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Abstract—Quantum computers based on superconducting
qubits have emerged as a leading candidate for a scalable quantum
processor architecture. The core of a quantum processor consists
of quantum devices that are manipulated using classical electronic
circuits, which need to be co-designed for optimal performance
and operation. As the principles governing the behavior of the
classical circuits and the quantum devices are different, this
presents a unique challenge in terms of the simulation, design
and optimization of the joint system. A methodology is presented
to transform the behavior of small-scale quantum processors to
equivalent circuit models that are usable with classical circuits in a
generic electrical simulator, enabling the detailed analysis of the
impact of many important non-idealities. The methodology has
specifically been employed to derive a circuit model of a super-
conducting qubit interacting with the quantized electromagnetic
field of a superconducting resonator. Based on this technique,
a comprehensive analysis of the qubit operation is performed,
including the coherent control and readout of the qubit using
electrical signals. Furthermore, the effect of several non-idealities
in the system such as qubit relaxation, decoherence and leakage
out of the computational subspace are captured, in contrast to
previous works. As the presented method enables the co-simulation
of the control electronics with the quantum system, it facilitates the
design and optimization of near-term superconducting quantum
processors.

Keywords—Quantum computing, control electronics, co-
simulation, equivalent circuit models, qubit readout, qubit control,
non-idealities in quantum systems

I. INTRODUCTION

Quantum computers based on superconducting qubits have

made significant progress in the past two decades, and are

well-positioned for the demonstration of prototype algorithms

in the Noisy Intermediate Scale Quantum (NISQ) technology

era with over 50 qubits [1]. A quantum advantage, dubbed

as ‘quantum supremacy’, has also been demonstrated, where

a quantum computer outperformed a classical supercomputer

in performing a specific computational task [2]. To perform

operations on a quantum processor, it is necessary to interface

it with classical electronic control hardware, as shown in Fig. 1.

With the scaling up of the number of qubits, the complexity of

the electronic interface also increases, with several components

operating at cryogenic temperatures [3], [4]. The requirements

posed by quantum computers on the control circuitry translate

to extremely demanding specifications in terms of the noise

and power budget, calling for careful system design and opti-

mization [5]. To meet the specifications of the system and to

analyze the impact of non-idealities in both the classical and
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Fig. 1. Schematic representation of the core of a quantum computer, consisting
of a quantum chip and a classical controller.

the quantum sub-systems, a tightly coupled co-simulation of the

classical controller with the quantum system is of fundamental

importance. Moreover, performing such a co-simulation in

a common design environment will enable the design and

automation of small-scale quantum processors, which is lacking

in the current state of the art.

The dynamics of quantum systems are normally described

using differential equations. Since SPICE (Simulation Program

with Integrated Circuit Emphasis) based circuit simulators are

well-adapted to solving differential equations [6], they can also

be used to simulate quantum systems, provided that an accurate

equivalent circuit is generated for them, which comprehensively

describes the relevant quantum behavior. An equivalent cir-

cuit representation for Coulomb-coupled and metal-contacted

nanoscale quantum devices has previously been proposed [7],

where the dynamics of the system are described using quantum

Markovian master equations. This method was used to derive

linear circuit models for describing the interaction between a

superconducting qubit and a resonator [8], [9]. However, these

works included major approximations, where the resonator was

treated as a classical entity [8], and the quantum mechanical

correlations between the qubit and the resonator photons were

ignored [9]. A co-design and co-optimization strategy for

quantum-classical systems was also proposed in [10], where

a Verilog-A model based on the Hamiltonian of the quantum

system was used to simulate the time evolution of the system.

However, this approach is limited to quantum systems that

do not interact with their environment, and does not consider

the imperfections, such as energy relaxation and decoherence.

Hence, they cannot deal with the entire range of non-idealities

that are critical to accurately model the system. Moreover, the

readout of the qubit state, taking the control electronics into

account, was not implemented in prior works either.
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In this paper, we develop a systematic methodology to

transform the description of a quantum mechanical system,

including its non-idealities, to equivalent circuits. Specifically,

we use this approach to develop a model that completely

describes a quantum system that consists of a superconducting

qubit coupled to a superconducting resonator. The model is

used in the Cadence® Spectre® circuit simulator to simulate

the control and readout of the qubit, while considering non-

ideal effects such as qubit energy relaxation and decoherence.

We further include higher energy states of the qubit that are

always present but usually neglected for simplicity (i.e., beyond

the qubit or 2-level approximation), which impacts the control

of the qubit. To the best of our knowledge, this is the first

demonstration of the control and readout of the qubit performed

completely in an electrical circuit simulation environment,

taking into account the non-idealities in the system. Therefore,

the incorporation of the readout and the modelling of the non-

idealities are the main contributions of the paper.

The paper is organized as follows: Section II will introduce

the systematic methodology used to convert the description

of a quantum system to an equivalent circuit. In Section III,

the simulation results demonstrating the unique features of

our approach, namely the readout, control, and measurement

of qubit relaxation and decoherence will be shown. Final

conclusions will be drawn in Section IV.

II. METHODOLOGY

A. Description of a quantum system with circuit models

In quantum mechanics, the state |Ψ〉 of a quantum system

is described as a vector in an n-dimensional complex vector

space, known as the Hilbert space. The unitary time evolution

of the state is governed by the Hamiltonian H of the system

(see Section III for examples), which is an n× n-dimensional

matrix that represents the total energy of the system. The state

vectors that lie on a unit sphere in the vector space are called

pure states. Note that an arbitrary superposition of pure states

is also a pure state. However, the state of the system can also

be a statistical mixture of different pure states, in which case it

is known as a mixed state. In this scenario, the system is best

described by an n × n-dimensional matrix called the density

matrix:

ρ =
∑

i

pi |Ψi〉 〈Ψi| , (1)

where pi is the probability of being in the pure state |Ψi〉.
The unitary time-evolution of the system is described by the

Liouville-von Neumann equation:

ρ̇(t) = −
i

~

(

Hρ(t)− ρ(t)H
)

, (2)

where ~ is the reduced Planck constant, and i is the unit

imaginary number. Equation (2) is a compact representation

of a family of coupled differential equations, and can readily

be solved using numerical solvers. In order to illustrate this

further, consider a 2-level system (such as a qubit), which is

described using a Hamiltonian H and a density matrix ρ, with

H, ρ ∈M2×2(C)

ρ =

[

ρ00 ρ01
ρ10 ρ11

]

H =

[

H00 H01

H10 H11

] (3)

Combing (2) and (3), we infer the following:

i~ρ̇00(t) = +H01ρ10(t)−H10ρ01(t)

i~ρ̇01(t) = +H00ρ01(t)−H01ρ00(t)

+H01ρ11(t)−H11ρ01(t)

i~ρ̇10(t) =−H00ρ10(t) +H10ρ00(t)

−H10ρ11(t) +H11ρ10(t)

i~ρ̇11(t) =−H01ρ10(t) +H10ρ01(t)

(4)

Each of these individual equations uses complex values and can

be converted to two real-valued equations by separating the real

and imaginary parts, resulting in 8(= 2n2) equations. Using

the properties of density matrices (unit trace and hermicity

i.e., ρij = ρ∗ji), these can be reduced to 3(= n2 − 1) real-

valued equations for the 2-dimensional system, each having

the functional form:

λ̇i(t) =
n2−1
∑

j=1

Gijλj(t), (5)

where λi are real-valued functions, and Gij are coefficients

determined by H . Interestingly, (5) has the form of Kirchhoff’s

current law (KCL) at a node with a capacitor being charged

by a set of voltage-dependent current sources, and thus can

be easily solved in a SPICE-type circuit simulator. For this,

each λi is represented as the voltage across a capacitor Ci

connected to a node i in the circuit, with behavioral current

sources charging the node i with currents CiGijλj (see Fig.

2). The solution to KCL at all the nodes provides the solution

to the time evolution of the density matrix of the quantum

system. The quantum system governed by (2) is a closed

system exhibiting aforementioned unitary dynamics. However,

in practice, a quantum system will always interact with its

environment, resulting in losses in the form of energy relaxation

and decoherence [11]. In addition to this uncontrolled part of

the environment, the system also needs to be coupled with the

external world for measurement and control. In both cases, the

internal dynamics of the system due to these environmental

interactions can be described using quantum master equations.

We use the master equation in the Lindblad form [12], which

defines the time evolution of the density matrix ρ as:

ρ̇(t) =−
i

~

(

HTρ(t)− ρ(t)HT

)

+
1

2

∑

i

κi
(

2Liρ(t)L
†
i − L

†
iLiρ(t)− ρ(t)L†iLi

)

(6)

where HT = H +HD, HD is the Hamiltonian corresponding

to the external drive, and Li are known as the Lindblad or jump

operators, while κi are the corresponding coupling rates to the
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Fig. 2. Equivalent circuit at a node for solving (5) where a capacitor Ci

connected to node i is charged by a set of voltage-controlled current sources,
such that the voltage across the capacitor Vi = λi.

environment. The Lindblad operators capture the correlations

of the system with the uncontrolled degrees of freedom in the

environment, resulting in the mixed states. Even though (6)

seems more complex than (2), the solution of the differential

equation will still take the functional form of (5), and can thus

be implemented using equivalent circuits based on capacitors

and behavioral current sources. We therefore emphasize that the

resultant model still remains fully compatible with SPICE-type

circuit simulators.

B. Co-simulation of quantum system with control electronics

The method employed for the co-simulation of the quantum

system with the control electronics is described in Fig. 3.

First, the parameters of the quantum system (see Table 1

for examples) required for defining the Hamiltonian and the

Lindblad operators are represented in symbolic notation. We

use Python-based packages QuTiP [13] and Sympy [14] to

achieve this, although other programming languages can also

be used. Symbolic matrix expansion based on (6) is performed

in Python and processed further to take it to the form shown

in (5). Once this is performed, the netlist of the equivalent

circuit can efficiently be generated, node by node. The symbolic

parameters of the system are also transformed into parameters

in the netlist, thereby allowing to run parametric simulations

without having to regenerate the circuit. Once the netlist is

generated, it is interfaced with the additional electronic control

circuits required for the manipulation of the quantum system.

Using 4 threads in Cadence® Spectre®, the typical timescale

for the simulation of a simple quantum system is of the order

Define system 
Hamiltonian and

Lindblad operators with
symbolic parameters

Perform matrix
expansion defined by

master equation

Generate equivalent 
circuit using capacitors
and behavioral sources

Perform the simulation 
and data analysis

Parameters 
values for
simulation

Define system 
Hamiltonian and

Lindblad operators with
symbolic parameters

Perform matrix
expansion defined by

master equation

Generate equivalent 
circuit using capacitors
and behavioral sources

Perform the simulation 
and data analysis

Parameters 
values for
simulation

Circuit for 
control and

readout

Fig. 3. Method for the co-simulation of a quantum system with classical control
electronics.

of a few minutes with a peak memory usage of ∼150 MB.
Since we aim to represent the complete quantum mechanical

behavior, without a priori simplifications, the complexity grows

exponentially with the number of qubits, due to the underlying

principles of quantum mechanics. While simplifications are cer-

tainly possible in particular situations, at present we advocate

this methodology to be used for the co-simulation of small-scale

quantum systems, which form the building block for larger

systems.

III. RESULTS : SIMULATION OF QUBIT OPERATION WITH

NON-IDEALITIES

In this section, we will use the presented methodology to

simulate the fundamental superconducting quantum system, a

resonator coupled to a qubit. The simulations are focused on

the behavior of the quantum system, and the required classical

control signals are currently modelled using ideal behavioral

sources. Unless specified otherwise, the parameter values used

in the simulations are as listed in Table I.

A. Qubit readout

In superconducting quantum circuits, the readout of the qubit

state is achieved by coupling it to a superconducting resonator.

The Hamiltonian describing this interaction [15] is given by:

H1 = ~ωra
†a+ ~ωqσz/2 + ~g(a†σ− + aσ+), (7)

whereωr(ωq) is the frequency of the resonator (qubit), g is the
coupling strength between the qubit and the resonator, a†(a) is
the photon creation (annihilation) operator, σ+(σ−) is the qubit
raising (lowering) operator, and σz is the Pauli-Z operator. The

Lindblad operator corresponding to the finite linewidth of the

resonator is given below:

L1 =
κ

2

(

2aρa† − a†aρ− ρa†a
)

, (8)

where κ is the decay rate of the resonator, such that the quality

factor Q = ωr/κ. The qubit-resonator system is normally

operated with a detuning ∆(= ωq − ωr) between the qubit
frequency and the resonator frequency, such that the ratio

|g/∆| ≪ 1 – the so-called dispersive coupling regime. In this
limit, the resonator and the qubit can, to first order, be described

as operating independently. The coupling between them results

in a shift in the frequency response of the resonator that depends

on the state of the qubit (refer Fig. 4(a)), allowing to gain

information about the qubit by probing the resonator.

In a standard experiment, the readout of the qubit is per-

formed by applying a microwave pulse to the resonator at

a frequency ωLO. The signal interacts with the resonator,

TABLE I
TYPICAL VALUES USED FOR THE SYSTEM PARAMETERS IN THE

SIMULATIONS

Parameter Symbol Value

Qubit frequency ωq/2π 4 GHz

Resonator frequency ωr/2π 5 GHz

Qubit-resonator coupling g/2π 50 MHz

Resonator decay rate κ/2π 10 MHz
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populating it with microwave photons, and produces an output

signal with an amplitude that is directly proportional to the

electric field in the resonator. The output voltage s(t) can be

obtained using the input-output theory [16] and has the form:

s(t) = A cos(ωLOt+ θ), (9)

where A and θ represent the amplitude and phase response,

respectively. If ωLO = ωr, the information about the qubit

state is encoded in the phase θ, which can be extracted by a

homodyne demodulation scheme, as shown in Fig. 4(b). The
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Fig. 4. (a) Amplitude (top panel) and phase (bottom panel) response of a
resonator measured in transmission mode, in the absence of coupling to the
qubit (blue), and with dispersive coupling to the qubit when the qubit is in
state |0〉 (green) or state |1〉 (red). The dispersive shift in the presence of the
qubit is given by χ = (2g2)/∆). (b) A generic scheme for I-Q modulation
and demodulation. The carrier is modulated by an in-phase signal mi(t) and
the carrier quadrature is modulated by mq(t). The demodulation results in the
in-phase voltage (VI) and the quadrature voltage (VQ) at the output of the
low-pass filters (LPF). For the readout pulse, we do not use the Q channel
in the modulator. (c) Normalized (to the microwave power) plot of Vq versus
VI measured for the qubit initialized in the states |0〉 and |1〉. The measured
phase angle tan−1

(

VQ/VI

)

has opposite signs for the two states, allowing
state detection. With an increase in microwave power, there is a change in the
measured phase due to the excitation of the qubit by the resonator photons.

measured readout signal, in terms of the in-phase (VI) and

the quadrature (VQ) voltages, can be used to extract the phase

angle as tan−1(VQ/VI). Fig. 4(c) shows the results obtained by

measuring VI and VQ for various microwave powers when the

qubit is initialized in states |0〉 and |1〉. It is clearly seen that

the curves corresponding to the two states move in opposite

directions, thus enabling the readout of the qubit state by

measuring the phase of the readout signal. We also notice that

with an increase in microwave power, there is a change in

the measured phase angle between the two states. At higher

powers, a larger number of photons is present in the resonator,

causing an effective excitation on the qubit. For readout, we

also emphasize that the resonator drive should be chosen such

that this number does not exceed the critical photon number

ncrit = ∆2/(4g2) [15], [17]. Note that the readout of the qubit

using demodulation has not been considered in prior works.

B. Qubit Control

For the realization of quantum algorithms, it is also essential

to control the state of the qubit. This is achieved by applying a

microwave control pulse to the qubit. The coupling of the qubit

to the drive can be described by the following Hamiltonian [17]:

Hqd = iΩdVd(t)(σ
− − σ+), (10)

where Vd(t) = V0f(t) cos(ωdt+ φ) is the microwave drive

with an amplitude V0, pulse shape f(t), frequency ωd and

phase φ. Ωd is a measure of the coupling strength of the drive

to the charge degree of freedom of the qubit. Starting from

state |0〉, the qubit can be driven to an arbitrary state c1 |0〉+
c2 |1〉 by choosing an appropriate pulse shape, frequency, phase,

amplitude and duration.

The most commonly used superconducting qubits, like the

transmon [18] and the xmon [19], are not pure 2-level systems,

but consist of several higher-energy states. Particularly, the

presence of the higher-energy state |2〉 is taken into account

using a design parameter called the qubit anharmonicity α , and

is defined as α = ω21 −ω10. Here ~ωij is the energy sepa-

ration between the states |i〉 and |j〉. Superconducting qubits

have relatively low anharmonicity (α/2π ≃ 200-400 MHz,

which imposes restrictions on the shape and bandwidth of the

control signal. The pulse must be carefully chosen to prevent

the leakage of excitations from the computational states of |0〉
and |1〉 to higher-order states. For this purpose, it is essential

to include higher states in the model, since such non-idealities

notably affect real-world quantum-classical systems and are

thus imperative for system design and optimization. To perform

a qubit operation and verify its functionality, a control pulse is

first applied to the qubit followed by the readout of the qubit

state using a readout pulse, as sketched in Fig. 5(a). Restricting

the qubit to a 2-level system with states |0〉 and |1〉, a simple

square pulse results in an oscillation, known as Rabi oscillation,

between the two states (blue curve in Fig. 5(b)). However, with

the inclusion of the third state |2〉, the measured phase of the

readout signal is significantly distorted when using a square

pulse for excitation (orange curve in Fig. 5(b)). This is because

short square pulses, when analyzed in the frequency domain,
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have large frequency bandwidth and therefore finite power at

the frequency of the |1〉 → |2〉 transition. Such pulses can

thus result in excitation leakage from the computational states

to state |2〉. The larger negative phase in the measured readout

signal is also attributed to this leakage. This issue is well known

and can be avoided by pulse engineering techniques, for exam-

ple using DRAG pulses [20], [21]. In this scheme, a Gaussian

pulse and its derivate are applied to the carrier signal and its

quadrature, respectively, to produce an I-Q-modulated control

signal (refer to the modulation block in Fig. 4(b)). As shown in

Fig. 5(b), excitation of the qubit with the DRAG pulse (green

curve) shows a smooth oscillatory behavior, similar to the Rabi

oscillations of the 2-level qubit system. Since our framework

can involve many such non-idealities, we can accurately model

the effects of pulse engineering. It is interesting to note that

even with DRAG pulse, at short pulse durations, we observe a

leakage to the state |2〉, allowing us to investigate the limits of

such first-order compensation schemes. Obviously, these effects

are much lower in comparison to the case with the square pulse,

in line with them now being higher order effects; nevertheless,

they allow us to identify limits on the achievable control fidelity.

C. Relaxation and decoherence

With the ability to perform qubit control and readout, we can

now simulate the experiments used to measure the relaxation

and decoherence times of the qubit.

1) Energy relaxation: Relaxation is the process through

which the energy in the qubit is lost due to its interaction with

the environment. This can be included in the qubit dynamics

using the following Lindblad operator:

L2 =
γ1

2

(

2σ−ρσ+ − σ+σ−ρ− ρσ+σ−
)

, (11)

Pulsed measurementStart Control pulse Stop(a)

(b)
Pulse Width

Fig. 5. (a) Pulse sequence for control and readout of the qubit state. (b)
Measured phase angle as a function of the pulse duration, exhibiting Rabi
oscillations. For a 2-level system, an excitation with a square pulse results in
a smooth oscillatory behavior (blue). With the inclusion of the higher-order
|2〉 state with an anharmonicity α = 2π× 200MHz, the square pulse causes
significant distortion due to leakage (orange). Smooth oscillatory behavior is
observed when using DRAG pulses for qubit excitation (green). The simulation
was performed with Ωd = 2π × 1THz/V and a pulse amplitude of 100µV,
resulting in a Rabi frequency of 100MHz. For the DRAG pulses, we defined
the pulse duration as 4σ, where σ is the standard deviation of the underlying
Gaussian function.

where γ1 = 1/T1 is the energy relaxation rate with the

relaxation time T1. The measurement of the relaxation time

begins with an application of a π-pulse that prepares the qubit

in the excited state, followed by the readout of the qubit state,

after waiting for a certain delay time in which the qubit can

decay (refer Fig. 6(a)).

In addition to the intrinsic relaxation rate, the qubit energy

also decays via the resonator, known as the Purcell decay [17],

with the decay rate given by γP = 1/TP = κg2/∆2. The

measured relaxation rate in an experiment is a combination of

these two rates such that 1/T1(measured) = 1/T1 + 1/TP .

Fig. 6(b) shows the measured phase angle and the corre-

sponding qubit population (inset) as a function of the pulse

delay for different detunings ∆. As ∆ becomes smaller, the Pur-

cell decay becomes larger, but the dispersive shift ((2g2)/∆) is

also larger, resulting in a larger readout signal, and vice versa.

This shows that the choice of design parameters can have a

significant impact on the behavior of the underlying quantum

system and its measurement using control circuity, which is

captured accurately in our simulations.

2) Decoherence: A superposition state c0 |0〉 + c1 |1〉 has

a well-defined phase between the two basis states. Decoher-

ence is the process through which the qubit loses this phase

information. It can be included in the qubit dynamics using the

operator:

L3 =
γφ

2

1

2

(

2σzρσz − σzσzρ− ρσzσz

)

, (12)

where γφ = 1/Tφ is known as the pure dephasing rate and

Tφ is the pure dephasing time. The measurement of the deco-

herence can be performed using a Ramsey experiment where

two π/2-pulses are applied to the qubit, separated by a delay

time during which the qubit can evolve freely. This is followed

Pulsed measurementStart(a)

(b))
Pulse Delay

Stop

Fig. 6. (a) Pulse sequence for measurement of the qubit relaxation time. (b)
Measured phase angle and extracted qubit population (inset) as a function of the
pulse delay for different detunings ∆. The relaxation time is extracted based on
an exponential fit to the measured phase angle. The simulation was performed
with an intrinsic relaxation time T1 = 10µs. We note that the measured relax-
ation time is always smaller than the intrinsic value due to the additional Purcell
decay time TP = ∆2/(g2κ), such that 1/T1(measured) = 1/T1 + 1/TP .
TP = 14.32µs, 6.36µs and 1.59µs for ∆ = 1.5GHz, 1.0GHz and 0.5GHz,
respectively.
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Pulsed measurementStart Stop(a)

(b))
Pulse Delay

/2/2/2/2

Fig. 7. (a) Pulse sequence for the measurement of qubit decoherence time by a
Ramsey experiment. (b) Measured phase angle (left y-axis) and extracted qubit
population (right y-axis) as a function of the pulse delay time for different drive
detunings ∆d. The T

∗

2
time is extracted using an exponentially decaying cosine

to the measured phase angle. The simulation was performed with a dephasing
time Tφ = 1µs and T1 = 10µs . It can be seen that the measured T

∗

2
is close

to the Tφ time as the contributions from the qubit relaxation are significantly
low for the given choice of parameters. With an increase in ∆d, the oscillation
frequency also shifts to a larger frequency.

by a readout pulse to measure the qubit state (refer Fig. 7(a)).

As shown in Fig. 7(b), for a given detuning ∆d = ωd−ωq of

the microwave drive to the qubit frequency, the measured phase

angle exhibits decaying oscillations. In a Ramsey experiment,

the measured decoherence time T ∗

2
is a combination of the

pure dephasing time as well as decoherence caused due to the

energy relaxation, and is given by 1/T ∗

2
= 1/2T1 + 1/Tφ.

Its dependence on different system-level parameters in the

experiment can accurately be simulated with our methodology.

IV. CONCLUSION

A systematic methodology has been proposed to transform

the behavior of small-scale quantum systems to equivalent

circuit models that can be used in a generic electrical simulator

in tight combination with models for conventional circuits

for readout and control. The approach has been validated by

simulating the control and readout of a superconducting qubit-

resonator quantum system. The circuit-level simulations mimic

realistic experiments and allow to incorporate and analyze the

impact of important non-idealities such as qubit relaxation,

decoherence and leakage to non-computational states, which is

unique for our approach. The simulation results show excellent

agreement with analytical theory of the quantum devices. This

validates that the proposed methodology is extremely useful

for the co-simulation of small-scale qubit devices with their

control circuitry. Future works will employ this methodology

to determine the design specifications of the control electronics

required for optimal qubit operations, which can then be

leveraged for larger-scale quantum systems.
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