
Malicious Routing: Circumventing Bitstream-level
Verification for FPGAs

Qazi Arbab Ahmed, Tobias Wiersema, and Marco Platzner
Department of Computer Science, Paderborn University, Germany

{qazi, wiersema, platzner}@mail.upb.de

Abstract—The battle of developing hardware Trojans and
corresponding countermeasures has taken adversaries towards
ingenious ways of compromising hardware designs by circum-
venting even advanced testing and verification methods. Besides
conventional methods of inserting Trojans into a design by a
malicious entity, the design flow for field-programmable gate
arrays (FPGAs) can also be surreptitiously compromised to assist
the attacker to perform a successful malfunctioning or information
leakage attack. The advanced stealthy malicious look-up-table
(LUT) attack activates a Trojan only when generating the FPGA
bitstream and can thus not be detected by register transfer and
gate level testing and verification. However, also this attack was
recently revealed by a bitstream-level proof-carrying hardware
(PCH) approach.

In this paper, we present a novel attack that leverages malicious
routing of the inserted Trojan circuit to acquire a dormant state
even in the generated and transmitted bitstream. The Trojan’s
payload is connected to primary inputs/outputs of the FPGA via
a programmable interconnect point (PIP). The Trojan is detached
from inputs/outputs during place-and-route and re-connected only
when the FPGA is being programmed, thus activating the Trojan
circuit without any need for a trigger logic. Since the Trojan is
injected in a post-synthesis step and remains unconnected in the
bitstream, the presented attack can currently neither be prevented
by conventional testing and verification methods nor by recent
bitstream-level verification techniques.

Index Terms—FPGA security, hardware Trojans, EDA tools,
FPGA design flow

I. INTRODUCTION

Reconfigurable systems, in particular, field programmable
gate arrays (FPGAs) are nowadays largely used as acceleration
platforms for diverse applications in, for example, cloud com-
puting, high-performance computing, autonomous driving, and
also for military purposes. Compared to application-specific
integrated circuits (ASICs), FPGAs benefit from a flexible and
re-programmable computation fabric and short time-to-market
and have thus become a fundamental part of the embedded
systems space, including the Internet of Things (IoT) and end-
user electronics.

To avoid any malfunctioning during operation, it is of
utmost importance to provide security guarantees for these
reconfigurable systems used by the customer. In FPGAs, the
implemented design is loaded onto the manufactured and tested
device in form of a configuration bitstream. This process resem-
bles software programs but differentiates FPGAs from ASICs,
where the functionality of the manufactured device cannot be

This work has been partially supported by the German Research Foun-
dation (DFG) within the Collaborative Research Centre 901 “On-The-Fly
Computing” under the project number 160364472 and “HEC/DAAD Pakistan”.

changed once it is fabricated. FPGAs thus offer the flexibility
to update erroneous designs or configure new designs on-the-
fly. While hardware tampering attacks by untrusted foundries,
such as the insertion of hardware Trojans into silicon, are
possible, FPGAs can be considered more resistant to such
attacks compared to ASICs since at manufacturing-time an
attacker would have no knowledge about the design which
would later be implemented on the FPGA device. Nevertheless,
a bitstream configuration file may be susceptible to reverse
engineering attacks, which would allow an attacker to steal the
implemented design or insert malicious circuitry by regenerat-
ing the bitstream [1], [2].

Due to their re-programmable fabrics, FPGAs are very
well suited for implementing cryptographic algorithms where
extensive bit and byte level computations are required, such
as Advanced Encryption Standard (AES), that is used to allow
for secure data transmission in many critical applications [4].
Subsequently, such devices are responsible for the secret flow of
information, which may be directly related to the user’s privacy.
Consequently, there is a high risk of secret information being
stolen unnoticed through inserted hardware Trojans.

Using side channel analyses to leak secret information has
been proven to be a practical attack for FPGAs where the
attacker can gain physical access to the FPGA and use power
side channels to retrieve, e.g., a secret key [3], [5]. Sophisticated
attackers might even attempt to insert malicious circuitry that
remains inactive until it is triggered by a specific condition
or external input to circumvent all the design-time testing and
verification processes. Such an attacker could be a dishonest
employee in the design house who inserts the Trojan in a
design, or there may be a Trojan in a third-party Intellectual
Property core (IP) provided by an untrusted vendor. Besides
that, there is also a chance that both, the design house and
IP vendors, are trustworthy, but the EDA tools maintained by
the vendors are undermined, resulting in an enhanced power
to the attack by infecting a bundle of designs in just one go.
The authors in [6] recently presented an attack by introducing
a stealthy “malicious LUT” hardware Trojan inserted during
design flow that employs a two-stage mechanism of insertion
and activation. This Trojan remains dormant throughout the
design phase and is activated when the bitstream is written,
thus circumventing design-time verification techniques such
as [7], [14]. However, a bitstream-level proof-carrying hardware
(PCH) technique presented in [8] was able to reveal the attack.
Supplementary to this attack, we propose a novel attack that

1490978-3-9819263-5-4/DATE21/ c©2021 EDAA

can intensify the stealthy nature of the inserted Trojan, such
that the Trojan remains dormant in the bitstream as well and is
only activated when actually configuring the device. The Trojan
circuitry is introduced after synthesis, i.e., when the netlist is
being read by the placement and routing tool. As the presented
novel Trojan is activated after the bitstream generation step,
the certificates generated by the PCH technique would lead to
false-negatives.

Our novel contributions in this paper are as follows:

• We present an FPGA Trojan that remains inert throughout
the design flow, even in the bitstream, which to the extent
of our knowledge is the first to circumvent even bitstream-
level verification techniques. Trojans inserted by EDA
design tools so far are inserted either at a design stage
or into the bitstream.

• Our attack is based on the malicious routing of a Trojan
circuit that is unconnected from the actual user design be-
fore configuring the target device, and that is reconnected
by a malicious programming tool to activate the Trojan.

The remainder of this paper is structured as follows: In
Section II we will introduce some related work on hardware
Trojan insertion and detection in FPGAs and then present
our threat model in Section III. In Section IV we will detail
our Trojan insertion methodology. We demonstrate our attack
with examples in Section V, followed by a discussion of our
approach in Section VI. In Section VII we will then conclude
the paper.

II. RELATED WORK

Hardware Trojans are malicious circuits purposely inserted
into the original design to distract the intended functionality or
disclose confidential information. There are a variety of ways
to insert and implement hardware Trojans, depending upon
their design, characteristics, activation, and actions. An FPGA
bitstream configuration file containing a particular design in-
formation may also be susceptible to hardware Trojans. The
three major entities during the bitstream generation processes
that may insert malicious logic / functionality in the legitimate
design are a) a design house or a malicious designer in the
design house, b) compromised EDA tools, and c) malicious
communication channels, i.e., via man-in-the-middle (MiM)
attacks. Recently, Duncan et al. [9] classified the different
threats to a bitstream at various stages during the FPGA
design flow. In the first stage of this taxonomy, the threat to a
bitstream generation by the design house and third-party IPs are
categorized into malicious and non-malicious intent, where the
latter refers to tools-induced vulnerabilities. The introduction
of vulnerabilities or malicious circuitry through design tools
could be more interesting for the attacker due to the simplicity
of the attack and the implanted malicious circuitry can also
be more devious. The activation of dormant logic inserted at
any point could force the device during operation to go to
certain undesired states such as the denial of service, change
of functionality, and secret information leakage.

In 2013, Chakraborty et al. [10] presented a mechanism to
taint the FPGA bitstream that was first to insert a Trojan directly

in the bitstream. The Trojan is inserted in an unencrypted
bitstream using an add-on program that modifies the bitstream
configuration file. Based on their connectivity to the original
circuit, two types of Trojans have been proposed that can be
inserted: A type-I Trojan has no connection to the original
circuit (hence non-functional Trojans) and is inserted to the
free resources of FPGAs. A Trojan circuit consisting of ring
oscillators has been implemented to increase the temperature
of the FPGA, which causes reliability issues and early aging.
Such kinds of attacks are denial of service attacks. The success
of the attack relies on the availability of resources in the proper
locations of the FPGA. However, such kinds of Trojans may
be difficult to insert if a) the bitstream is encrypted or b)
the unused FPGA resources are filled up with dummy logic
in a bitstream. Trojans that have a connection to the original
circuit are considered as type-II and require sufficient design
knowledge to implement.

In 2016, Krieg et al. [6] presented an FPGA design flow
attack that has been carried out by subverting the vendor’s
provided EDA tools. Their attack works in a two-stage manner
by using compromised design tools. The malicious circuitry,
i.e., Trojan, is first inserted by the synthesis tool while reading
the design and activated when writing the bitstream. The
implementation of a smart trigger using a malicious look-up
table (LUT), which remains dormant throughout the design
phase and activated when the final bitstream is written, helps
the Trojan to evade all the design-time verification techniques
relying on functional verification or rare events occurrence. In
both the attacks it is believed that due to the lack of a verifica-
tion mechanism for the bitstream configuration file it would be
enormously difficult to counter such attacks. However, in their
recent work Ahmed et al. [8] demonstrated a bitstream-level
verification technique using proof-carrying hardware (PCH)
which effectively detects the stealthy two-stage malicious LUT
hardware Trojan attack presented in [6].

III. THREAT MODEL

We consider the foundry as a trusted entity in our threat
model, since even though some FPGA vendors are fabless and
outsource device fabrication to a third party [2], attacking the
FPGA fabric itself is less effective than for ASICs as the design
to be implemented is loaded after the device is fully tested and
shipped.

Trojan insertion by the design house and a third-party IP
provider are considered as major threats for FPGA systems-on-
chip (SoC), however, in our attack scenario we consider that
both the design house and the IP vendor are trustworthy, but the
EDA tools used by the design house are compromised by an
attack; either by reverse-engineering the binaries of commercial
EDA tools to insert malicious code, or via an insider in the EDA
tools provider who maliciously swaps the legitimate binaries
with malignant ones used for compilation by the design houses.
We follow the threat scenario presented in [6], where the
malicious code is inserted into an open-source tool that is
then compiled to a binary version which in turn is used to
intrude on the design house, ideally over the Internet, in order
to replace the legitimate binary of the tool in the design house

Design, Automation and Test in Europe Conference 1491

with the malicious one to infect multiple machines of the design
house in one go. However, the compromised EDA tools are not
only limited to synthesis and place-and-route tools, but the tool
that programs the FPGA could also be subverted to activate
a Trojan inserted in the earlier stages. Fig. 1 highlights the
entities involved for the development of the hardware module
specified by the consumer. It can be seen that the design
house itself is trusted but the EDA tools used by the design
house are subverted by an attacker, as explained above, to gain
control over the device when it is configured without being
noticed by the producer or the consumer. In our threat model,
the place-and-route tool and the FPGA programming tool are
compromised to inject and activate the Trojan, and thus their
binaries are marked as a red dotted box in the compromised
EDA tool-chain in Fig. 1.

Design
Synthesis

FPGA Place
& Route

Configuration
File

FPGA Design Flow

Design
Specification

ProducerConsumer

Design House

Place & route
toolSynthesis tool

Bitstream
generation tool

Programming
tool (FPGA)

Consumer

1010101010101010101010
1010101010101010101111
1110010001010101111001
1000001000101010100110

EDA Tools

Fig. 1. Threat model: The red dotted boxes indicate compromised tools

We would also like to stress that our attack only activates the
Trojan if the FPGA programming tool used by the consumer
to program the FPGA device is compromised along with the
place-and-route tool used by the design house and the configu-
ration bitstream is either un-encrypted or the programming tool
is capable to decrypt it, otherwise, the output of the infected
tools will behave similarly as the original ones when the FPGA
is programmed with the genuine programming tool. In this way,
the attacker can conduct multiple targeted attacks by infecting
only the programming tools of intended targets, which implies
that the inserted Trojan will remain inert and therefore virtually
undetectable in most of the customers’ designs, thus there are
fewer chances of the attack being revealed by chance.

IV. METHODOLOGY

A. Overview of Malicious Design Flow Attack

In our attack model, the Trojan is inserted in the second stage
of the FPGA design flow, i.e., when the design’s netlist is read
by a malicious place-and-route tool (PnR) and is activated only
in the FPGA device itself. The novelty of our attack lies in the
fact that the routing tool disconnects the Trojan circuit from
the original circuit before writing the bitstream and the FPGA
programming tool again connects the Trojan circuit with the
original circuit, thus activating the Trojan.

The general design flow of our attack for malicious insertion,
routing, and activation is shown in Fig. 2. The attack works
in two phases, i.e., in the first phase the Trojan circuit is
injected, attached and then disconnected at one of the FPGA’s
programmable interconnect points (PIP) by the PnR tool. We
call this temporary breaking point Trojan PIP (TPIP). This step
is marked with a dotted red box in Fig. 2, to indicate that
it is modified. In the second phase, i.e., the last stage in the

design flow, the TPIP is activated again by the modified FPGA
programming tool to connect the Trojan circuit to the original
circuit.

HDL

Synthesis (ICE40)

Synthesis tool (Yosys)

.blifPlace-and-route tool
(Arachne-pnr)

Bitstream generation
tool (IcePack)

ascii

Bitstream

FPGA programming
tool (IceProg)

search_unconnected_PIP_bit(s)

flip_PIP_bit(s)

FPGA

I/O BANK 0

I/O
 B

A
N

K
 3

I/O
 BA

N
K

 1

I/O BANK 2

.bin

Malicious Activation

Malicious insertion & routing

add_trojan_gates

place_and_route

unconnect_PIP_bit(s)

Fu
nc

tio
na

l s
im

ul
at

io
n

Bi
tst

re
am

 v
er

ifi
ca

tio
n

Fig. 2. FPGA design flow for malicious insertion and activation of a Trojan

Each of the stages of the design flow is explained in the
following: The first step in our design flow, the synthesis of an
HDL design by a synthesis tool, is not infected, and therefore
the generated netlist remains unchanged compared to the design
flow using pristine EDA tools. The next step of the design
flow is compromised such that the Trojan circuitry is added to
the synthesized netlist when it is read by the PnR tool, e.g.,
barrier gates who route secret information to primary outputs,
but prevent it from leaking until the Trojan is activated. After
placement and routing, the connection of the Trojan to the
original circuit is removed by flipping the TPIP configuration
bit to “0” so that the output at this stage behaves functionally
equivalent to the original design, thus avoiding detection by
any functional simulation and verification methods.

Note that in contrast to compromised tools targeting the
RT level, the benefit of the post-synthesis Trojan insertion is
that it still works if an IP core provided by a third party to
a design house is a gate-level netlist. Even if the design is
already a verified synthesized netlist, it can be infected in the
next step. Furthermore, machine learning approaches based on
reverse-engineering the bitstream to obtain a gate-level netlist
for feature extraction mainly consider trigger nets [15], and
thus cannot detect our Trojan circuit for two reasons: a) The
information-leaking version is trigger-less, and b) in the general
case, the payload of the Trojan is unconnected from its trigger
in the bitstream, hence a reverse-engineered netlist would result
in false negatives.

In the next step, a bitstream configuration file is generated

1492 Design, Automation and Test in Europe Conference

by the unmodified bitstream generation tool which carries the
Trojan payload that stays unconnected at this stage, hence
evading any bitstream verification mechanism such as PCH. In
the last stage of the FPGA design flow, when the bitstream is
loaded onto the FPGA by the programming tool, the connection
of the Trojan to the original circuit is re-established by flipping
the TPIP configuration bit again to “1”. For functional Trojans,
the circuit diagram of a simple design with inserted Trojan
trigger and payload shown in Fig. 3 describes the internal
schematic view of the design in a bitstream and the FPGA to
better understand the attack. The switch between the trigger and
the payload refers to the TPIP used to disconnect and connect
the trigger, thus rendering the payload inactive and the Trojan
dormant.

In FPGA

PO
PI

a

b

y y`
Original circuit

Trojan payload

Trigger

In bitstream

PO
PI

a

b

y y`
Original circuit

Trojan payload

Trigger

TPIP TPIP

In FPGA

PO
PI

a

b

y y`
Original circuit

Trojan payload

Trigger

In bitstream

PO
PI

a

b

y y`
Original circuit

Trojan payload

Trigger

TPIP TPIP

Fig. 3. Circuit schematic of an infected design in a bitstream and FPGA

Though our malicious flow is generic and any kind of Trojans
can be implemented, an intelligent attacker would be interested
to get higher level attacks and much control to the design
such as secret key leakage from a cryptographic circuit without
external resources. This can be done if the enable pin of the
barrier gates is maliciously routed to one of the unused I/O
pins and the connection through the TPIP is removed when the
tool writes the output into a bitstream. The information of the
unused I/O pin can be obtained by scanning the constraints file,
therefore making this pin available for activating the Trojan
in the final stage. After the connection of the I/O pin is re-
established by the modified programming tool and the FPGA is
configured, the attacker can apply voltage to the pin to activate
the Trojan circuit which leaks the key through the output pins
used by the original design instead of cipher text. The key
leakage of an AES core by a Trojan payload is explained in
Section V.

B. Flow of information between the compromised tools

A prerequisite for a successful attack is that the FPGA
programming tool knows the location of the TPIP in the
infected design. The attacker therefore has to communicate
this location from the tool that chooses it to the tool where
it is used, requiring them to create a hidden communication
channel between the design house and the consumer site. The
attacker can realize this communication explicitly, i.e., over
a new channel, or implicitly, i.e., by hiding the information
among the regularly transmitted data.

With explicit communication, the TPIP location is decoupled
from the bitstream, and hence needs to be related within the
programming tool in order to apply the correct TPIP flip for
the loaded design. Depending on whether the attacker wants to
target specific individual designs created at the design house,
or rather infect all designs originating from there, they have to

either transmit one location or create and query a database that
maps design identifiers (e.g., design hashes) to TPIP locations.
The former would require the attacker to closely monitor
the designs that should be written in the near future, which
would likely necessitate the continued presence of an agent
on-premises, who could then also be leveraged to exfiltrate
the information via human communication. The widespread
infection of many designs, on the other hand, would generate
more traffic over the hidden channels, increasing the chance
of the channel being detected by the victims. However, to
scale such an attack to multiple design houses and consumers,
an attacker could then leverage existing botnet solutions to
create a command-and-control infrastructure akin to modern
software trojans, resulting in exactly the same advantages and
disadvantages as in the software world, i.e., fast and easy
scalability, high degree of automation and flexibility, versus vul-
nerability to automated, pattern-based communication-detection
methods and a complete failure of the attack in a high-security
environment, where the programming tool is not connected to
the internet and thus cannot query TPIP locations.

Using implicit communication instead, the attacker can only
rely on the one communication that the victims cannot avoid,
which is the transmission of the bitstream. By reverse engineer-
ing the bitstream format used by both parties, the attacker could
leverage unused portions of the stream to hide the TPIP location
in plain sight, e.g., pockets of legacy information that are no
longer in use for modern devices, or information that follow
the end-of-stream and which would thus be ignored by the
regular tools. This form of communication implicitly matches
the TPIP location to a design and therefore does not require
any method of design identification afterwards, but in order
for the attacker to sustain such an attack, they would need to
continue to reverse engineer bitstream formats and update their
transmission code every time that a format is updated or the
involved parties switch to a new format. However, since the
attack itself also relies on modified binaries within the EDA
suite, the attacker would have to update the compromised tools
anyway in these cases.

V. EXPERIMENTAL VALIDATION

A. Secret key leakage of an AES Core

As a proof of concept, we demonstrate our attack by imple-
menting an AES core with an 8-bit data interface from [11]
to an iCE40HX-1k device iCEstick Evaluation Kit provided
by Lattice semiconductor. We use the open-source design
flow from the project Icestorm [12] for iCE40 FPGAs, which
consists of the Yosys open synthesis suite for hardware syn-
thesis, Arachne-pnr for placement and routing, IcePack and
IceProg for bitstream generation and programming the FPGA
respectively.

To circumvent verifications at the gate level, we did not
modify Yosys; hence the output at this stage is a legitimate
synthesized netlist (.blif) of the AES design synthesized for
iCE40 FPGAs, i.e., using synth_ice40 command. After
that when the compromised Arachne-pnr reads the netlist by
invoking read_blif, it inserts the Trojan circuit into the

Design, Automation and Test in Europe Conference 1493

AES 128 CT
PT

8-bit

8-bit

Key
8(2X1)
 MUX

CT8-bit
I0

I1

S

PT= Plain Text
CT= Cipher Text

Barrier gates (MUXes)
insertion and routing

 Disconnect enable line
from the PIP by flipping

the bits to “0” while
writing output file

Arachne-pnr (place-and-route tool)

AES 128

PT

8-bit

8-bit

Key 8(2X1)
 MUX

CT /̀Key8-bit
I0

I1

S

Search the flipped bits
and connect select line
to the PIP by setting the

bits to “1”

Iceprog (FPGA Programming tool)
Phase 1 Phase 2

Unused I/O Pin Unused I/O Pin

(a) (b)

8-bit 8-bit CT

Fig. 4. Phases of Trojan insertion and activation in AES core by the compromised design flow tools

original circuit. The commands used in our flow are given in
Listing 1, where the commands in rows three and five call the
malicious script from the tool to infect the design.

An example for the two-phased process of inserting and
activating an I/O-triggered key-leaking Trojan based on barrier
gates into an AES core is shown in Fig. 4. Phase 1 in subfigure
a) shows the barrier gate insertion and routing of the enable
signal to an unused I/O pin, which is disconnected at a PIP, the
TPIP, while writing the design output. Our barrier gates consist
of eight 2X1 MUXes connected to the very last register before
the primary output.

1 yosys −p r e a d v e r i l o g example . v
2 yosys −p s y n t h i c e 4 0 − b l i f example . b l i f
3 arachne-pnr -d 1k -o example.asc icestick.pcf example.blif
4 i c e p a c k example . a s c example . b i n
5 iceprog example.bin

Listing 1. Commands used by the malicious design flow in our examples

The inputs to each MUX is the output of the register containing
cipher text, and the secret key to be leaked. The key from any
of the rounds can be leaked, however for the sake of simplicity,
we take the key that is used as an input to the AES module.

Depending on the attacker’s intentions the enable input (S)
of the barrier gates in Fig. 4 could be attached in two different
ways: a) A constant “1”, or b) an unused I/O pin which is added
by Arachne-pnr when it reads the constraints file (.pcf). In the
first case, after placement and routing, the TPIP connecting the
enable line to the barrier gates is flipped when the output file is
being written. In the second case, the infected design is placed
and routed making sure that the enable line (S) of the barrier
gates is routed to the newly assigned input pin and the address
of the I/O tile containing the input pin is stored.

When the routed design is being written to a text file (.ascii),
the modified write_text function is invoked in the backend,
which accesses the corresponding I/O tile and its connection to
the barrier gates via the TPIP is removed. In the architecture
of the iCE40HX-1k device, each I/O tile can have two I/O
blocks, one for inputs and another for outputs with two local
tracks. Each I/O block in a tile is connected to the other I/O or
logic blocks with the help of PIPs called vertical and horizontal
spans in the iCE40 family. To remove the connection of the
enable line from the input pin, the PIP that connects the enable
signal to the I/O tile is flipped to “0”. Likewise, when the
FPGA programming tool, IceProg configures the FPGA, the

corresponding TPIP bit in the bitstream, communicated by the
design flow, is flipped again to make the connection of the
enable line to the barrier gates. In our example, the TPIP is
located in I/O tile (10, 17), corresponding to the bit at address
0x4743 in the bitstream.

Once the connection is made, the cyclic redundancy check-
sum (CRC) is updated and the FPGA is configured with the
infected bitstream. Since one of the inputs to the barrier gates
is a cipher text bit and the other is a secret key bit, the barrier
gates act as buffers that pass the cipher text to the outputs
when the enable line is disconnected or low. In the first case,
the Trojan circuit will be activated and start leaking the key
straight away, and can hence be accessed remotely or locally
by the attacker. However, in the second case, the attacker needs
physical access to the device to activate the Trojan circuit by
giving voltage to the specified I/O pin used by the malicious
tools, thus triggering the key leakage.

Although physical access is required, the attacker, in this
case, has more control over the device, i.e., switching between
the original circuit and the Trojan circuit using an input pin to
leak the secret key. Therefore, the attack is more difficult to be
revealed in the field as compared to the first case where the out-
put of the implemented design will always be a malicious one.
Nevertheless, in both cases, we have successfully performed the
attack to leak the 8-bit secret key in our example. In order to
illustrate, we have used the five available LED’s on the device
and connected three external LED’s to read out the leaked key
byte.

B. Demonstration example

To assess that our barrier gates inserted and connected
properly, we have synthesized the example design given in
Listing 2 with Yosys and then gave it to the compromised PnR
tool. We have read out the example design in a text file from
Arachne-pnr before enabling the malicious back-end script that
is used to disconnect the TPIP. The left part of Fig. 5 shows
this design as visualized by the ICE40 layout viewer [13]. Next,
we enabled the back-end script and compiled the tool to a final
compromised version. Using a synthesized netlist of an AND-
gate as an example design for the compromised PnR tool, we
have obtained the design depicted on the right-hand side of
Fig. 5, confirming the successful removal of the enable line
after the TPIP has been flipped. After this successful subversion

1494 Design, Automation and Test in Europe Conference

of the PnR tool, we have modified the programming tool and
then have programmed the FPGA with it to see the output of
the design. We have verified the output with both, the original
version of the programming tool and the compromised version,
where the output of the former is not affected when the enable
line is high while the latter then leaks the input “b” at the
outputs.

1 module t o p (i n p u t a , b , o u t p u t y) ;
2 a s s i g n y = a & b ;
3 endmodule

Listing 2. Original Verilog code for AND-gate example

Barrier gates inserted
and connected

Enable line
connected to
unused I/O pin

Enable line
disconnected
from PIP

Layout before
disconnecting
enable line

Layout after
disconnecting
enable line

Fig. 5. ICE40 Layout Viewer to evaluate the barrier gates insertion and
disconnection by a compromised PnR tool in AND-gate design

VI. DISCUSSION

When we talk about Trojans in FPGAs, the common question
discussed is the way Trojans are inserted into the design such
that it cannot be detected by conventional testing methods. In
this regard, we present a hardware Trojan attack employing
compromised EDA tool flow in which the Trojan is inserted
into a design during the place-and-route step and is activated
while loading the bitstream configuration file into the FPGA.
Note that we use an open-source tool flow to present our
attack, however, in principle, the attack would work for the
commercial tools provided by other FPGA vendors, e.g., Xilinx,
if there is access to the code. Our attack is versatile and can
be implemented according to the attacker’s desire and suited
scenario, for example, the attack presented in [6] can also
use our compromised tool flow to hide the malicious LUT
Trojan even in the bitstream to evade bitstream-level detection
mechanisms. Also, in literature, a lot of effort has been given
to design a Trojan which could assist in leaking the secret key
through side channels [5]. However, our attack is subtle yet
effective in providing the attacker with a means to leak the
secret key directly through the primary outputs at runtime, i.e.,
opening a covert channel. On the other hand, if we discuss the
detection of sneaky Trojans, a trigger-less implementation of
a Trojan in our attack renders pre-and-post-synthesis detection
mechanisms based on static or dynamic trigger characteristics
ineffective [7], [14]. Power side channel analysis techniques
inspect and visualize the power traces obtained from the design
running on the device with the golden one to detect the

Trojan. In our key leakage example no logic is implemented
as trigger, and the payload consists of only a few gates, i.e.,
eight 2X1 MUXes, hence the extra power consumption by an
infected design should be negligible. To reveal our attack, post-
configuration methods such as the ReadBack feature of the
FPGA [3], if enabled, can be used at the consumer side to read
out the bitstream and apply verification mechanisms such as
functional equivalence checking using PCH.

VII. CONCLUSION AND FUTURE WORK

We have presented a new attack in this paper that is based
on the malicious routing of an inserted Trojan circuit to retain
a dormant state even in the bitstream for a reconfigurable hard-
ware device. For the information-leaking variant, the inserted
Trojan circuit in our approach does not even need any trigger
logic as the payload is maliciously routed to the primary out-
puts. In all variants, the last programmable interconnect point
(PIP) connecting the payload to a trigger or an enable signal is
removed during place-and-route and is established again only
at the very last step when the FPGA is being programmed,
thus activating the Trojan circuit. We have demonstrated our
attack on an 8-bit AES design to successfully read out the first
eight key bits of an AES module. The conventional testing
and verification methods presented at the RTL or gate level so
far cannot prevent or detect our proposed attack as the Trojan
is injected in a post-synthesis step of the design flow, thus
circumventing conventional testing and verification methods.
Furthermore, we have shown that our Trojan circuit stays
unconnected in the bitstream, thereby evading even bitstream-
level verification techniques. In our future work, we aim to
investigate possible countermeasures for the presented attack
such as post-configuration verification with the help of readback
feature in FPGAs.

REFERENCES

[1] S. Wallat et al., “A look at the dark side of hardware reverse engineering
- a case study”, In IEEE 2nd IVSW, 2017, pp. 95-100.

[2] S. Bhunia et al. “Hardware trojan attacks: Threat analysis and counter-
measures,” In Proceedings of the IEEE 102(8), 1229-1247 (Aug 2014).

[3] S. M. Trimberger et al., “FPGA Security: Motivations, Features, and
Applications,” In Proceedings of the IEEE 102(8), 1248-1265, Aug(2014).

[4] S. S. Mirzargar, et al., “Physical Side-Channel Attacks and Covert
Communication on FPGAs: A Survey,” In (FPL), 2019, pp. 202-210.

[5] M. Ender et al., “The First Thorough Side-Channel Hardware Trojan,” In
Advances in Cryptology – ASIACRYPT 2017.

[6] C. Krieg et al., “Malicious LUT: A stealthy FPGA Trojan injected and
triggered by the design flow,” In ICCAD, 2016, pp. 1–8.

[7] Adam Waksman et al., “FANCI: identification of stealthy malicious logic
using boolean functional analysis,” In Proceedings of the 2013 ACM
SIGSAC (CCS ’13), 697–708.

[8] Q. A. Ahmed et al., “Proof-Carrying Hardware Versus the Stealthy
Malicious LUT Hardware Trojan,” In (ARC) 2019.

[9] A. Duncan et al., “FPGA Bitstream Security: A Day in the Life,” In
(ITC), 2019, pp. 1-10.

[10] R. S. Chakraborty et al., “Hardware Trojan Insertion by Direct Modifi-
cation of FPGA Configuration Bitstream,” In IEEE Design Test, 2013.

[11] “8bit datapath AES,” https://github.com/ChengluJin/8bit datapath AES.
[12] C. Wolf. et al., “Project icestorm,” http://www.clifford.at/icestorm/.
[13] K. Nielsen, “ICE40 Layout Viewer,” https://github.com/knielsen/ice40

viewer.
[14] J. Zhang et al., “VeriTrust: Verification for hardware trust,” 50th

ACM/EDAC/IEEE (DAC), 2013, pp. 1-8.
[15] T. Zhang et al.,“A Comprehensive FPGA Reverse Engineering Tool-

Chain: From Bitstream to RTL Code,” in IEEE Access, 2019.

Design, Automation and Test in Europe Conference 1495

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

