ff is a set of cubes
{c1, . . . , ck} that contains every minterm of the on-set of
the function. We define the cover of the off-set R of the
function as sets of cubes that contain every minterm of the
off-set. Moreover, a cover of the don’t-care-set D is defined
as the set of cubes that contain a subset of the minterms of
the don’t-care-set of the originally specified Boolean function.
Obviously, R = COMPLEMENT(F ∪D), where COMPLEMENT

does the function complementation. The goal of two-level logic
minimization is to find a minimal cover of ff , i.e. a cover F
such that no proper subset of F is also a cover of ff .

ESPRESSO-II [6], which was developed in 1982, is the most
popular two-level logic minimization heuristic. ESPRESSO-II

is an iterative heuristic which is comprised of seven high-
level steps. The first step, COMPLEMENT, calculates R. The
second step, EXPAND, expands each (uncovered) implicant of
ff to a prime implicant and marks all implicants that are
covered by the said prime as covered (this step only requires
access to F and R to perform its calculations). The result
is a prime cover of ff such that no cube of ff contains
any other. The third step, IRREDUNDANT COVER, finds a
minimal irredundant cover by using F and D. The result is
a cover of ff where no proper subset of it is also a cover.
The fourth step, ESSENTIAL PRIMES, finds essential primes,
removes them from F , and puts them in the D (the essential
primes will be added back onto the cover in the end). The fifth
step, REDUCE, reduces each implicant to a minimum essential
implicant by removing from it minterms that are covered by
other implicants of the cover. Next, steps 2, 3, and 5 are
repeated until there is no reduction in the number of implicants
or literals. Finally, LAST GASP performs reduction, expansion,
and irredundant cover one more time using a different strategy
and MAKESPARSE puts essential primes back into the cover
and makes the structure of the optimized circuit sparse.

ESPRESSO-II has been extended by some of the prior work
such as [8] and [9]. ESPRESSO-MV [8] reduces computational
and memory complexities of ESPRESSO-II while it adds sup-
port for multiple-valued input, multiple-output functions. SAT-

ESPRESSO [9] formulates REDUCE, ESSENTIAL PRIMES, and
IRREDUNDANT COVER steps of ESPRESSO-II as satisfiability
problems and solves them using a SAT solver. SAT-ESPRESSO

can achieve 5 – 20 times lower optimization time compared to
ESPRESSO-II [9].

This work mainly deals with large sparse incompletely
specified Boolean functions where sizes of F and R are very
small compared to the size of the input space while the D is
enormous. For such functions, among the three steps that are re-
peated in the main optimization loop of ESPRESSO-II , EXPAND

can be executed as is whereas IRREDUNDANT COVER and
REDUCE, which utilize D, must be modified to use only the on-
set (as was done in [9]). This results in some loss in the quality
of the optimized Boolean function, although the loss tends
to be small. Additionally, single-core execution of EXPAND

for such large functions may take hours to complete, which
effectively makes it impossible to iterate over different designs.
The focus of this work is on parallelizing the EXPAND and
IRREDUNDANT COVER, which take most of the optimization
time in ESPRESSO-II. Based on our profiling data, we did not
find much value in trying to parallelize REDUCE.

EXPAND step: The goal of the EXPAND procedure is to

make the cubes of F prime and remove as many cubes possible
from F without losing on-set coverage. It does so by processing
cubes of F sequentially, expanding each while maximizing the
number of cubes that are covered by the expanded cube. Note
that cubes of the cover that are contained in the expanded cube
are deleted. As a result the final cover is also minimal with
respect to single cube containment. The bulk of computations in
the EXPAND procedure occur in four nested loops (the runtime
complexities described in this section assume a single-output
function is being optimized by the EXPAND step). Note that
initially all cubes of F are marked as uncovered.

Algorithm 1 Espresso EXPAND

Input:
F //Cover of the ON-set
R //Cover of the OFF-set

Output:
Fp //Prime cover of ff

1: F = mini sort(F)
2: Fp = Empty cover
3: for each uncovered cube c ∈ F do //LOOP-1
4: Mark uncovered cubes of F as ACTIVE and INFEASIBLE
5: do //LOOP-2
6: feasible count = 0
7: c+ = essen raise(c,R)
8: F = distill cubes(F , ACTIVE)

// LOOP-3.1 and LOOP-4.1: find all feasibly covered cubes
9: for each uncovered cube p ∈ F do //LOOP-3.1

10: if p is covered by c+ then Mark p as COVERED and
INACTIVE

11: else
12: if feasibly covered(c+, p,R) then //LOOP-4.1 (loop is

inside the function call)
13: Mark p as FEASIBLE
14: feasible count = feasible count + 1
15: Record lowering set[p] //This is the set of literals that

cannot be raised any longer if c+ is expanded to minimally cover p
16: else
17: Mark p as INFEASIBLE and INACTIVE
18: end if
19: end if
20: end for
21: F = distill cubes(F , FEASIBLE)

// LOOP-3.2 and LOOP-4.2: count feasibly covered cubes that are disjoint
from the lowering set of a given feasibly covered cube

22: for each FEASIBLE cube p ∈ F do //LOOP-3.2
23: count[p] = calc disjoint cnt(lowering set[p],F) //LOOP-4.2

(loop is inside the function call)
24: end for
25: p∗ = argmaxp count[p]
26: c++ = c+ expanded to minimally cover p∗
27: Mark cubes in F which are covered by c++ as INACTIVE
28: c = c++

29: while feasible count > 0
30: while there exists any ACTIVE cubes of F do //We may still drop

literals from c in order to make it PRIME
31: Apply the MINI strategy of raising c //This strategy raises part of

c that is common in the largest number of cubes of F
32: end while
33: Mark c as PRIME and INACTIVE
34: Add c to Fp
35: end for
36: return Fp

At the beginning of the EXPAND step, mini_sort is
applied on F to sort the minterms in the order of being less
likely to be covered by the expansion of other cubes. Next,
LOOP-1 iterates over each uncovered cube c in the previously
sorted order of F , and therefore, takes O(|F|) to complete. In
every iteration we get an uncovered cube c and convert it into
a prime implicant. Next, we mark the cubes of F and R with
appropriate flags and only use a subset of the cubes from these

Design, Automation and Test in Europe Conference 1039

Algorithm 2 feasibly covered
Input:

c //The cube being expanded
p //The cube that we wish to cover
R //Cover of the OFF-set

Output:
is feasible //Can c be expanded to cover p without intersecting R?

1: c+ = expanded version of c to minimally cover p
2: for each cube r in R do //LOOP-4.1
3: if c+ intersects with r then
4: return false
5: end if
6: end for
7: return true

Algorithm 3 calc disjoint cnt
Input:

lp //Lowering set of a cube
F //Cover of the ON-set

Output:
count //Number of FEASIBLE cubes in F that are disjoint from lp

1: count = 0
2: for each cube q in F do //LOOP-4.2
3: if q is FEASIBLE and q is disjoint from lp then
4: count = count + 1
5: end if
6: end for
7: return count

covers which have specific values of flags set for them. For
instance, we only deal with ACTIVE cubes in the algorithm.
In LOOP-2, c is expanded by dropping a set of literals in every
iteration. In essen_raise (line 6 of Algorithm 1), if some
part of the Boolean space is not blocked by any cube of R,
then this part is raised in c to get c+. Following this, a one-
step look-ahead heuristic is used in order to select the cube
p∗ from F and c+ is expanded to minimally cover p∗. Using
LOOP-3.1 and LOOP-4.1 c+ is tentatively expanded to cover
each uncovered cube. Then, using LOOP-3.2 and LOOP-4.2 p∗
is selected as i) the cube that can be covered by expanding
c+ without intersecting R and ii) covering the largest number
of other uncovered cubes after this expansion. After every
iteration, at least one additional cube of F is covered and
at least one literal of c is dropped. Hence,this loop runs in
O(min(n, |F|)). However, large sparse incompletely specified
Boolean functions have n << |F| and hence this loop can be
said to run O(n) times.

LOOP-3.1 iterates over each uncovered cube p of F and
uses LOOP-4.1 to see if c can be expanded to cover p without
intersecting R. If so, it calculates lowering set[p], which is
the set of literals that cannot be dropped if c+ is expanded to
minimally cover p. Otherwise, it marks the cube as INACTIVE

and INFEASIBLE and such cubes are removed from consid-
eration. This loop runs O(|F|) times. LOOP-4.1 iterates over

Algorithm 4 distill cubes
Input:

C //Cover of a function
flag //Flag that should be present on a cube to be filtered in

Output:
Cf //Cover of the function with only containing cubes that have the
specified flag

1: Cf = Empty cover
2: for each cube c ∈ C do
3: if c has flag then
4: Add c to Cf
5: end if
6: end for
7: return Cf

cubes of R to check if the tentatively expanded version of c+

intersects with R. The check runs in O(n) since it calculates
the distance between the 2 cubes. Hence, LOOP-4.1 has a total
complexity of O(n|R|). At this point in the algorithm we
have identified every uncovered cube of F that can be feasibly
covered along with their corresponding lowering set. LOOP-
3.2 iterates over each feasibly covered cube p to get count[p],
which is the number of feasibly covered cubes in F which are
disjoint from the lowering set[p]. This loop runs O(|F|) times.

LOOP-4.2 iterates over each feasibly covered cube q of F
and checks whether it is disjoint from lowering set[p]. Disjoint
check runs in O(n). Hence, LOOP-4.2 has a total complexity
of O(n|F|). The overall time complexity is: O(n2|F|)2|R|).

IRREDUNDANT COVER step: ESPRESSO-II splits F into
three sets, relatively essential F1, totally redundant, and par-
tially redundant F2. F consists of cubes covering some
minterms of the function not covered by any other cubes.
Clearly, they must be included in any cover of ff . The totally
redundant set includes cubes that are covered by F1 ∪ D.
Since F is included, there is no need to include these totally
redundant cubes. The remaining cubes are included in F2 (each
of these cubes may be individually removed from F without
destroying the covering property). F2 is determined by the
PARTIALLY REDUNDANT procedure of ESPRESSO-II, which
takes O(n|F |2). Next function MINIMAL IRREDUNDANT is
called to find maximum subset of partially redundant cover to
remove from the F .

Internal data representation: The software implementation
of ESPRESSO-II represents each input/output variable using two
bits: 01 if the variable has a value of zero, 10 if the variable
has a value of one, and 11 if the variable has a value of 2
(don’t-care). It then packs every 16 variables into an unsigned
integer to minimize memory complexity. Additionally, it stores
the mete-data corresponding to each cube in a separate unsigned
integer. The meta-data includes information about whether the
cube is prime, covered, etc. The software implementation of
ESPRESSO-II stores all cubes that constitute F , R, or D in
an array of unsigned integers where each contiguous sub-
array of size k represents an individual cube (the value of
k is determined by the number of input variables and output
variables). Therefore, the F will be represented with an array
of size k|F| (R and the D are represented with similar arrays).
Fig. 1 illustrates an example of such array.

B. Review of the CUDA Platform

A GPU is implemented as a set of multiprocessors as il-
lustrated in [7]. Each multiprocessor has a single instruction,
multiple thread (SIMT) architecture where at any given clock
cycle, different processors of a multiprocessor execute the same
instruction on different data. A portion of an application which
is executed many times, but independently on different data, can
be cast as a function, which is executed on different threads on
a GPU. To that effect, such a function is mapped to a set of
instructions chosen from the instruction set of the GPU and the

Cube 2

Meta-
data

32 bits

01 11 10Meta-
data

32 bits

Input & Output Variables

Cube 1
Fig. 1. An array of unsigned integers representing two cubes. Each cube
consists of four unsigned integers where the first one stores the meta-data and
the rest store values of input and output variables.

1040 Design, Automation and Test in Europe Conference

resulting program, called a kernel, is downloaded to the GPU.
The batch of threads that realize a kernel is organized as a grid
of thread blocks (a.k.a. blocks). Each thread block is processed
by only one multiprocessor so that the shared memory space
resides in the on-chip shared memory of that multiprocessor.
This, in turn, leads to very fast memory accesses.

CUDA is a hardware-software architecture which exposes
the parallel data processing capabilities of GPUs. CUDA al-
lows users to view the GPU as a highly multi-threaded co-
processor that offloads the CPU when executing compute-
intensive applications. CUDA provides general DRAM memory
addressing on GPUs for more programming flexibility and
supports both scatter and gather memory operations. CUDA also
provides access to a parallel data cache or an on-chip shared
memory with very fast read and write accesses. Additionally,
CUDA provides atomic operations like atomicAdd() and
atomicSwap() to enable developers avoid race conditions
while accessing/updating shared data structures.

III. PROPOSED PARALLEL IMPLEMENTATION

As detailed in Section II-A, the bulk of computations in
the EXPAND step happens in four nested loops. This section
explains which loops are parallelized on GPUs and why as well
as details of how parallelizations are achieved.

The first loop iterates over uncovered cubes of F and
expands each uncovered cube c into a prime implicant. Paral-
lelizing this loop by expanding multiple uncovered cubes at the
same time has three main disadvantages. First and foremost, it
is likely that some of the cubes under expansion can cover each
other. In other words, if those cubes were expanded serially,
some of them would have been covered by previous expansions
and never considered independently for expansion. As a result,
the chances of performing wasteful computations is increased.
Second, because different cubes are expanded independently of
each other, they may cover the same cubes of F multiple times.
Therefore, the number of prime implicants found at the end of
the EXPAND step is likely to increase. While this phenomenon
may also occur in the serial version of the EXPAND step,
the heuristic behind the EXPAND step is designed to favor
covering uncovered cubes. Consequently, the serial version of
the EXPAND step is expected to have fewer prime implicants.
Third, because the expansion of each cube requires modifying
the meta-data corresponding to both F and R, these covers
must be replicated for each cube under expansion and later
merged properly to a consistent state. Such replication of F
and R increases memory requirements and reduces efficient
use of the DRAM bandwidth.

The second loop, which performs an iterative expansion,
cannot be parallelized due to loop-carried dependencies. As
a result, this work implements the second loop serially. The
remaining loops of the EXPAND step, which implement a single
iteration of the iterative EXPAND procedure, are ones that
can be parallelized effectively. In terms of memory accesses,
it is required to transfer F and R from the CPU to the
GPU before the iterative EXPAND procedure starts (the GPU
implementation uses the exact same data representation as
ESPRESSO-II). Additionally, the updated F and R as well as the
expanded cube need to be transferred from the GPU to the CPU
when the expansion ends. Because the number of computations

performed on F and R in the innermost loops is very large,
the amortized cost of these data transfers is negligible.

It is important to note that parallelization is performed
for different reasons for different blocks of code in the two
innermost loops. Some blocks of code or functions like distance
calculation are inherently parallelizable while some other are
serial in nature and/or include conditional statements. The
blocks of code which are inherently parallelizable are processed
by GPUs to boost performance. However, the blocks of code
which are serial in nature should preferably be mapped to CPUs
due to their advanced capabilities such as branch prediction,
out-of-order execution, and multi-level caching. Mapping those
blocks to GPUs will lead to performance degradation unless
a very large number of threads is launched. In that case, the
GPU’s performance will be on a par with that of a CPU. To
achieve performance gains in processing the EXPAND step and
to avoid multiple data transfers between the CPU and the GPU,
different functions of the EXPAND step need to be restructured
carefully to enable efficient parallelization for both inherently
serial and parallel blocks of code. Parallelizing computations of
the said loops requires defining multiple CUDA kernels, some
of which can be reused for different parts of the computations.

Filtering cubes: As illustrated in Section II-A, the iterative
EXPAND procedure only deals with active cubes of F to
reduce the number of computations. Extracting active cubes
requires two steps. First, one needs to look at the meta-data
corresponding to each cube and check the status of the active
flag. Next, one should store the indices of active cubes in an
array for future use.

The CUDA kernel which extracts active cubes proceeds as
follows (similar CUDA kernels can be designed to find feasible
or covered cubes). It first creates one or more thread blocks
where each thread block deals with a subset of all cubes by
examining a contiguous sub-array in the array that represents
F . Next, the threads inside each thread block examine the
active flag of their corresponding cube. At this point, all active
cubes are identified. However, locations in the output array
in which each thread has to write its active cubes are yet to
be determined. There are two pieces of information that are
required for finding the locations (a.k.a. indices) of each active
cube in the output array. The first one is the number of actives
cubes in each thread block while the second one is the index of
an active cube within each thread block. The total number of
active cubes in thread blocks that precede a certain thread block
determines an index from which the thread block has to write
its active cubes. Similarly, the index of each active cube inside
that thread block determines the offset that should be added
to the start index to find the actual index corresponding to the
active cube. These indices have to be calculated dynamically
because the number of active cubes in each thread block may
change from one iteration to another.

To determine the number of active cubes in each thread
block, each thread atomically increments a counter local to
the thread block when its corresponding cube is active. Con-
currently, it reads the previous value which was stored in the
local counter and uses that value as the offset (all counters are
initialized to zero). Next, the thread with an index of zero in
each thread block (the leader thread) atomically adds value of
the local counter corresponding to its thread block to a global
counter while reading the value which was previously stored in

Design, Automation and Test in Europe Conference 1041

the global counter. The read value determines the start index of
that thread block. Each thread corresponding to an active cube
adds the value read by the leader thread to its offset to find
its resulting index. Finally, all threads write their active cubes
in the output array in parallel. Fig. 2 illustrates an example
execution of a CUDA kernel which implements parallel filtering.

Finding feasibly covered cubes (LOOP 3.1 & 4.1): By
definition, feasibly covered cubes are cubes of F which can be
covered by raising some literals of the cube under expansion
and without intersecting R. ESPRESSO-II iterates over all
uncovered, non-prime cubes of F and temporarily expands the
cube under expansion to cover that cube. It then calculates the
distance between the temporarily expanded cube and all cubes
of R to find possible intersections (in this context, distance
reflects the number of variables where one cube has a value of
zero while the other has a value of one). If no such intersections
exist, the uncovered, non-prime cube is marked as feasible. For
each feasible cube, a lowering set is defined as a set of variables
of the cube under expansion which cannot be raised if it is
expanded to cover the uncovered, non-prime cube.

Since the temporary expansion of the cube under expansion
for each uncovered non-prime cube is independent of that of
other cubes, this step can be parallelized on GPUs. However,
naı̈ve parallelization would lead to reading the whole R from
the DRAM for each uncovered, non-prime cube which, in turn,
defeats the purpose of parallelization. ESPRESSO-GPU takes
advantage of tiling to maximize data reuse in shared, on-chip
memory and reduce the number of DRAM accesses.

Assume F , R, and a distance matrix that keeps track of
pairwise distances between temporarily expanded cubes and
cubes of R as illustrated in Fig. 3. The proposed implemen-
tation partitions the distance matrix and assigns the distance
calculations of each part to a grid of thread blocks. Next, it
assigns each thread block in the grid to a subset of the part
that corresponds to the grid as shown in Fig. 3 (each of these
subsets is referred to as a tile). After that, the leftmost threads of
a thread block read the cubes of the on-set that are required for
distance calculation while the topmost threads read the required
cubes of the off-set and store them in the shared memory.
Finally, different threads of a thread block quickly calculate
distances using shared data. Tiling results in significant savings
in memory bandwidth because of its inherent sharing. For
example, designing 32 × 32 tiles leads to 32× reduction in
DRAM accesses for reading the cubes of the on-set and off-set
i.e., each fetched cube of the on-set/off-set will be used in 32
distance calculations with 32 cubes of the off-set/on-set.

ESPRESSO-GPU assigns multiple distance calculations to
each thread to amortize the cost of launching threads across
multiple computations. We refer to the number of distance
calculations a thread performs as thread reuse factor (TRF).

Counting feasibly covered cubes (LOOP-3.2 & 4.2): As

Threads
(* shows leader threads)

2 0 1 0 1
2 0

Block-level, local indices

Input array

Global start indices

Output array

* *

Addition of local
and global indices

`

Fig. 2. Parallel distillation of cubes. Check marks indicate active cubes.

On-set

O
ff

-s
et

Grid of thread blocks
mapped to a part of
the distance matrix

Thread block
mapped to a tile

Fig. 3. Parallel distance calculation using tiling. In this example, |F| = |R| =
8 and therefore, the distance matrix is 8×8. This matrix is partitioned into four
parts (a.k.a. grids), each of which is 4 × 4. Each grid consists of four thread
blocks where each thread block processes a 2 × 2 sub-matrix. Each thread
processes one distance value in each grid as shown by the color-coded threads.
This amortizes the cost of launching a thread across four computations.

described in Algorithm 1, for each feasible cube, it counts the
number of feasible cubes that are disjoint from the lowering
set of that feasible cube. Next, by picking the feasible cube
with the highest count, it enables a large number of uncovered,
non-prime cubes to remain feasible and contribute to further
expansions. Similar to the CUDA kernel that finds feasible
cubes (see Fig. 3), the CUDA kernel for finding the number
of disjoint feasible cubes formulates this problem as a two-
dimensional count matrix where both dimensions are associated
with feasible cubes. It then launches a two-dimensional grid
of thread blocks, which is responsible for counting plus data
transfer while adopting tiling to minimize data transfer between
the GPU and the off-chip memory.

Doing Argmax over disjoint counts: The CUDA kernel that
finds the feasible cube with the highest number of disjoint cubes
partitions the count matrix and assigns the computations for
finding the feasible cube with the highest number of disjoint
cubes in each part to a thread block. The threads inside each
thread block perform a tree-based reduction to find such a
feasible cube as shown in Fig. 4.

Assuming a thread block with t threads has to find a feasible
cube in an array of size 2t, each thread i loads the data at
indices i and i+t and returns the cube with a higher number of
disjoint cubes. This halves the size of the array in each iteration
until the feasible cube with the maximum number of disjoint
cubes is found inside each thread block. Finally, different thread
blocks write their output feasible cubes into a secondary array
which is passed to a tree-based reduction thread block to find
the target feasible cube across all thread blocks.

It is important to note that this work parallelizes the EXPAND

step such that its output is exactly the same as the output of
ESPRESSO-II’s EXPAND step which facilitates debugging and
end-to-end testing.

IRREDUNDANT COVER step: We leverage CUDA’s dy-
namic parallelism facility to create and synchronize new nested
work for steps of IRREDUNDANT COVER where we can have a
hierarchy of parallel algorithms. At the splitting stage, we check

1042 Design, Automation and Test in Europe Conference

131292748613129613121313

131292748613129613121312

13129274861312961312910

1312927486131296711810

131292748612326111310

0 1 2 3 4 5 6 7

0 1 2 3

0 1

0

Input array

Thread IDs
St

rid
e

8
St

rid
e

4
St

rid
e

2
St

rid
e

1

Fig. 4. Parallel tree-based reduction for finding the maximum value (or the
index thereof) in an array.

for every cube of F whether it is covered by other cubes of F in
parallel since these checks are independent. A cube c is covered
by the given cover if the cover obtained after co-factoring with
respect to c is tautology. The co-factorization is parallelizable
very similar to the distillation of cubes in EXPAND step. The
tautology check uses the unate recursive paradigm that can
proceed in parallel using the dynamic parallelism capability
of CUDA. A Boolean expression is a a tautology if its matrix
representation has a row of all 2’s; it is not a tautology if the
matrix has a column of all 1’s or all 0’s or it has deficient
vertex count. Checks for these special (terminal) cases are
parallelizable. Furthermore, the binate variable selection as well
as co-factor operations are parallelizable.

IV. RESULTS & DISCUSSION

To evaluate the efficacy of the proposed parallel two-level
logic minimizer, we find Boolean functions using the approach
presented in [2] for neurons in a multi-layer perceptron trained
on the MNIST dataset [10] in addition to neurons in a convo-
lutional neural network trained on the CIFAR-10 dataset [5].
Next, we create three classes of Boolean functions for our
experiments where each class includes 10 functions: a small
class where each function has 10,000 minterms, a medium class
where each function has 60,000 minterms, and a large class
where each function has 100,000 minterms.

The first set of experiments compares the average time
per call to the distance calculation kernel for different values

Fig. 5. Average time per call to the kernel that finds all feasibly covered cubes
for different tile widths and TRFs and for medium class of functions.

TABLE I
COMPARISON OF THE TIME TAKEN BY ESPRESSO-II VS

ESPRESSO-GPU AND THE OBSERVED SPEEDUP

PLA class Mean ± Std
ESPRESSO-II

runtime (s)

Mean ± Std
ESPRESSO-GPU

runtime(s)

Speedup

Small 92.7 ± 37.7 3.4 ± 1.07 25.7
Medium 8177.8 ± 1702.5 72.7 ± 27.6 126.4

Large 107056 ± 21512.03 757.6 ± 129.86 140.4

of tile width and thread reuse factor and for the medium
class of Boolean functions. As illustrated in Fig. 5, increasing
TRF reduces computation time up to a point but increases
it afterwards. In fact, the proper value for the TRF balances
between amortization of the cost of launching threads and the
degree of parallelization. If a thread is reused too many times,
parallelization will be hampered. It is observed that when TRF
is 16 and tile width is 8, the lowest execution time is achieved.
Therefore, we set these values for later experiments (we have
run similar experiments for other kernels to find their best set
of hyperparameters that minimize the execution time).

The next set of experiments compare the execution time
of the entire EXPAND step between ESPRESSO-GPU and
ESPRESSO-II. These experiments were run on 10 PLAs for each
class. Table I shows the Mean/Std of runtimes for ESPRESSO-
II vs ESPRESOO-GPU and gained Speedup. We note that as
the size of PLA increases the speedup also increases. This is
because the number of computations in large PLAs help in
generating extremely high throughput that benefits from the
massively parallel GPU architectures. With the gained speedup,
PLAs that take more than a day to run a single EXPAND step on
ESPRESSO-II, can be given to ESPRESSO-GPU to generate
the same output in 10-15 minutes.

V. CONCLUSIONS

We presented ESPRESSO-GPU, a parallel two-level logic
minimization heuristic based on ESPRESSO-II for dealing with
Boolean functions with tens of thousands of minterms. Our
parallel implementation provides, on average, a speedup of 97x
compared to a serial implementation.

REFERENCES

[1] R. K. Brayton, M. Gao, J. R. Jiang, Y. Jiang, Y. Li, A. Mishchenko,
S. Sinha, and T. Villa, “Optimization of multi-valued multi-level net-
works,” in Int’l Symp on Multiple-Valued Logic, 2002, pp. 168–179.

[2] M. Nazemi, G. Pasandi, and M. Pedram, “Energy-efficient, low-latency
realization of neural networks through Boolean logic minimization,” in
Asia and South Pacific Design Automation Conf, 2019, pp. 274–279.

[3] Y. Umuroglu, Y. Akhauri, N. J. Fraser, and M. Blott, “LogicNets: Co-
designed neural networks and circuits for extreme-throughput applica-
tions,” in Int’l Conf on Field-Programmable Logic and Applications,
2020, pp. 291–297.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Int’l Conf on Learning Representations,
2015.

[5] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[6] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis, ser. The
Kluwer Int’l Series in Engineering and Computer Science, 1984, vol. 2.

[7] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” ACM Queue, vol. 6, no. 2, pp. 40–53, 2008.

[8] R. L. Rudell, “Logic synthesis for VLSI design,” Ph.D. dissertation, EECS
Department, University of California, Berkeley, April 1989.

[9] S. Sapra, M. Theobald, and E. M. Clarke, “SAT-based algorithms for
logic minimization,” in Int’l Conf on Computer Design, 2003, p. 510.

[10] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

Design, Automation and Test in Europe Conference 1043

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

