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Abstract—Edge devices employing a neural network (NN) infer-
ence engine running a pre-trained model often perform poorly or
simply fail at unseen situations. Meta learning, consisting of meta
training, NN adaptation and inference, has been shown to be quite
effective in quickly learning and responding to a new environment.
The adaption phase, including both forward and backward
computation, should be performed on edge devices to maximize the
benefit in the few-shot learning application. However, deploying
high-precision, full-blown training accelerators at the edge can
be rather costly for most Internet of Things applications. This
paper reveals some unique observations in the adaptation phase
and introduces a quantization framework, AIQ, based on these
observations to support adaption at the edge with inference-level
bit widths. AIQ includes two key ideas, i.e., gated weight buffering
and dynamic error scaling, to reduce memory and computational
needs with minimal sacrifice in accuracy. Major modules of
AIQ are synthesized and evaluated. Experimental results show
that AIQ saves 41% and 70% weight memory for two widely
used datasets while incurring minimum hardware overhead and
negligible accuracy loss.

I. INTRODUCTION

To offer edge intelligence, a widely-used paradigm is to
pre-train a neural network (NN), then deploy it on an edge
device with a NN inference engine. However, such a setup
often performs poorly or simply fails at unseen situations due
to the inflexibility in the pre-trained NN. Meta learning, also
known as learn to learn, tackles this challenge by quick learn
and respond to a new environment [1], [2].

Meta learning, consisting of meta training, NN adaptation
and inference, gathers knowledge from various tasks to meta-
train a NN model prior. The model prior can then be rapidly
adapted to the ever-changing environment with only a few train-
ing samples. For edge intelligence, the adaption and inference
phase should be implemented on edge devices to quickly re-
spond to environmental changes. There are three common types
of meta-learning approaches: (1) black-box amortized, (2) non-
parametric, and (3) optimization based, where optimization-
based meta learning is more desirable in terms of handling
varying and large sample sizes and out-of-distribution tasks [2].
With optimization-based meta learning, after a model is pre-
trained, the adaption phase employs the typical gradient-based
learning on a few training samples to adapts to a new task.

In this paper, we study hardware acceleration of NN adaption
at the edge for efficient realization of the optimization-based
meta learning. The basic operations in NN adaptation are
similar to training in standard supervised learning, and works
in three stages: 1) feed forward (FF), 2) feed backward (FB),
3) weight gradient computation (WG). A straightforward way

to accelerate NN adaption is to deploy at the edge specialized
DNN training hardware such as [3], [4]. However, such hard-
ware typically require 16 or more bits to represent NN parame-
ters (weights, gradients, etc.), thus incur high area, energy and
latency overhead. Furthermore, since edge devices are mostly
used for inference and only need to perform adaption when
environment changes occur, the hardware resources dedicated
to training have rather low utilization.

An alternative way is extending inference accelerators by
adding hardware for FB and WG to support NN adaption. Infer-
ence engines deployed at the edge mostly adopt low-precision
(e.g., 4- or fewer-bit) representations to keep hardware cost
low. This is possible thanks to the advancement in quantization
methods for inference [5], [6]. If NN adaption could also work
with such low precision representations, it would not signif-
icantly increase hardware cost. However, supporting FB and
WG generally requires higher bit precision because quantizing
gradients and errors to the same bitwidth as inference weights
typically leads to considerable accuracy loss.

We aim to develop techniques for designing NN adaptation
accelerators with inference-level bitwidths so that they can be
deployed at the edge with minimal overhead. Specifically, we
introduce a quantization framework, AIQ (for Adaptation at
Inference Quantization), to support back propagation with low-
bitwidth integers. To our best knowledge, there is no existing
work studying the quantization problem for the adaption phase.

The major contributions of our work are summarized below.
(1) We make several observations on the properties of weight
gradients and errors during the adaption phase. These proper-
ties, different from those in traditional training-from-scratch,
are exploited in our quantization framework. (2) We devise
a gated weight buffering technique to dynamically identify
sensitive gradients and preserve them in high-precision during
adaptation. (3) We introduce a lightweight and effective method
to adjust the error stepsize dynamically. The method reduces the
quantization error with little hardware cost. (4) We implement
several modules to support the proposed gated weight buffering
technique in the state-of-art SIMD-like learning accelerator
architecture with minimal overhead.

Our framework achieve little accuracy drop with 4-bit quan-
tization in the widely-used few-shot learning scenarios. Simula-
tion results show that AIQ saves 41% and 70% weight memory
for two widely used datasets while incurring only 3% hardware
overhead and negligible accuracy loss.

402978-3-9819263-5-4/DATE21/ c©2021 EDAA



Fig. 1. General computation flow of meta learning.

II. BACKGROUND

Below, we first briefly discuss meta learning with an em-
phasis on the adaptation phase, and then review quantization
approaches for traditional training.

A. Adaption in optimization-based meta learning

Meta learning aims to derive learning models that can learn
from a few training examples and thus rapidly adapt to new
environments. Usually, meta learning consists of two phases:
meta training and meta testing. The meta testing phase is further
divided into adaption and inference. In this work, we consider
the simple and powerful optimization-based meta learning.
Fig. 1 depicts a typical flow of meta-learning algorithms.

As shown in Fig. 1, in the meta-training phase, the meta-
learner is trained with different tasks. For the optimization-
based method, the meta-learner, also serving as the model
prior, is optimized to have the fast adaption ability. The meta-
trained NN model can then be deployed on the edge device for
fast adaption and inference. On the edge device, with a few
samples from a new task, the network can learn from the new
task by a few update steps. Learning in the adaptation phase
is achieved by gradient descent based optimization similar to
standard supervised learning but only a few samples are used.

B. Typical quantization flow in supervised learning

Quantization, i.e., employing low-bitwidth, fixed-point (FXP)
representations for NN parameters, is an approach that is widely
used for compressing DNN models in order to reduce the
latency and energy. Fig. 2 depicts a representative quantized
computation flow of a single convolution or fully-connected
(FC) layer for on-chip training. The training process includes
FF and FB propagation, indicated by the black and blue arrows,
respectively. Weight W , activation X , error E, gradient G
are quantized and denoted by ∗̂. The superscripts for each
parameter indicate the corresponding layer index. Here we
separate error and gradient following the definition in [7],
where error E is the gradient of activation X , and gradient
G refers to the gradient of weight W . The blue/yellow boxes
represent the data in the FF/FB propagation; the grey boxes
(labeled with Q∗) represent the respective quantizer functions.
The multiply-accumulate (MAC) array box is for conducting
matrix multiplication. The labels along the data paths, b∗,
indicate the bitwidths for the corresponding data. Note that bwT

,
is decided by the required precision of gradients while bwI

, is
the quantization bit of weights used in FF and FB computations.
Thus, there are two W l representations in the figure.

For supervised learning where training is done from scratch,
quantized training has been studied though not as extensively
as for quantized inference. DoReFa-Net [8] uses 1-bit weights,

Fig. 2. Representative quantization flow of a convolution/FC layer in quantized
training. Black arrow: FF pass. Blue arrow: FB pass.

2-bit activation, 6-bit gradients and float-point (FLP) errors for
training. However, the weights are still accumulated with FLP.
WAGE [7] adopts 2-bit weights, 8-bit activation, 8-bit gradients
and 8-bit errors for quantized training, where bwT

is 8 bits
and bwI

is 2 bits. But the method only works well for small
datasets and have over 5% accuracy drop for CIFAR10 datasets.
Recently, researchers have shown that higher precision (such
as 16-bit) gradients are required for better performance [9].
Thus, in general, bwT

and be in the FB stage are always greater
than bx and bwI

in the FF stage. If one were to develop a
specialized hardware for both training and inference, though the
FF stage of the training hardware can be used for inference,
the longer bitwidths required by training are wasteful in the
inference phase. Such longer bitwidths lead to higher memory
usage (for weights storage) and higher computation resource
(e.g., for matrix multiplication).

III. OVERVIEW OF AIQ FRAMEWORK

The goal of AIQ is to achieve high adaption accuracy with
inference-level bitwidths such that a same specialized hardware
can be used for both adaption and inference without too much
resource wastage. Below, we discuss several key observations
that help us to achieve our goal. We then present an overview
of our proposed quantization flow.

A. Observations

1) Gradients related observations: Intuitively, the quanti-
zation settings that work for FXP training-from-scratch should
also work well for FXP adaption. We validate this hypothesis by
applying the typical training quantization flow shown in Fig. 2
to the adaption phase. That is, bwT

bits are used for weights
and gradients accumulation, and bwI

bits for the FF and FB
stage. Experimental results1 reveal the following observation.

Observation 1: If gradients as well as weights are represented
with bwT

bits, but matrix multiplications (for both FF and FB
propagation) use bwI

-bit weights in the adaption phase, the
accuracy loss compared to the FLP representation is negligible.
Reducing gradients and weights to bwI

bits, however, leads to
significant accuracy loss.

Observation 1 confirms that adaption requires bwT
bits for

weights and gradient accumulation, which leads to no reduction
in model size as well as the memory space and energy.

To investigate whether it is possible to compress weight
memory, we conducted experiments to study the distribution
of the gradient accumulation during adaptation. Specifically,
we apply the same dynamic range setting for the gradient and
weight quantizer. But we split the signed FXP gradient and

1Details on experimental setups and datasets are given in Sec. VI.
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Fig. 3. Weight increment data in the adaptation phase for one layer1. (a)
Distribution of the values of weight increments (LBG part). Shaded ones are
the effective weight increments. The Y-axis is plotted in log-scale. (b) The
sparsity of weight increments for different layers.

weight representations into two parts: the HBG part (containing
the most significant bwI

bits of the gradients/weights, i.e.,
[bwT

− 1, bwT
− bwI

]) and the LBG part (the next bwT
− bwI

bits, i.e., bits [bwT
− bwI

− 1, 0] and one sign bit). We are
particularly interested in the behavior of the LBG part of weights
and gradients since the HBG part (i.e., the inference bitwidth) is
essential for inference and we only need to reduce the memory
needed to store the LBG part. It is easy to see that the LBG
part of weights does not impact the computation immediately
because only the HBG part of weights are used for computation
(see Fig. 2). However, the LBG part of weights is still important
as it reflects the weight increments (i.e., accumulation of the
LBG part of gradients) across multiple iterations.

Fig. 3(a) depicts the distribution for the weight increments
at the end of the adaption phase for the Omniglot 20way-5shot
experiment1. Here bwI

= 4, bwT
= 8, and log scale is used

for y-axis. We refer to the weight increments whose quantized

absolute value are larger than 2bwT
−bwI

−1 as effective weight
increments (EWIs), and the rest as ineffective weight incre-
ments (IWIs) as they do not impact the HBG part of the final
weights. The EWIs are shaded in grey in Fig. 3. It is easy to
see that the number of EWIs is much smaller than that of IWIs.

We further quantitatively compare EWIs and IWIs. We define
sparsity of weight increments as the ratio of IWIs over all
weights. Fig. 3(b) illustrates the sparsity for each layer of the
network in the Omniglot 20way-5shot experiment1. We can see
that the sparsity of every layer is very large, which means that
only a small percentage of weight increments impact the final
updated weights. This is summarized in the observation below.

Observation 2: The LBG parts of most weight increments in
the adaptation phases are small and only a small percentage
are sufficiently large to impact the final weight updates.

2) Error related observations: Similar to training-from-
scratch, the distribution of errors in adaptation changes from
one epoch to another, and the final loss impacts the magnitude
of the FB errors of each layer. Furthermore, due to the chain
rule, errors are proportional to weights. Usually, as the model
gets closer to the optimal one, the loss decreases and the
magnitude of errors becomes smaller and smaller. However,
a unique feature of the adaption phase is that the weights do
not change significantly when adapting to a single new task.
We confirmed this hypothesis through detailed experimental
studies (omitted due to page limit). This hypothesis leads to
the following observation about the error distribution behavior.

Observation 3: In the adaptation phase, the relative ratio of
the error dynamic ranges among layers keeps stable because of
small weight changes.

B. AIQ framework

Based on the observations introduced above, we have devel-
oped a hardware-friendly quantization framework, AIQ, specif-
ically for the adaption phase. To reduce hardware cost, AIQ
employs the uniform quantizer, defined in Eq. (1), which are
applied to weights, activation, errors, and gradients.

Ẑ = QΘ(Z) = C(�Z/s� , qmin, qmax) ∗ s

=

⎧⎨
⎩

�Z/s� · s qmin ≤ Z ≤ qmax

qmin if Z < qmin;
qmax if Z > qmax;

(1)

Here Ẑ is the quantized counterpart of any data Z, QΘ(x)
is the quantizer based on quantization parameter setting Θ =
{s, qmin, qmax, b}, s is the quantization stepsize; qmin and
qmax are the minimum and maximum value represented by
the quantized representation, respectively; b is the number of
bits, and C is the clipping function. [qmin, qmax] is referred to
as dynamic range. Note that qmin and qmax, can be derived
once s and b are given. Specifically, for weights, errors and
gradients, qmin = −s · 2b−1, and qmax = s · (2b−1 − 1). For
activation, qmin = 0, and qmax = s · (2b − 1).

Fig. 4 depicts the overall flow of AIQ. After the meta-training
phase, the model prior is determined and the best quantization
parameter settings (Θ’s, indicated by the purple boxes) for
weights, activation, gradients are chosen and fixed during both
adaption and inference phase. Specifically, all the weights
are converted from FLP to FXP offline using the quantizer
with setting ΘbwI

and stored in on-chip memory. Similar to

generally adopted practices, we apply the MSE method to
choose the optimal dynamic range for weights. For activation,
we collect statistics on the training datasets and decide the
dynamic range based on the statistics. It can seen that except the
two dashed red boxes, the rest of the flow is basically the same
as that shown in Fig. 2. Thus we focus on the new components.

The two additions in Fig. 4 are for handling gradi-
ents/weights and errors. Fig. 4(a) illustrates the gradient/weight
management flow including the proposed gradient gate and
weight buffer unit. According to Observation 1, AIQ splits the
representation of gradients and weights into two parts: the HBG
part and the LBG part. A weight memory of bwI

-bit wide
is employed to store the low-precision weights. However, as
accumulating weights in high precision (i.e., with bwT

bits)
is essential for achieving high adaption accuracy. A gated

Fig. 4. The computation flow of AIQ for a convolution/FC layer. (a) The
dynamic gradient management flow including the proposed gradient gate and
weight buffer. (b) The dynamic error scaling flow including the error scaler.
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Fig. 5. The proposed dynamic gradient management method.

weight buffering (GWB) technique is proposed based on Ob-
servation 2, which identifies and maintains the LBG part of a
small number of weight increments at run-time. Furthermore,
since the same dynamic range is shared by the weight and
gradient quantizer in AIQ, the bwI

-bit weights can be obtained
by rounding the bwT

-bit weights directly without needing an
additional quantizer as in Fig. 2. Fig. 4(b) shows the dynamic
error scaler which adjusts the stepsize for the error quantizer
to capture the decreasing trend of error magnitude based on
Observation 3. Next, we present the details on these techniques.

IV. DETAILED APPROACHES IN AIQ

In this section, we describe the design details of gated weight
buffering and error scaling units.

A. Gated weight buffering

The goal of GWB is to identify and preserve the most impor-
tant high-precision gradients at each update and accumulate the
LBG part into the weight increments. GWB is built on the idea
of split representation for gradients and weights. The HBG part
of weights are denoted as Ŵ and stored in the weight memory,
while the LBG part of a subset of the weights are stored in a
dedicated weight buffer.

Fig. 5 depicts the detailed gradient management and weight
update process with the shaded gradient gating and weight
buffering units. The method works as follow. After a new bwT

-
bit gradient is computed, it is added with the corresponding
entry of WLBG in the weight buffer. The result (still referred
to as gradient for simplicity) is then splitted into two parts:
the HBG and the LBG part similar to weights. The HBG part
including the HBG part of the newly computed gradient and the
carry-out of the addition with the weight buffer entries is added
with the corresponding entry in the weight memory (storing the
low-precision weights). The result is the updated weight and
will be stored back to the weight memory. The LBG part, i.e.,
the updated weight increments, is gated by a pre-determined
threshold and the result is stored back into the weight buffer.

The computation flow of GWB, which is applied in
each weight update, is summarized in Algorithm 1 where
Round(Z, i) is the rounding function that rounds Z to i bits.

Regarding the gradient gating threshold, the threshold value
is determined offline and remains unchanged. Our experimental
results show that the magnitudes of the gradients for each layer
can be quite different. Thus, we use layer-specific thresholds

from the range [0, 2bwT
−bwI

−1]. To ensure minimal loss in
the final accuracy and reduce memory cost, we have found
that having threshold values that preserve around 3% of the
gradients is a good rule of thumb. We will demonstrates the
effect of threshold choices in the experimental part.

Algorithm 1: Gated weight buffering at iteration t

Input: From previous iteration t− 1, bwI
-bit weights

W t−1 and (bwT
-bwI

+1)-bit weight buffer
entries WBt−1; bwT

-bit gradients Gt and
threshold θ

Output: W t, WBt

1 Gn = Gt + WBt−1; // Update gradients;
2 Ghb = Round(Gn, bwI

); // Split gradients;
3 Glb = Gn - Ghb;
4 for g in Glb do
5 if abs(g) > θ then
6 WBt.add(g); // Store g to weight buffer;
7 end
8 end
9 W t = W t−1 - Ghb;

10 return W t, WBt

Initial values in the weight buffer can greatly impact the
accuracy since there is only a limited number of weight updates
in the adaption phase. We introduce a 3-step initialization
procedure for the weight buffer: (1) use the uniform quantizer
to quantize the FLP initial weights (obtained from offline meta-
training) to bwT

bits; (2) split the bwT
-bit weights to the HBG

part and LBG part; (3) apply threshold-based gating to the LBG
part of the weights to sparsify them. The resulting non-zero
entries are stored as the initial values of the weight buffer.

B. Dynamic error scaling

AIQ applys a dynamic scaler (Fig. 6(b)) to adjust the stepsize
of the FB error quantizer for each layer in order to reduce
quantization errors. As discussed in Sec. III-A1, the errors
dynamic range can change significantly from one iteration to
another, thus a fixed stepsize is not acceptable. Usually, to
minimize quantization errors, the dynamic range of FB errors
is measured for each batch and the most appropriate stepsize
is determined accordingly. This method reduces quantization
errors but incurs high hardware cost. Observation 3 states that
the relative ratio of the error dynamic ranges among layers
keeps stable and is highly related to the loss at the output layer.
Based on this, we propose a lightweight and effective method
to dynamically adjust the error stepsize for each layer.

The error scaler works as follows. An initial stepsize for the
error quantizer at each layer is decided offline by collecting
statistics on training datasets, which is optimal for the first
update. For subsequent updates during adaption, the scaler
compares the loss with a pre-determined threshold value and
reduces the stepsize for each layer by half if the loss is below
the pre-determined threshold. This operation can be viewed as
guiding the stepsize decay as the adaptation progresses, and the
threshold value settings will be discussed in Sec.VI. Adjusting
the stepsize to half can be simply implemented by a shift
operation in hardware and experiment results have shown that
the final accuracy can be improved with the setting.

V. HARDWARE IMPLEMENTATION FOR AIQ

In this section, we present a hardware design to support
the GWB strategy based on a typical FXP CMOS accelerator
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Fig. 6. Overview of an architecture for implementing AIQ. The architecture
is based on that in [3]. The green boxes are the new units (GWB components
including gating unit and weight buffer). Dotted line indicates the original flow
without the new units.

architecture for training. Specifically, we chose the state-of-art
SIMD-like learning accelerator proposed in [3] as the baseline.
We focus on the support for the GWB technique. The hardware
implementation of the dynamic error scaling unit is quite
straightforward and we omit its discuss due to page limit.

The AIQ architecture is shown in Fig. 6. The components
from the base architecture in [3] are shown in black/blue boxes
while the newly added units are highlighted in green. The
base architecture supports momentum-based optimization, and
contains input memory, weight memory, weight momentum
memory, 16X16 MAC array, a rounding unit, a SIMD pro-
cessor, and a controller. The new units include the gradient
gating unit and weight buffer. Note that the base architecture
is built with FXP 16-bit precision. Our AIQ design reduces
the bitwidths of the original 16-bit memory to 4 bits and
the precision of the MAC from 16x16-bit to 4x4-bit. Minor
modifications are also made to the rounding unit.

We briefly discuss the dataflow of the weight gradient com-
putation (WG) phase here and omit the other processes due to
page limit. First, the gradients at layer l, Gl are computed using
activation X l−1 and errors El. The accelerator fetches X l−1

from the input memory, and computes El from the previous
layer; then feeds them into the MAC array. The output of the
MAC array, Gl, are fed to the rounding unit to get the bwT

-bit
gradient which is then sent to the newly added gating unit.

The detailed design of GWB is shown in Fig. 7, which is
the major additional hardware in implementing AIQ. We use
a compressed-sparse format for the weight buffer in order to
keep the memory usage at minimal. An indexing scheme is
needed to enable fast access to support SIMD operations. Here
we adopt the bitmap format to encode the sparse data. The
weight buffer implemented in SRAMs includes an extra index
bank to store the bitmap information. The memory controller
controls the data store and fetch based on the index information.

Fig. 7. Details of the GWB components.

The width of the index bank is set to 16 bits and the width
of the buffer is set to (bwT

− bwI
+ 1) ∗ 16 bits (for 16-way

parallelism). The size of the weight buffer is a tradeoff between
the hardware cost and the accuracy related to the gradient-gate
threshold. We will evaluate the buffer size choices in Sec. VI.
The unit also contains a 16-way bwT

-bit adder, a rounding unit,
and a comparator for the gating function. As shown in Fig. 7,
the GWB unit operates in three steps. (1) Gradient updating
by the 16-way bwT

-bit adders. (2) Rounding and splitting by
the rounding unit. (3) Gated buffering by a (bwT

− bwI
)-bit

comparator. As the data fetch and store of the weight buffer are
not on the critical path of gradient computation, the latency of
the additional modules mainly comes from the gradient update
step, which is negligible.

VI. EVALUATION

A. Experimental setup

To validate the accuracy of AIQ, we implemented it in
the PyTorch framework. The architecture of the task-learner
follows the general practice of optimization-based few-shot
learning, which stacks four blocks, each consisting of a 33
convolution, max-pooling, batch-normalization and ReLU acti-
vation. The model prior was trained using MAML [2] with the
double-precision FLP representation on GPU. Two widely used
few-shot learning datasets, Omniglot [10] and MiniImageNet,
were considered in the experiments. The experimental protocol
involved fast learning of N-way classification with 1 or 5 shots.
Inference accuracy after adaption on new tasks are measured.

To study hardware cost, we developed RTL-level Verilog
models of the proposed GWB components and synthesized
them with Cadence Encounter for a CMOS 45nm library.
The proposed components are based on a 16-way design to
support the SIMD operations and enable more parallelism for
the accelerator. The energy consumption consumed by on-chip
memory were calculated using CACTI [11].

B. Accuracy study

Here, we set bx and be (in Fig. 4) to 4 bits for all layers in
the CNN as default unless otherwise specified. AIQ also needs
to decide offline the bwT

value for each dataset as shown in
Fig. 4. Because MiniImageNet is a harder task than Omniglot,
experiments show that bwT

for MiniImagenet should be no less
than 16 bits while 8-bit bwT

is enough for Omniglot. Table I
summarizes accuracy results collected for both Omniglot and
MiniImageNet. The FLP column shows the accuracy results
with every parameter represented with FLP; FXP 8 (Omniglot)
/ FXP 16 (MiniImageNet) and FXP 4 column are the cases
that weights and gradients are represented with 8/16-bit and
4-bit, respectively; The last (AIQ) column shows the accuracy
results obtained by AIQ using 4-bit weights. Two thresholds
(0.13, 0.07) are set for the dynamic error scaler as the decay
points. The data clearly show that the accuracy achieved by AIQ
is similar to the FXP 8/16-bit one and notably better than FXP
4, especially for the more challenging MiniImageNet dataset.

The choice of the threshold value for gating gradients
impacts the accuracy. Generally, a higher threshold leads to
more gradients being dropped and less memory needed, but
lower accuracy. Fig. 8 shows accuracy vs. the threshold value

406 Design, Automation and Test in Europe Conference



TABLE I
ACCURACY DATA FOR OMNIGLOT AND MINIIMAGENET

Omniglot FLP FXP 8 FXP 4 AIQ
5way-1shot 0.986 0.972 0.868 0.97

5way-5shot 0.9872 0.992 0.9872 0.992

20way-5shot 0.976 0.955 0.897 0.955

MiniImageNet FLP FXP 16 FXP 4 AIQ
5way-1shot 0.434 0.439 0.297 0.442

5way-5shot 0.639 0.602 0.369 0.595

  
Threshold

Fig. 8. Analysis of threshold impacts on accuracy.

for the MiniImageNet 5way-5shot case, where 13-bit weight
increments are buffered. The threshold was swept from 0.001
to 1 (x2048). As seen from the plot, a threshold value of 0.05
(x2048) with 3% high-precision weight increments being kept,
is a good choice for trading off accuracy with memory usage.

C. Memory and hardware overhead study

The goal of AIQ is to reduce the weight memory by using
inference bitwidths in adaption. We examine quantitatively the
memory saving. Fig. 9(a) depicts the weight-related memory
needs for Omniglot and MiniImageNet. In the baseline, weights
are represented in bwT

-bit FXP (8/16-bit for the two datasets
as mentioned in the accuracy study), while in AIQ the total
weight memory includes the 4-bit weight memory and the
(bwT

-bwI
+1)-bit weight buffers (as well as the corresponding

index bank). The number of entries in the buffer is decided by
the threshold with 3% of the total weight count. As can be
seen, 41% and 70% memory space can be saved by AIQ for
Omniglot and MiniImageNet, respectively. By using CACTI,
we estimated that similar energy savings are also achieved.

We next study the reduction of total on-chip memory with
AIQ. The total memory includes input/weight/weight momen-
tum memories. Input memory stores all intermediate activation
data in a mini-batch. As discussed in [3], a grouping method
divides a mini-batch into groups to reduce the input memory
needs. Here, we set the group size for Omniglot and MiniIma-
geNet to 10 and 5, respectively. For both the baseline and AIQ,
the size of input memory is set the same with 4-bit activation.
The weight momentum memory has the same size as the weight
memory. As shown in Fig. 9, AIQ can achieve 33% and 47%
saving in terms of total memory for the two datasets.

We further investigate the area and power overhead of AIQ
as discussed in Sec. VI-A. By using Cadence Encounter, we
obtained gate count and power consumption of the GWB
components as well as two MAC arrays with 4-bit and 8-bit
precision. We then estimate the 16x16 MAC array gate count
and power based on the coreresponding single MAC values.
Note that the actual power of the 16x16 MAC array should be
higher than the value reported here. Table II summarizes theses
data, which show that the gate count of GWB components is

Fig. 9. (a) Memory usage for weights. (b) Total memory usage.

only 3.3% of the 16x16 4-bit MAC array and the power of
GWB is 2.9% of the 4-bit MAC array. According to the data
reported in [3], the MAC array only takes about 11% of the total
chip area. Hence the overhead added by the GWB components
is negligible with respect to the total chip area.

TABLE II
RESOURCE USAGE OF MAC ARRAYS AND GWB COMPONENTS

MAC array (8-bit) MAC array (4-bit) GWB
Gate count (NAND2) 71538 25984 845

Power (mW) 17.72 6.52 0.19

VII. CONCLUSIONS

This paper introduces a quantization framework, AIQ, to sup-
port efficient adaption with low-bitwidth FXP representations.
AIQ exploits unique data characteristics in the NN adaption
phase and saves 41% and 70% weight memory for two widely
used datasets with minimal hardware overhead and accuracy
drop. The framework is efficient in performing on-chip adaption
and inference at the edge for meta learning. The framework also
has the potential to support on-site continual and incremental
learning capabilities, which is left for future study.
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