
Neuron Fault Tolerance in Spiking Neural Networks
Theofilos Spyrou∗, Sarah A. El-Sayed∗, Engin Afacan∗,

Luis A. Camuñas-Mesa†, Bernabé Linares-Barranco†, Haralampos-G. Stratigopoulos∗
∗Sorbonne Université, CNRS, LIP6, Paris, France

†Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC y Universidad de Sevilla, Sevilla, Spain

Abstract—The error-resiliency of Artificial Intelligence (AI)
hardware accelerators is a major concern, especially when they
are deployed in mission-critical and safety-critical applications.
In this paper, we propose a neuron fault tolerance strategy for
Spiking Neural Networks (SNNs). It is optimized for low area and
power overhead by leveraging observations made from a large-
scale fault injection experiment that pinpoints the critical fault
types and locations. We describe the fault modeling approach,
the fault injection framework, the results of the fault injection
experiment, the fault-tolerance strategy, and the fault-tolerant
SNN architecture. The idea is demonstrated on two SNNs that
we designed for two SNN-oriented datasets, namely the N-MNIST
and IBM’s DVS128 gesture datasets.

I. INTRODUCTION

Deep Neural Networks (DNNs) for modern applications,

e.g. computer vision, speech recognition, natural language

processing, etc., comprise a multitude of layers of different

types, i.e., convolution, pooling, fully-connected, etc., tens

of millions of synaptic weight parameters, and they perform

a myriad of operations in a single forward pass. From a

hardware perspective, this poses great challenges such as

energy-hungry data movement, large memory resources, speed

of computation, and scalability. In this regard, there is a

need for Artificial Intelligence (AI) hardware accelerators that

can support high-dimensional and computationally-intensive AI

workloads. While the dominant AI hardware accelerators today

are Graphics Processing Units (GPUs) and Field-Programmable

Gate Arrays (FPGAs), over one magnitude of cost-energy-

performance improvements can be obtained by Application

Specific Integrated Circuits (ASICs) [1], [2].

A major preoccupation nowadays is the trustworthiness of

AI systems, which involves privacy, avoidance of unfair bias,

explainability, resilience to adversarial attacks, dependability,

etc. The issue of AI hardware accelerator dependability, which

involves reliability, availability, safety, etc., has been overlooked

since it is often tacitly assumed that Neural Networks (NNs) in

hardware inherit the remarkable fault-tolerance capabilities of

biological NNs. This capability stems from massively parallel

architectures and overprovisioning. However, recent fault in-

jection experiments in AI hardware accelerators have shown

that they can be highly vulnerable to hardware-level faults

especially when those are happening after training [3]–[11].

These experiments demonstrate that equipping AI hardware

accelerators with a preventative fault tolerance strategy is a

crucial requirement for mitigating risks in AI systems.

In this context, standard fault-tolerance techniques for regular

Very Large-Scale Integrated (VLSI) circuits can be employed,

such as Triple Modular Redundancy (TMR) and Error Correc-

tion Codes (ECCs) for memories. However, efficiency can be

largely improved by exploiting the architectural particularities

of AI hardware accelerators and targeting only those fault

scenarios that have a measurable effect on performance [12].

One approach is to perform re-training to learn around faults,

but this requires access to the training set and extra resources

on-chip, thus it is impractical at chip-level.

In this work, we propose a cost-effective neuron fault-

tolerance strategy for Spiking Neural Networks (SNNs). SNNs

constitute the third generation of NNs that aim at bridging the

gap between the biological brain and machine learning in terms

of computation speed and power consumption [2], [13], [14].

In SNNs, communication occurs through spike trains and the

information is coded by considering the temporal correlation

between spikes, thus reproducing the efficiency observed in the

brain. In principle, SNNs can be used for the same applications

as conventional level-based Artificial Neural Networks (ANNs),

having major advantage for recurrent architectures due to their

pseudo-simultaneity property.

Fault injection experiments showing the vulnerability of

SNNs to hardware-level faults have been presented in [6], [7],

[11]. A built-in self-test strategy is proposed for a biologically-

inspired spiking neuron in [7]. To the best of our knowledge,

this is the first paper proposing a generic network-level neuron

fault tolerance strategy for SNNs.

More specifically, we designed two deep convolutional

SNNs for the N-MNIST [15] and IBM’s DVS128 gesture

[16] datasets. We developed a fault injection framework for

analysing the criticality of neuron fault types and locations.

Fault injection is accelerated by modeling neuron faults at

behavioral-level and by embedding the faulty SNN in a GPU.

For the fault modeling part, we rely on the findings of a recent

work that performed transistor-level fault simulation at the

neuron-level and collected all types of neuron faulty behaviors

[11]. Next, we leverage the findings from our fault injection

experiments to develop a cost-effective fault tolerance strategy

consisting in multiple layers of protection. We propose passive

fault-tolerance based on dropout [17] to nullify the effect of

certain faults, and several active fault tolerance techniques to

detect and recover from the remaining faults.

The rest of the paper is structured as follows. In Section II,

we describe the two case studies. In Section III, we describe

the neuron model used in our designs. Section IV presents

the fault injection framework, followed by the fault injection

experiment results in Section V. In Section VI, we present the

neuron fault tolerance strategy and the hardware architecture.

Finally, Section VII concludes the paper.

II. CASE STUDIES

For our experiment, we designed two deep convolutional

SNNs for the classification of the N-MNIST [15] and IBM’s

743978-3-9819263-5-4/DATE21/ c©2021 EDAA



0

1

2

9

Convolution

layer #1

14x14

Convolution

layer #2

5x5
Convolution

layer #3

1x1

Fully Connected

Layer

n = 50
Output

n = 10

6 Channels 16 Channels 120 Channels

Input

34x34

2 Channels

F
la

tt
e

n
e

d
 D

a
ta

: 
n

 =
 1

2
0

5

5

7

7

5

5

Stride = 2

Stride = 2

SC1

SC2

SC3

SF5

SF4

Fig. 1: Architecture of the SNN for the N-MNIST dataset.

A

Arm

Roll

Hand

Clap

Air

Guitar

Other

Convolution layer

#1

32x32
Convolution

layer #2

16x16

Fully Connected Layer

n = 512

Output Layer

n = 11

2 Channels

F
la

tt
e

n
e

d
 D

a
ta

: 
n

 =
 2

0
4

8

Padding=2

SC1

SC2

SF4

SF3

Input

128x128

Pooling layer 

#1

32x32 Pooling 

layer #2

16x16

Pooling 

layer #3

8x84
4

5

5

3
3

16 Channels 32 Channels

SP0

SP1 SP2

Padding=1

2
2

2
2

Input

Fig. 2: Architecture of the SNN for the IBM’s DVS128 gesture

dataset.

DVS128 gesture [16] datasets. Both SNNs are modeled with

Python using primitives in the open-source Spike LAYer Error

Reassignment (SLAYER) [18] and PyTorch [19] frameworks,

and run on a GPU accelerator. They are trained using batch

learning with a variation of back-propagation. The winning

class is selected after the neuron which is triggered the most,

i.e. produces the highest number of spikes.

A. N-MNIST SNN

The N-MNIST dataset is a neuromorphic, i.e., spiking,

version of the MNIST dataset, which comprises images of

handwritten arithmetic digits in gray-scale format [15]. It

consists of 70000 sample images that are generated from the

saccadic motion of a Dynamic Vision Sensor (DVS) in front

of the original images in the MNIST dataset. The samples in

the N-MNIST dataset are not static, i.e. they have a duration in

time of 300ms each. The dataset is split into a training set of

60000 samples and a testing set of 10000 samples. The SNN

architecture is inspired from the LeNet-5 network [20] and is

shown in Fig. 1. The classification accuracy on the testing set

is 98.08%, which is comparable to the performance of state-

of-the-art level-based DNNs.

B. Gesture SNN

The IBM’s DVS128 gesture dataset consists of 29 individuals

performing 11 hand and arm gestures in front of a DVS, such as

hand waving and air guitar, under 3 different lighting conditions

[16]. Samples from the first 23 subjects are used for training and

samples from the last 6 subjects are used for testing. In total,

the dataset comprises 1342 samples, each of which lasts about

6s, making the samples 20x longer than of those in N-MNIST.

Due to computation limitations of the neuromorphic simulation,

we trimmed the length of the samples to about 1.5s. We used

the architecture proposed in [18], shown in Fig. 2. The network

performs with an 82.2% accuracy on the testing set, which is

acceptable considering the shortened samples of the dataset and

the shallower architecture compared to the architecture in [16].

III. THE SPIKE RESPONSE MODEL

The two SNNs are designed using a generalized form of the

ubiquitous Integrate-and-Fire (I&F) neuron model, known as

the Spike-Response Model (SRM) [21]. The state of the neuron

at any given time is determined by the value of its membrane

potential, u(t), and this potential must reach a certain threshold

value, ϑ, for the neuron to produce an output spike. The

membrane potential of a neuron j in layer l is calculated as:

ul
j(t) =

∑

i

ω
l−1,l
i,j (ε ∗ sl−1

i )(t) + (v ∗ slj)(t) (1)

where sl−1
i (t) is the pre-synaptic spike train coming from

neuron i in the previous layer l − 1, slj(t) is the output spike

train of the neuron, ω
l−1,l
i,j is the synaptic weight between the

neuron and the neuron i in the previous layer l− 1, ε(t) is the

synaptic kernel, and v(t) is the refractory kernel.1

In Eq. (1), the spiking action of the neuron is described in

terms of the neuron’s response to the input pre-synaptic spike

train and the neuron’s own output spikes. The incoming spikes

by the neurons in the previous layer are scaled by their respec-

tive synaptic weights and fed into the post-synaptic neuron.

The response of the neuron to the input spikes is defined by

the synaptic kernel ε(t) which distributes the effect of the most

recent incoming spikes on future output spike values, hence

introducing temporal dependency. For our experiments, we use

the form [18]:

ε(t) =
t

τs
· e(1−

t
τs

)
·H(t) (2)

where H(t) is the unit step function and τs is the time constant

of the synaptic kernel. The second term in Eq. (1) incorporates

the refractory effect of the neuron’s own output spike train onto

its membrane potential through the refractory kernel. The form

used here is:

v(t) = −2ϑ
t

τref
· e

(1− t
τref

)
·H(t) (3)

where τref is the time constant of the refractory kernel.

IV. FAULT INJECTION FRAMEWORK

A. Fault Modeling

We treat the SNN as a distributed system where neurons

are discrete entities that can fail independently. We use the

neuron fault model recently proposed in [11] to describe faults

at behavioral-level and make fault simulation for deep SNNs

traceable. This fault model is generated by performing detailed

transistor-level simulations at neuron-level and collecting all

types of faulty behaviors. In this way, the fault model becomes

independent of the hardware implementation, which helps us

draw general conclusions. The most systematic faulty behaviors

in [11] are adapted to our neuron model of Section III as

follows:

1Eq. (1) holds for any neuron no matter the type of the layer; however, in
convolutional layers neurons are arranged in a 3-D representation, i.e., width
× height × channels, and, thereby, we either need to consider a flat indexing
or 3-D indexes.

744 Design, Automation and Test in Europe Conference



SC1 SC2 SC3 SF4 SF5

Layer
(a)

0

20

40

60

80

100

N
e
u
ro

n
 %

Dead Dead Dead Dead Dead

D
ro

p
o
u
t

D
ro

p
o
u
t

D
ro

p
o
u
t

D
ro

p
o
u
t

D
ro

p
o
u
t

Sat. Sat. Sat. Sat. Sat.

D
ro

p
o
u
t

D
ro

p
o
u
t

D
ro

p
o
u
t

D
ro

p
o
u
t

D
ro

p
o
u
t

SC1 SC2 SF3 SF4

Layer
(b)

0

20

40

60

80

100

N
e
u
ro

n
 %

Dead Dead Dead Dead

D
ro

p
o
u
t

D
ro

p
o
u
t

D
ro

p
o
u
t

D
ro

p
o
u
t

Sat. Sat. Sat. Sat.

D
ro

p
o
u
t

D
ro

p
o
u
t

D
ro

p
o
u
t

D
ro

p
o
u
t

0 10 20 30 40 50 60 70 80 90 100

Classi cation Accuracy %

Fig. 3: Effect of neuron faults on classification accuracy with

and without dropout: (a) N-MNIST SNN; (b) gesture SNN.

1) Dead Neuron: A fault in the neuron that leads to a halt in

its computations and a zero-spike output. This fault is modeled

by forcing the output spike train to be always low.

2) Saturated Neuron: A fault that causes the neuron to be

firing all the time, even without any external stimuli. This fault

is modeled by skipping the computations and forcing the output

to be high at every time step.

3) Neuron timing variations: A fault that results in timing

variations of the output spike train, i.e. time-to-first-spike and

firing rate. This parametric fault is modeled by varying the

value of τs in Eq. (2).

B. Fault simulation

The fault injection framework is built on top of the SLAYER

[18] and PyTorch [19] frameworks. Fault injection and simu-

lation are performed by customizing the flow of computations

in the frameworks according to the behavioral modeling of the

faults described in Section IV-A. Fault simulation acceleration

is achieved first by describing the SNN at behavioral-level and

performing fault injection at this level, and second by mapping

the faulty SNN on a GPU.

V. FAULT INJECTION RESULTS

We consider fault injection in an already trained SNN and

we examine whether the fault impacts inference. The metric

used is the classification accuracy drop of the faulty network

with respect to the baseline classification accuracy of the fault-

free network, computed on the testing set. Herein, we show

single fault injection results, but in Section VI-D we will

show how the proposed neuron fault tolerance strategy responds

effectively to multiple neuron fault scenarios.

The effect of dead and saturated neuron faults on the

classification accuracy is shown in Figs. 3(a) and 3(b) for the

N-MNIST and gesture SNNs, respectively. The x-axis shows

the different layers and for each layer we show four columns

each corresponding to a fault type: dead, dead with dropout,

saturated, saturated with dropout. Dropout is the proposed

passive fault tolerance strategy and how fault injection results

change using dropout will be explained in Section VI-A.

Pooling layers SPX in the gesture SNN aggregate regions

of spikes of their previous convolutional layers and do not

contain any neurons, thus they are excluded from the analysis.

A column is a colored bar possibly separated into chunks of

different colors. Each chunk of the bar corresponds to a specific

classification accuracy according to the color shading shown at

the bottom of Fig. 3, and the projection on the y-axis shows

the percentage of neurons for which the fault results in this

classification accuracy.

The effect of neuron timing variations is shown in Figs. 4(a)

and 5(a) for the N-MNIST and gesture SNNs, respectively.

For a given layer, we vary τs of one neuron at a time. Figs.

4(a) and 5(a) demonstrate the per-layer average, minimum,

and maximum classification accuracy observed across all faulty

neurons for τs values expressed in % of the nominal value.

The following brief observations can be made regarding the

effect of different neuron fault types:

1) Dead Neurons: Dead neuron faults may impact clas-

sification accuracy only for the neurons in the last hidden

and output layers. In the output layer, a dead neuron implies

always misclassifying samples of the class corresponding to the

neuron.

2) Saturated Neurons: Saturation neuron faults, on the other

hand, may impact classification accuracy for neurons at any

layer, as shown in the gesture SNN. In the output layer, a

saturated neuron implies always selecting the corresponding

class of the saturated neuron, thus samples from all other

classes are always misclassified. We also observe that the effect

of saturated neuron faults is magnified for layers that have a

smaller number of outgoing synapses, i.e., compare SC1 and

SC2 layers in the gesture SNN, where the synapses connecting

SC1 and SC2 are much less than those connecting SC2 and

SF3.

3) Neuron timing variations: Neuron timing variations have

an impact only for the last hidden and output layers, thus for

simplicity Figs. 4 and 5 exclude all other layers. For the N-

MNIST SNN, large variations in τs must occur to observe

a drop in the classification accuracy of no more than 10%,

i.e. more than 80% reduction for the hidden layer SF4 and

more than 50% reduction or 100% increase for the output layer

SF5. For the gesture SNN, we observe that this fault type can

seriously affect the output layer SF4, while the last hidden layer

contributes to significant classification accuracy drop only when

τs reduces by more than 50%. A smaller τs implies a narrower

synaptic kernel in Eq. (2), i.e., a decreased integration time

window, thus reducing the value that the membrane potential

can reach. As a result, the spiking probability is reduced and

at the extreme the neuron could end up as a dead neuron.

Design, Automation and Test in Europe Conference 745



(a) (b)

Fig. 4: Effect of neuron timing variations for the N-MNIST

SNN: (a) without dropout; (b) with dropout.

(a) (b)

Fig. 5: Effect of neuron timing variations for the gesture SNN:

(a) without dropout; (b) with dropout.

Similarly, it can be argued that a higher τs increases the spiking

probability and at the extreme the neuron could end up as a

saturated neuron.

The general conclusions are that saturation neuron faults are

the most lethal, and that the impact of all fault types may be

severe for the last hidden and output layers.

VI. NEURON FAULT TOLERANCE STRATEGY

A. Passive fault tolerance using dropout

As a first step, we aimed at implementing a passive fault

tolerance such that the SNN is by construction capable of with-

standing some faults without any area and power overheads. To

this end, we discovered that training the SNN with dropout [17]

can nullify the effect of dead neuron faults and neuron timing

variations in all hidden layers. In this way, active fault tolerance,

which implies area and power overheads, gets simplified since

it will need to focus solely on saturation neuron faults in the

hidden layers and on all fault types only for the output layer.

The dropout training technique was originally proposed

to prevent overfitting and reduce the generalization error on

unseen data. The idea is to temporarily remove neurons during

training with some probability p, along with their incoming and

outgoing connections. At test time, the final outgoing synapse

weights of a neuron are multiplied by p. For a network with

n neurons, there are 2
n “thinned” scaled-down networks, and

training with dropout combines exponentially many thinned

network models. The motivation is that model combination

nearly always improves performance, and dropout achieves this

efficiently in one training session.

For the N-MNIST SNN we used p=10% in the input and

SC1 layers, 20% in layers SC2 and SC3, and 50% in layer

SF4. Training with dropout resulted in a slight improvement

in the classification accuracy from 98.08% to 98.31%. For the

Test 

Stimulus

O1

O2

X1

X2

Test Enable

Flag2

Flag1

Test Enable 

(delayed)

Test Enable

Test 

Stimulus

X1

X2

X3

XN

SATURATED

O1

O2

O3

ON

Latch

Flag1

Flag2

Flag3

FlagN

Latch

Latch

Latch

Flag2

XNON
X

2

Flag1

X2

XXNNOO XX

X1X3O3
X X1

(delayed)

Test Enable 

X3X

O2X2O2
O2

O1

O2

O

XX2OO

StimulusX1O1
Stimulus

Test 

StimulusXX11O
Latch

Flag1

Flag2

Flag3

FlagN

Latch

Latch

Latch

Test 
Latch

Stimulus
Test EnableTest 

Test EnableTest Enable
SATURATED

Fig. 6: Offline self-test scheme.

gesture SNN we used p=50% only in layer SF3. In this case,

dropout increased significantly the classification accuracy from

82.2% to 87.88%.

The beneficial effect of dropout on passively nullifying the

effect of dead neuron faults is shown for each layer in Figs.

3(a) and 3(b) for the N-MNIST and gesture SNNs, respectively.

For example, this is made largely evident by comparing the

classification accuracy in the presence of dead faults for layer

SF4 of the N-MNIST SNN and layer SF3 for the gesture SNN.

The beneficial effect on nullifying the effect of neuron timing

variations for the last hidden layer even for extreme variations

of τs is shown in Figs. 4(b) and 5(b) for the N-MNIST and

gesture SNNs, respectively. As can be seen, variations in τs

from 1% to 300% have now no effect.

The reason behind this result is that dropout essentially

equalizes the importance of neurons across the network, re-

sulting in more uniform and sparse spiking activity across the

network. Therefore, if a neuron in a hidden layer becomes dead

or shows excessive timing variations, this turns out to have no

effect on the overall classification accuracy. On the contrary,

dropout may magnify the effect of saturation neuron faults, i.e.

layer SF3 of the gesture SNN. Finally, we observe that dropout

does not compensate for faults in the output layer since in this

layer there is one neuron per class and any fault will either

overshadow this class or cause it to dominate the other classes.

B. Active fault tolerance in hidden layers

As explained in Section VI-A, active fault tolerance in

hidden layers needs only to address neuron saturation. We

propose two self-test schemes for neuron saturation detection,

namely an offline scheme that can run during idle times of

operation and an online scheme that can run concurrently with

the operation. Regarding the faulty recovery mechanism, we

propose the “fault hopping” concept to simplify the hardware

implementation, and we propose two recovery mechanisms at

neuron-level and system-level.

1) Offline self-test: The offline self-test scheme is illustrated

in Fig. 6. Neuron saturation is declared based on the neuron’s

activity in the absence of an input. A multiplexer is assigned to

every neuron to switch between self-test and normal operation

modes. During normal operation, neurons are receiving inputs

from the previous layer through synapses, processing them and

propagating them to the next layer. When the test enable signal

is on, a short internally-generated current pulse is applied to

all the neurons simultaneously as a test stimulus, thus test time

for the complete network is very short. The neuron outputs are

746 Design, Automation and Test in Europe Conference



VDD

Vm

Vreset

AckVref

Rqst

VSpike

Isyn

IbiasCm

Ib

FlagMC

Fig. 7: I&F neuron design showing the recovery operation at

neuron-level.

Counter

In

Reset

OF Flag

SoutSin
Sout_nominal

Sout_saturated

Flag

Sin

Flag

Reset
out_saturated

Flag

Flag Sout_saturatedIn

Reset

OF

Counter

SoutSin
Sout_nominal

Flag

Sin

Latch

Fig. 8: Online self-test scheme.

paired with a delayed version of the test enable signal through

an AND gate. This is to ensure that any activity detected is

uncorrelated with the input of the neuron and is indeed a result

of saturation. The output of an AND gate going high indicates

neuron saturation. This is captured by the latch which raises

an error flag signal. A simulation is shown in Fig. 6 using the

I&F neuron shown in Fig. 7. This neuron is designed in the

AMS 0.35µm technology, and was originally proposed in [22]

as part of a neuromorphic cortical-layer processing chip for

spike-based processing systems. This self-test scheme adds a

multiplexer, an AND gate, and a latch per neuron, thus the area

overhead of the test circuitry is relatively small compared to a

single neuron. It can detect aging-induced errors, possibly with

some latency.

2) Online self-test: The online self-test scheme is illustrated

in Fig. 8. It is applied on a per-neuron basis and takes advantage

of the temporal dependency between the input and output

of a spiking neuron. In particular, we count the number of

spikes a neuron produces after every single input spike using

a counter whose reset port is connected to the input of the

neuron. In fault-free operation, the neuron needs to integrate

multiple input spikes before it can produce a spike of its own,

hence the counter is always reset, and the flag signal stays

at zero. On the other hand, a saturated neuron will produce

spikes with higher frequency than usual, causing the counter

to overflow before an incoming spike resets it again. A latch

is set when overflow happens and an error flag is raised and

maintained. Based on our simulations, 23 uncorrelated spikes

clearly indicate saturation, thus it suffices to use a 3-bit counter.

Fig. 8 shows a simulation using the I&F neuron of Fig. 7. This

online self-test scheme entails an area overhead comprised of

a counter and a latch per neuron. All neurons are monitored

individually and neuron saturation is detected in real-time.

3) Recovery Mechanism: The recovery mechanism is ac-

tivated once neuron saturation is detected. We propose the

concept of “fault hopping” where the critical saturation neuron

fault is artificially translated to a dead neuron fault. The network

is repaired since a dead neuron fault has no effect after dropout.

Vote

Sin

Class X

Vote

Sin

Vote

SinSin

Class X

Vote

Sin

SATURATED

Sx1

Sx2

Sx3

Sx1

Sx2

Sx3

Fig. 9: TMR at the output layer.

This approach leads to an elegant hardware implementation and

saves significant costs as opposed to the standard approach,

which is to duplicate or triplicate neurons, or provision the

SNN with spare neurons that are kept “fresh” and switch the

connections of a detected saturated neuron to a spare neuron

[12]. We propose two recovery mechanisms based on the

concept of “fault hopping”, at neuron-level and at system-level.

Neuron-level recovery is implemented by switching-off the

saturated neuron. For example, for the I&F neuron in Fig. 7, this

can be achieved by connecting a single extra transistor MC in

the tail part of the comparator inside the neuron. This transistor

is controlled by the neuron error flag signal. When the neuron

gets saturated, the biasing connection of the comparator is

suddenly ceased, which deactivates the neuron tying its output

to zero. The area overhead is only one transistor per neuron and

an auxiliary advantage is that faulty neurons get deactivated;

thus, they stop consuming power.

System-level recovery is implemented by setting the outgo-

ing synapse weights of the saturated neuron to zero. In this way,

the saturated spike train gets trapped and does not propagate

to neurons in the next layer. Typically, the communication

between neurons in SNNs is performed by a controller that

implements the Address-Event-Representation (AER) protocol

[23]. AER controllers perform multiplexing/demultiplexing of

spikes generated from or delivered to all neurons in a layer onto

a single communication channel. Rather than delivering the

actual spike, the controller encodes the address of the neuron

that spiked and translates it into the addresses of the destination

neurons, and then the weights corresponding to every synaptic

connection are loaded accordingly. By leveraging this opera-

tion, the system-level recovery approach is based on equipping

the controller with the ability to recognize the neuron error flag

and update the outgoing synaptic weights to zero. This system-

level recovery mechanism has a minimal area overhead since it

is reused across all neurons. However, compared to the neuron-

level recovery mechanism, saturated neurons stay on continuing

consuming power.

C. Active fault tolerance in the output layer

As for the most critical output layer, we propose to directly

use TMR for a seamless recovery solution from any single fault

type. In particular, a group of three identical neurons vote for

the decision of a certain class, as shown in Fig. 9. The voter

is a simple 4-gate structure that propagates the output upon

which the majority of neurons agree. This means that a faulty

neuron in the group, be it dead, saturated or showing excessive

timing variations, is outvoted and bypassed. Performing TMR

only in the last layer will result in negligible increase in the

Design, Automation and Test in Europe Conference 747



20 40 60 80
Dead Neurons Percentage (%)

(a)

0

20

40

60

80

100

C
la

s
s
i

c
a
ti

o
n
 A

c
c
u

ra
c
y
 %

Faulty

Nominal

Faulty \w Dropout

Nominal \w Dropout

Faulty

Nominal

Faulty \w Dropout

Nominal \w Dropout

20 40 60 80
Dead Neurons Percentage (%)

(b)

0

20

40

60

80

100

C
la

s
s
i

c
a
ti

o
n
 A

c
c
u
ra

c
y
 %

Fig. 10: Fault tolerance for multiple fault scenarios: (a) N-

MNIST SNN; (b) gesture SNN.

area and power overhead and a reasonable overhead to pay to

ensure strong fault tolerance. The reason is that the number

of neurons in the output layer is typically small compared to

the size of the whole network. For example, in the N-MNIST

SNN, the output layer neurons account for about 0.57% of the

neurons in the whole network. This percentage gets even less

for the more complicated gesture SNN, where the output layer

represents around 0.04% of the total number of neurons.

D. Multiple fault scenario

So far, we have discussed fault tolerance considering a single

fault assumption. Moreover, our experiments have shown that

neuron timing variations start having an effect when the neuron

approaches a dead or a saturated one, and our proposed fault

tolerance strategy suggests turning a saturated neuron into a

dead one. Hence, all faults eventually fold back to a dead

neuron fault, arising the question of what percentage of dead

neuron faults can the network withstand. Figs. 10(a) and 10(b)

show the classification accuracy as a function of the percentage

of dead neurons considering the last hidden layer, which is the

most critical amongst all hidden layers, for the N-MNIST and

gesture SNNs, respectively. Fig. 10 shows the baseline nominal

classification accuracy with and without dropout and how the

classification accuracy drops with the increase of dead neuron

rate. As the results show, the SNNs employing dropout can

withstand larger rates of dead neurons. More specifically, the

N-MNIST dataset does not lose any classification accuracy with

a dead neuron rate of up to 40%. As for the gesture SNN, the

classification accuracy drops faster, but it is still able to perform

with over 80% classification accuracy at a dead neuron rate of

20%, which corresponds to 102 neurons.

VII. CONCLUSIONS

We presented a cost-effective neuron fault tolerance strategy

for SNNs. It leverages findings from large-scale fault injection

experiments corroborated on two different deep convolutional

SNNs. The fault-tolerance strategy is a two-step procedure. In

a first preparatory step, the SNN is trained using dropout which

makes some neuron fault types for some layers passive. In a

second step, we perform active fault tolerance to detect and

recover from the remaining neuron faults in all layers. For

hidden layers, we propose offline and online fault detection

schemes, a “fault hopping” concept to simplify the error recov-

ery mechanism, and two different neuron-level and system-level

recovery mechanisms. For the small output layer we simply use

TMR. In terms of future work, we are planning to extend the

fault tolerance strategy to include synapse faults.

ACKNOWLEDGMENTS

T. Spyrou has a fellowship from the Sorbonne Center for

Artificial Intelligence (SCAI). This work has been partially

funded by the Penta HADES project and by Junta de Andalucı́a

under contract US-1260118. L. A. Camuñas-Mesa was funded

by the VI PPIT through the Universidad de Sevilla.

REFERENCES

[1] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in ACM/IEEE International Symposium on Computer

Architecture, 2017.
[2] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-

chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.
[3] G. Li et al., “Understanding error propagation in deep learning neural net-

work (DNN) accelerators and applications,” in International Conference

for High Performance Computing, Networking, Storage and Analysis,
2017.

[4] B. Reagen et al., “Ares: A framework for quantifying the resilience
of deep neural networks,” in ACM/ESDA/IEEE Design Automation

Conference, 2018.
[5] J. J. Zhang et al., “Fault-tolerant systolic array based accelerators for

deep neural network execution,” IEEE Design & Test, vol. 36, no. 5, pp.
44–53, 2019.

[6] E. Vatajelu et al., “Special session: Reliability of hardware-implemented
spiking neural networks (SNN),” in IEEE VLSI Test Symposium, 2019.

[7] S. A. El-Sayed et al., “Self-testing analog spiking neuron circuit,” in In-

ternational Conference on Synthesis, Modeling, Analysis and Simulation

Methods and Applications to Circuit Design, 2019.
[8] F. F. d. Santos et al., “Analyzing and increasing the reliability of con-

volutional neural networks on GPUs,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663–677, 2019.

[9] M. A. Neggaz et al., “Are CNNs reliable enough for critical applications?
An exploratory study,” IEEE Design & Test, vol. 37, no. 2, pp. 76–83,
2020.

[10] L.-H. Hoang et al., “FT-ClipAct: Resilience analysis of deep neural
networks and improving their fault tolerance using clipped activation,” in
Design, Automation & Test in Europe Conference, 2020, p. 1241–1246.

[11] S. A. El-Sayed et al., “Spiking neuron hardware-level fault modeling,”
in IEEE International Symposium on On-Line Testing and Robust System

Design, 2020.
[12] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural

networks: A review,” IEEE Access, vol. 5, pp. 17322 – 17341, 2017.
[13] W. Maass, “Networks of spiking neurons: The third generation of neural

network models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671, 1997.
[14] L. A. Camuñas-Mesa et al., “Spiking neural networks and their

memristor-CMOS hardware implementations,” Materials, vol. 12, no.
17, pp. 2745, 2019.

[15] G. Orchard et al., “Converting static image datasets to spiking neuromor-
phic datasets using saccades,” Frontiers in Neuroscience, vol. 9, 2015,
Article 437.

[16] A. Amir et al., “A low power, fully event-based gesture recognition sys-
tem,” in IEEE Conference on Computer Vision and Pattern Recognition,
2017.

[17] N. Srivastava et al., “Dropout: A simple way to prevent neural networks
from overfitting,” Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[18] S. B. Shrestha and G. Orchard, “SLAYER: Spike layer error reassignment
in time,” in Advances in Neural Information Processing Systems, 2018,
pp. 1412–1421.

[19] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems

32, H. Wallach et al., Ed., pp. 8024–8035. Curran Associates, Inc., 2019.
[20] Y. LeCun et al., “Gradient-based learning applied to document recogni-

tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
[21] W. Gerstner, “Time structure of the activity in neural network models,”

Phys. Rev. E, vol. 51, pp. 738–758, 1995.
[22] R. Serrano-Gotarredona et al., “A neuromorphic cortical-layer microchip

for spike-based event processing vision systems,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 53, no. 12, pp. 2548–2566,
2006.

[23] S.-C. Liu et al., Event-based neuromorphic systems, John Wiley & Sons,
2014.

748 Design, Automation and Test in Europe Conference


