
Correlated Multi-objective Multi-fidelity Optimization for HLS

Directives Design

Qi Sun1, Tinghuan Chen1, Siting Liu1, Jin Miao2, Jianli Chen3, Hao Yu4, Bei Yu1

1The Chinese University of Hong Kong 2Synopsys 3Fudan University 4SusTech

{qsun,byu}@cse.cuhk.edu.hk

Abstract—High-level synthesis (HLS) tools have gained great attention
in recent years because it emancipates engineers from the complicated
and heavy hardware description language writing, by using high-level
languages and HLS directives. However, previous works seem powerless, due
to the time-consuming design processes, the contradictions among design
objectives, and the accuracy difference between the three stages (fidelities).

To find good HLS directives, in this paper, a novel correlated multi-
objective non-linear optimization algorithm is proposed to explore the
Pareto solutions while making full use of data from different fidelities. A
non-linear Gaussian process is proposed to model relationships among the
analysis reports from different fidelities for the same objective. For the first
time, correlated multivariate Gaussian process models are introduced into
this domain to characterize the complex relationships of multiple objectives
in each design fidelity. A tree-based method is proposed to erase invalid
solutions and obviously non-optimal solutions. Experimental results show
that our non-linear and pioneering correlated models can approximate the
Pareto-frontier of the directive design space in a shorter time with much
better performance and good stability, compared with the state-of-the-art.

I. INTRODUCTION

High-level synthesis (HLS) tools have made it possible for users who

are not experts in writing hardware description languages (HDLs) to

implement their FPGA designs, by translating high-level program-

ming languages (e.g., C/C++) to low-level HDLs (e.g., Verilog HDL

and VHDL). Given different HLS directive configurations, the final

hardware architectures generated from the same high-level language

description may vary a lot from each other in terms of power, delay,

and resource consumptions. Therefore, with the help of HLS directives,

we can optimize the designs without changing the high-level program

source codes, which greatly reduces the time and labor costs of

rapid prototyping implementations. Fig. 1 shows an example of HLS

directives. With these advantages, HLS tools have been widely used in

many applications [1].

However, the complexities of HLS directives still hinder its further

spreads. Composed of three stages, i.e., high-level synthesis (HLS),

logic synthesis (Synth), and physical implementation (Impl), the whole

design flow is time-consuming. Later stages can report more accurate

results, at the cost of longer running times. The reported results of

these three stages are usually in non-linear relationships which make it

difficult to map between them. That is why we cannot guarantee whether

a design is valid in the Impl stage, even though its HLS performance

is good. It is also difficult to find a good balance among various design

objectives (Pareto configurations), which are mutually contradicted. The

whole design flow is shown in Fig. 2. This kind of multi-stage design

is also called multi-fidelity design. Users may prefer only conducting

the first stage to promote fast developments, while sacrificing accuracy

and bringing high risks of losing optimal solutions.

To tackle these challenges, great efforts have been made. Some ana-

lytical methods were proposed to estimate the performance with no need

of running the real design flow. All possible directive configurations are

analyzed to find good directives for general applications by using an

analytic model or a simulator [2], [3]. Some formulations were proposed

to prune some directive configurations for deep neural network appli-

cations [4]. Some proposed well-designed heuristics methods, e.g., [5].

comp(int in[10], int out[10]): 
#PRAGMA HLS INLINE={ON, OFF}
for(i = 0; i < 10; i ++) { 

in[i] = out[i];
#PRAGMA HLS UNROLL factor={2,5,10}

}

Fig. 1 HLS pseudo-codes and directives. The directives are in red. Each

directive has some factors, e.g., 2, 5, and 10.
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Fig. 2 The FPGA HLS design flow. C/C++ source code and HLS

directives are fed into the design tool. There are three analysis stages

and the later stages obtain more accurate reports but consume longer

running times.

However, these works highly depend on the accuracy of the analytical

models and lack generality. The highly non-linear and complicated

mechanisms in real applications make these methods unable to handle

complicated or new directives.

Some model-based works use machine learning algorithms to fit

the system performance models. Compared to the analytical methods,

model-based methods are more flexible and general. In these works, the

authors collect lots of data to train machine learning models. [6]–[10]

proposed several linear and non-linear regression models. Some typical

models include Linear Regression, Artificial Neural Network, and

Gradient Tree Boosting. However, in these algorithms, huge amounts of

real design reports are necessary to guarantee the model accuracy. The

characteristics of multi-fidelity are not utilized. To reduce the simulation

costs and make full use of the existing reports, recently, Bayesian

optimization (BO) approaches based on Gaussian process (GP) have

been proposed. The multiple objectives are modeled as independent

GP models [11] and then solved with Bayesian inference. This work is

further extended by considering linear multi-fidelity designs [12].

However, it is regrettable that some important characteristics of the

directive design are ignored. Firstly, the multiple design objectives are

in complex correlated relationships. This brings great challenges to the

previous methods, especially the heuristics methods. The correlation has

been proven to be an important factor in practical scenarios [13] and it

is indispensable to take it into consideration. Secondly, the performance

values of the three design stages and the directives are in highly

non-linear relationships. No directives can control the performance
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explicitly, e.g., the clock period or power. Some evaded these by only

considering the lowest fidelity, though they missed some data, e.g., the

clock period after Synth and Impl. Unfortunately, to the best of our

knowledge, most of the previous methods did not focus on these two

characteristics, no matter the analytical methods, or the model-based

methods.

In this paper, to help solve these problems, we proposed a novel

correlated multi-objective multi-fidelity optimization method. Our con-

tributions are summarized as follow:

• Non-linear multi-fidelity models are built to measure the non-linear

relationship between the three stages, and balance data utilization,

model accuracy, and model training costs.

• Correlated multi-objective GP models are proposed to tackle

with both of the correlated relationships among various design

objectives and the implicit and complicated mapping relationship

between directives and objective values, to find Pareto configura-

tions accurately.

• An effective tree-based method is proposed to prune the configura-

tion design space, by removing incompatible and invalid designs.

• Three design objectives, power, performance, and area (PPA) are

considered in this paper, thus making the task more practical and

very challenging. The proposed techniques are integrated by con-

structing a powerful GP-based Bayesian optimization algorithm.

The experimental results show the outstanding performance of our

algorithm.

The rest of our paper is organized as follows. Section II provides

preliminaries including models and definitions. Section III presents the

tree-based pruning method and the whole optimization flow. Section IV

introduces our non-linear multi-fidelity model and Pareto-driven corre-

lated multi-objective model. Section V conducts several experiments to

validate our methods, followed by conclusions in Section VI.

II. PRELIMINARIES

An HLS directive configuration can be represented as a vector x ∈ RD ,

in design space X. The goal is to find one configuration from X that

optimizes objective function f which can be deterministic or noisy,

depending on the design specifications. In multi-objective optimization

problem, for example, there are M objectives, fm : X → R, for m ∈
{1, . . . ,M}. Denote the objective value space as Y, and each value

point in it as y = [f1(x), f2(x), . . . , fM (x)]�.

A. Gaussian Process Regression
Gaussian process (GP) regression is a flexible method to model the

objective function, which is specified by the mean function m(x) and

covariance function k(x,x′). m(x) provides the prior estimations of

the objective values for input x, and typically a constant mean function

m(x) = μ0 is widely used. A common form of k(x,x′) is a squared

exponential function of x [14].

Define a single-objective training set {X,Y }, where X = {x1, . . . ,
xn} is a set of directive configurations and Y = {y1, . . . , yn} is the

corresponding single-objective value set. Define the objective function

as f(x) ∼ N(μ(x),Σ(x)), which is assumed to be influenced by the

independent and identical zero-mean Gaussian noise εe ∼ N(0, σ2
e).

Therefore, we can derive yi = f(xi) + εe, with i = 1, . . . , n. For

a newly sampled configuration x∗ and its corresponding objective

function f∗, the joint distribution between f∗ and the data set Y
sampled in previous steps is defined as follows:

p(Y , f∗) = N(

[
μ0

μ0

]
,

[
K(X) + σ2

eI k(X,x∗)

k�(X,x∗) k(x∗,x∗)

]
), (1)

where k(X,x∗) is a vector of covariance between x∗ and all of

the configurations in X , and K(X) is the intra-covariance matrix

among configurations in X . If a new point x∗ is sampled from the

design space, we will update f(x) accordingly. Before the posterior is

calculated, the hyper-parameter σe need to be determined by maximum

likelihood estimation.

B. Bayesian Optimization
Bayesian optimization is a sequential strategy for optimization of black-

box function which does not assume any explicit forms, with the help of

GP models [14]. The whole design space is already defined, i.e., all of

the points are already known except their objective values. An initial set

of points is sampled from the design space to initialize the GP model.

Then it iteratively samples a new point from the design space and

updates function f in each optimization step. An acquisition function,

which balances the exploration and exploitation of data, is defined to

determine which point will be sampled in the next optimization step.

Expected improvement (EI) is a widely used acquisition function, which

can be defined as Equation (2).

EI(x) = σ(x)(λΦ(λ) + φ(λ)),

λ =
τ − ξ − μ(x)

σ(x)
,

(2)

where τ is the current best objective value, and ξ is a jitter to improve

the ability of exploration, σ(x) is the uncertainty of GP model, μ(x)
is the mean function, Φ(·) and φ(·) are the Cumulative Distribution

Function and Probability Density Function, respectively.

C. Multi-objective Optimization and Pareto Optimality
The multiple objectives to be optimized would be conflicting with each

other. One straightforward strategy is to define the objective value as a

summation of all objectives with weights. More practically, to find one

solution that strikes a balance among the multiple objectives, we want

to identify the Pareto-optimal set.

Definition 1 (Pareto Optimality): In an M -dimension minimization

problem, an objective vector f(x) is said to dominate f(x′) if

∀i ∈ [1,M ], fi(x) ≤ fi(x
′) and

∃j ∈ [1,M ], fj(x) < fj(x
′).

(3)

A point x is Pareto-optimal if there is no other x′ in design space

satisfying that f(x′) dominates f(x). In the whole design space, the set

of points that are not dominated by others is called the Pareto-optimal

set, denoted as P(Y) ∈ Y. For Pareto-optimal points, there does not

exist an alternative choice that can improve every objective without

sacrificing others [15].

D. Multi-fidelity Optimization
Fidelity and Multi-fidelity Model are defined as follows:

Definition 2 (Fidelity): Fidelity refers to the degree to which a model

reproduces the state of a real-world project or application. It is therefore

a measure of the realism of the model. Low fidelity is a low-precision

model and high fidelity has higher precision.

Definition 3 (Multi-fidelity Model): For a multi-fidelity problem,

each fidelity i has a regression model fi(x). The multi-fidelity model

can be defined as:

fi+1(x) = z(fi(x),x), (4)

where z(·) is a machine learning model or function, fi is the model of

the lower fidelity and fi+1 is the higher one.

The higher fidelities have higher accuracies at the cost of longer

running times, compared to the lower fidelities. If the results at low

fidelities are good enough, we will not run that test up to the high

fidelities, to save time. Therefore, we need to measure the quality of

the reports at each fidelity to determine whether we need to run the

later design stages. In the rest of this paper, the three fidelities in FPGA

design shown in Fig. 2 are shorted as hls, syn, and impl.
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for L1 in range(0,N1):
for L2 in range(0,N2):

for L3 in range(0,N3):
op(A[ L1 * 10 + L2 ])

op(B[ L1 * 10 + L3 ])
op(A[ L1 * 10 + L3 ])

(a)

A B

L1

L2 L3

A

L1

L2 L3

B

L1

L3

(b)

Fig. 3 An example of tree-based pruning method. (a) Code with three

loops and two arrays. (b) Trees of array A and B, and the merged tree.

III. HLS DIRECTIVE DESIGN OPTIMIZATION

In this section, the tree-based pruning method is described in detail. We

propose a whole design optimization flow, together with the directive

encoding method and objective selection.

A. Tree-based Design Space Pruning

Some HLS directives are widely used, including pipelining (with or

without initialization interval specification), loop unrolling, and array

partitioning, etc. In general, the C/C++ source codes are composed

of several for-loops and some arrays. Traditionally, the design space

is simply generated by permutations and combinations of directives.

However, some directives are conflicting and some are obviously non-

optimal, especially for loop unrolling and array partitioning. Infeasible

configurations may mislead our model and increase running times. For

example, for an array used in a for-loop, if the array partitioning factor

is less than the loop unrolling factor, this loop may not be unrolled

successfully because the visits to the array are limited by the partitioning

factor. If the array partitioning factor is greater, more memory resources

are consumed without increasing the system parallelism. Under this

circumstance, the compatible unrolling and partitioning are the best. A

tree-based design space pruning method is proposed to help solve this

problem, as shown in Algorithm 1.

Algorithm 1 The Pseudo-code of Tree-based Pruning Method

1: Inputs: High-level programming language source code, directive

description files;

2: Outputs: Pruned design space X, initially X← ∅;
3: Construct a tree for each array, with itself as the root node and

related loops as children nodes;

4: Merge trees with common nodes, denote the set of trees as T;

5: for all tree ti ∈ T do
6: for root (array) node aj in ti do
7: for partitioning factor fk of aj do
8: Assign fk to aj ;

9: Assign a unrolling factor to each loop node in ti;
10: Backtrack from leaf nodes, assign partitioning factors to

array nodes in ti, except aj ;

11: end for
12: Record feasible configurations of aj as set Cj ; X← X∪Cj ;

13: end for
14: end for
15: Traverse X and remove repeated configurations;

16: return Pruned design space X.

Fig. 3 shows an example. If we partition A with type CYCLIC, then

we will assign unrolling factors for L2 and L3. But we will not unroll

L1, because L1 is incompatible with CYCLIC partitioning of A and

unrolling of L2 and L3. After that we will backtrack from L1 to assign

CYCLIC partitioning factors to B because A and B are in the same

loop L3 and their partitioning types should be the same. In the same

manner, with the above tree-based method, a large amount of invalid

and incompatible directive configurations can be pruned.

Low Model Middle Model High Model

Low EI Middle EI High EI

x1 x2 x3

Fig. 4 A toy example to explain the 3 fidelities and EI functions. Lower

fidelities have wider error ranges (light red fillers). The lowest fidelity

model obtains the highest EI value at x1. Therefore, in this optimization

step, the lowest fidelity is selected and x1 is added into CS.

B. Directive Encoding
Each directive configuration should be encoded to be an input feature

vector of the mathematical models. The TRUE/FALSE factors are

represented as 0 or 1 directly. The directives which have several factors

are represented as normalized features, e.g., three factors {2, 5, 10}
are encoded as {0, 0.375, 1}. This normalization method highlights the

differences between these two factors while computing the distance

between these two feature vectors and therefore it is better than the

one-hot encoding. The final feature vector for a code segment is the

concatenations and combinations of features of all the directives in it.

C. Objective Selection
Power, performance, area (PPA) are three popular metrics. To measure

the system performance, we choose to use task time length (Delay),

i.e., the product of latency and clock period. Latency reflects how many

clock cycles are needed to finish one task. The clock period is the time

length of each cycle, which reflects the congestion information of the

designs and is a key design indicator for some applications. We use

the utilization of look-up table (LUT) as the area metric. LUT can be

used to implement the control logic and simple computations. For tasks

requiring high parallelism designs, the LUT utilization is usually the

key metric. Power as a metric is directly used in this paper. Compared

to works that consider only one or two metrics or linear combinations

of these metrics, our work is more practical and challenging.

D. Overall Optimization Flow
Bayesian optimization method is adopted as the algorithm skeleton to

sample the Pareto-optimal directive configurations. Sometimes we do

not want to run the whole design flow to get reports from all fidelities

because it is time-consuming. Multi-fidelity models are defined to make

full use of the data from different fidelities. The low-fidelity reports can

be systematically combined with the input features to predict the high-

fidelity outputs more efficiently. For each fidelity, to find the Pareto

point, an expected improvement (EI) function of the correlated multi-

objective model is defined. Concrete forms of the GP models and EI

functions are defined in Section IV.

The overall optimization flow is shown in Algorithm 2. Firstly, we

define and prune the design space according to tree-based method as

shown in Algorithm 1. Secondly, we randomly sample some points

from the design space to initialize all the models. The points run in the

higher fidelities are subsets of the lower fidelities, i.e., Ximpl ⊆ Xsyn ⊆
Xhls ⊆ X. These points are then fed into the FPGA design tool to get

real reports. For each fidelity, we initialize a multivariate correlated

multi-objective GP model. The candidate Pareto set is CS. In each

optimization time step, for each fidelity i, we will select a configuration

x̂i which maximizes the expected improvement EIi. x̂i is regarded

as the candidate Pareto point in this fidelity. Then a node-fidelity pair

(x∗, h) is selected from these three x̂i points which achieves the highest
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Algorithm 2 The Optimization Flow Based on Bayesian Optimiza-

tion Method

1: Inputs: High-level programming language source code, and opti-

mization steps Niter;

2: Outputs: Pareto set CS, initially CS ← ∅;
3: Run tree-based pruning method to get pruned design space X;

4: Randomly sample initial sets Ximpl ⊆ Xsyn ⊆ Xhls ⊆ X;

5: Initialize a GP model GPi and an EI function EIi for each fidelity;

6: for t←1 to Niter do
7: for all fidelity i ∈ {hls, syn, impl} do
8: Update GPi and EIi according to Xi;

9: x̂i ← argmaxx∈XEIi(x);
10: end for
11: (x∗, h)← argmax(x̂i,i)

EIi(x), for i ∈ {hls, syn, impl};
12: Run FPGA tool with x∗ up to fidelity h, to get yh;

13: Xi ← Xi ∪ x∗, with i up to h;

14: CS ← CS ∪ {x∗,yh}, X← X \ x∗;

15: end for
16: return Pareto set CS.

(a) (b)

Fig. 5 Normalized delay values in three fidelities. Y-axis is the config-

uration index. (a) GEMM. (b) SPMV ELLPACK.

expected improvements. Here h denotes the fidelity of x∗. x∗ is our

final choice of Pareto point in current optimization step and will be

added into CS. A one-dimension toy example on the GP model and

EI function is shown in Fig. 4. We run the FPGA design tool up to

fidelity h to get real reports and then update all the corresponding GP

models and EI functions. The final output set is CS.

IV. PROPOSED MODELS

In this section, non-linear multi-fidelity models and correlated multi-

objective models which are used in Algorithm 2 are described in detail.

A. Non-linear Multi-Fidelity Model
Traditionally, in HLS directive designs, the relationship among the

multiple fidelities is assumed to be linear, e.g., [12]. However, it is not

suitable for situations when these three FPGA design stages exhibit

strong non-linear correlations. Therefore, a non-linear multi-fidelity

model is proposed in this paper to further exploit the corresponding

non-linear correlations between the low- and high-fidelity models. The

non-linear model can be formulated as Equation (5).

fi+1(x) = z(fi(x),x) + fe(x), ∀i ∈ {1, . . . , L− 1}, (5)

where z(·) is the non-linear function and is modeled by a Gaussian

process model in this paper, and fe(x) is the error term which is also

defined as Gaussian process model. The outputs of the low fidelity are

concatenated with the directive encoding features as the input features

to the high fidelity GP model.

Delay values of two benchmarks are shown in Fig. 5 as examples to

illustrate the complex non-linear relationships among the three fidelities.

In GEMM, delay values of one configuration in three fidelities are

highly overlapping. For SPMV ELLPACK, delay values in the three

fidelities show high divergences. The high divergences of various

applications make it hard to regress the relationships with traditional

linear models. Obviously, using non-linear models is a wise and general

choice to handle various applications.

B. Correlated Multi-Objective Model

To learn and measure the Pareto set for the multi-objective optimization

problem, we introduce the expected improvement of Pareto hyper-

volume (EIPV) [16] and define it as the acquisition function, i.e., the

EI function in Algorithm 2. Firstly, we will clarify the concept of

the improvement of Pareto hyper-volume. Secondly, we will define the

probability model and compute the value of expected improvement.

Assume that in current optimization step t + 1, we already have a

Pareto-optimal HLS configuration set D = {xs,ys}ts=1 and its value

set P(Y) = {ys}ts=1. A virtual configuration point vref ∈ RM is

defined as the reference point, which is dominated by P(Y), i.e., ys �
vref for ∀ys ∈ P(Y). The values of vref are the extremely large values

of the multiple design objectives. The Pareto hyper-volume with respect

to vref is defined as Equation (6).

PVvref (P(Y)) =

∫
RM

I[y � vref ]

⎡
⎣1− ∏

u∈P(Y)

I[u � y]

⎤
⎦ dy, (6)

where I(·) is the indicator function, which outputs 1 if its argument

is true and 0 otherwise. This equation measures the volume of the

value space composed of configurations which dominate vref but are

dominated by at least one configuration in P(Y). The greater the volume

is, the better the Pareto set is.

Greedily, in each operation step, we want to sample a configuration

which can lead to the highest improvement of the Pareto hyper-

volume. We will traverse the un-sampled configuration space and

estimate the expected improvement for each configuration. The expected

improvement is defined as Equation (7).

EIPV(xt+1|D) =

Ep(y(xt+1)|D)

[
PVvref (P(Y ∪ y(xt+1)))− PVvref (P(Y))

]
.

(7)

We can decompose the whole value space into grid cells to simplify

the integration of Equation (6), as shown in Fig. 6(a). The decomposi-

tion is according to the locations of Pareto-optimal configurations. The

corresponding objective values at these two axes are b1i and b2i . We

denote the non-dominated cells as Cnd. Then Equation (7) is simplified

as Equation (8), where ΔC(x) is the volume of cell C ∈ Cnd.

EIPV(xt+1|D) =
∑

C∈Cnd

ΔC(x) =
∑

C∈Cnd

∫
C

PVvc(y)p(y|D)dy.

(8)

In Fig. 6(b), the green node maximizes the expected improvement and

therefore it is the candidate Pareto point.

Now we have clarified the concept of the improvement of Pareto

hyper-volume. The next step is to define the probability model p(y|D)
and to further deduce the concrete form of the expected improvements.

In traditional works [11], [12], the multiple design objectives are

defined as independent Gaussian process models, though in real ap-

plications, they are mostly correlated. For example, to reduce system

latency, we may want to increase the system parallelism which means

we will consume much more on-board resources, especially LUTs.

Therefore, latency and resource consumption are negatively correlated.

But power and resource consumption are positively correlated, because

more resource consumptions may lead to higher power costs. p(y|D)
is modeled as a correlated multi-objective Gaussian model [17] in this

paper, as shown in Equation (9).

p(y|D) = N(y1, . . . , yM ;μ,Σ), (9)
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b11 b12 b13 b14 Delay(x)

Power(x)

b24
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b21
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b11 b12 b13 b14 Delay(x)

Power(x)

b24

b23

b22

b21

vref
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Fig. 6 An example of minimizing power and delay. The value space is

divided into cells according to the locations of the current Pareto set.

(a) Red points are Pareto points and blue points are dominated. Blank

cells are dominated while light red cells are not. Volume of the blank

cells is the current Pareto hyper-volume. (b) Green point is predicted

to be the Pareto-optimal configuration and the light green cell is the

corresponding EIPV.

Power

Delay

LUT

Input Features

PEIPVhls PEIPVsyn PEIPVimpl

HLS

Power

Delay

LUT

Power

Delay

LUT

Syn Impl

Fig. 7 The combined models, with three fidelities and three objectives.

The orange lines represent the non-linear relationships. The blue lines

represent the inputs. Each fidelity has a function PEIPV.

where μ is the mean vector with length M and each element μi

in it is the mean value of objective f i. The covariance matrix Σ is

non-diagonal. Specifically, the covariance value definition is Σi,j =
Cov(f i(x), f j(x′)) = Ki,jkC(x,x

′). Ki,j is the similarity between

objectives i and j and can be obtained by maximizing likelihood

estimation. kC is a covariance function over X and can be defined

as ARD Matérn 5/2 kernel to avoid unrealistic smoothness.

C. Combined Model
Our optimization model has two dimensions, one for objectives and

one for fidelities. Fig. 7 visualizes the structures of combined models.

At each fidelity, all the objectives form a correlated multi-objective

optimization model. Its expected improvement function of Pareto hyper-

volume is denoted as EIPVi(xt+1|D). Obtaining results at different

fidelities cost different running times. To characterize this kind of inter-

stage differences, an additional penalty term is applied to augment

EIPVi(xt+1) as PEIPVi(xt+1|D), as shown in Equation (10).

PEIPVi(xt+1|D) = EIPVi(xt+1|D) · Timpl

Ti
, i ∈ {hls, syn, impl},

(10)

where Ti is the time of running the FPGA design tool from scratch to

fidelity i. Finally, PEIPV in Equation (10) is used as the EI function in

Algorithm 2. For the designs that violate the placement or routing rules,

no valid reports are returned from the FPGA tool. Their simulation

performance is set to be 10× worse than the current worst-case, to

punish the illegal designs and teach the models.

V. EXPERIMENTAL RESULTS

In our experiments, the initial design space is defined by specifying all

of the possible locations of directives and their factors in YAML files.

We parse the YAML files, and convert the directives to feature vectors

and HLS TCL files. The target FPGA board is Xilinx Virtex-7 VC707.

The FPGA tool is Xilinx Vivado HLS 2018.2.

A. Benchmarks and Baselines
We conduct experiments on six benchmarks. Five benchmarks are from

open-source FPGA application benchmark MachSuite [18], i.e., GEMM,

SORT_RADIX, SPMV_ELLPACK, SPMV_CRS, and STENCIL3D. An-

other benchmark is iSmart2 [19], an object detection Deep Neural

Network model deployed on FPGA. These benchmarks are composed

of some for-loops, several matrix computations, and memory commu-

nications. For each for-loop, we consider unrolling and pipelining (with

initialization interval). For each array, we consider array partitioning.

Each benchmark contains a large number of possible configurations.

Our tree-based method can prune the design space by a lot. Take

SORT_RADIX as an example, the design space is pruned from more

than 3.8× 1012 to 20000 configurations.

Four popular and representative methods are compared with our

method. [12], shorted as FPL18, is also based on Bayesian methods

and Gaussian process. The authors build linear multi-fidelity and

independent multi-objective models. [20], abbreviated as DAC19, de-

fines several regression models to guide the FPGA HLS designs with

existing ASIC designs. Although our starting points are different, their

methods are transferable. Post-HLS reports can be regarded as the

ASIC implementations in their implementation, to predict the post-

Implementation reports. Artificial neural network (ANN) and Boosting

tree (BT) methods have been used in [7]–[9] to guide the back-

end designs and achieved good performances. For these regression

algorithms, some configurations are randomly sampled from the design

space to initialize these models. We use the post-implementation reports

as the regression targets. For each objective, we build one model. After

all of the models are trained, the whole design space is fed into these

models to predict the Pareto points. For fairness, all of these algorithms

use the same feature encodings and design spaces with our method.

B. Experimental Settings
For our method and FPL18 [12], we run 10 tests on each benchmark

and the results reported in this paper are the averages. For each

benchmark, 8 configurations are randomly sampled to initialize the

models and the maximum optimization step is 40.

For ANN, we design a model with 2 hidden layers. We train the

model with {500, 1000, . . . , 5000} times. For the Boosting method

used in [7]–[9], we run a group of experiments, with tree depth from 1 to

6, and learning rate in {0.1, 0.2, 0.3, 0.4, 0.5}. In DAC19 [20], different

numbers of initial sets are sampled to build the models. Therefore,

the number of initial sets is also considered as a hyperparameter, i.e.,
{3, 4, . . . , 11}. In experiments of ANN, Boosting, and DAC19, for

each benchmark, the number of initialization configurations is 48.

Two metrics are used to measure the performance: average distance

to reference set (ADRS) and overall running time. ADRS computes the

distance between the learned Pareto set and the real Pareto set [20].

ADRS(Γ,Ω) =
1

|Γ|
∑
γ∈Γ

min
ω∈Ω

f(γ, ω), (11)

where Ω is the learned Pareto set, Γ is the real Pareto set, f(γ, ω) is

the distance between two points, γ ∈ Γ and ω ∈ Ω, |Γ| is the number

of points in Γ. Overall running time is the total time needed to get all

results, including initialization and iterative optimization.

C. Results and Analyses
Two examples are plotted in Fig. 8 to show the learned Pareto points.

For easy visualizations, three objectives are plotted in two figures. The

right side parts of the design spaces are not plotted to help zoom in

the figures. The results demonstrate that our learned Pareto points are
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TABLE I Normalized Experimental Results

Model
Normalized ADRS Normalized Standard Deviation of ADRS Normalized Overall Running Time

Ours FPL18 ANN BT DAC19 Ours FPL18 ANN BT DAC19 Ours FPL18 ANN BT DAC19

GEMM 0.27 0.50 1.00 0.65 1.08 0.12 0.46 1.00 0.37 0.90 0.68 0.83 1.00 1.00 7.00
iSmart2 0.65 0.68 1.00 1.28 1.49 0.20 0.75 1.00 1.10 1.24 0.42 0.88 1.00 1.00 7.00

SORT_RADIX 0.64 0.72 1.00 1.09 0.94 0.48 0.57 1.00 1.72 2.28 0.34 0.47 1.00 1.00 7.00
SPMV_ELLPACK 0.19 0.47 1.00 0.22 1.21 0.09 0.24 1.00 0.06 0.99 0.65 0.42 1.00 1.00 7.00

SPMV_CRS 0.22 0.29 1.00 2.09 1.15 0.03 0.26 1.00 2.09 1.52 0.72 0.90 1.00 1.00 7.00
STENCIL3D 0.39 0.41 1.00 0.40 0.41 0.03 0.57 1.00 0.00 0.05 0.44 0.41 1.00 1.00 7.00

Average 0.39 0.51 1.00 0.96 1.05 0.16 0.47 1.00 0.89 1.16 0.54 0.65 1.00 1.00 7.00

(a) (b)

(c) (d)

Fig. 8 Learned Pareto points of GEMM and SPMV_ELLPACK.

much more closer to the reference points. All of the statistical results

are listed in TABLE I, while expressed as ratios to the results of ANN.

As shown in TABLE I, our method outperforms all of these baselines

by a lot. Firstly, compared with FPL18 [12], our method can achieve

much better results on all benchmarks. That is because we consider

practical non-linear and correlated relationships in real applications.

Secondly, the other three methods are also worse than ours, because

they cannot handle complex relationships between multiple fidelities.

Thirdly, for benchmarks with complicated code structures, the models

without GP models are inferior. For example, the irregular memory

accesses of SORT_RADIX bring great challenges to ANN, Boosting

tree, and DAC19. The results prove that our model is general enough

to handle various applications Our method also achieves much better

stability according to the standard deviations of ADRSs.

More samplings (longer running times) would introduce more in-

formation into learning models. The averages of overall running time

are listed in TABLE I to show that our method can also save time. For

ANN and Boosting tree, the sizes of their training data set are fixed and

equal. For DAC19, the size of one training data set equals to ANN.

But it has 3 ∼ 11 training sets, therefore the average running time

is 7 times (i.e., (3 + 11)/2 = 7) greater than ANN and Boosting

tree. Our method runs fewer Vivado flows compared with FPL18
on four benchmarks. Although FPL18 costs less average times on

SPMV_ELLPACK and STENCIL3D, the corresponding running times

of our method are comparative. Our average running time is the best

one. Considering the improvements in ADRS, these running time costs

are worthy and satisfying.

VI. CONCLUSION

In this paper, we solve the problem of FPGA HLS directives design

optimization. A novel tree-based pruning method is proposed, which can

significantly prune the design space. Non-linear multi-fidelity models

can handle the strong nonlinearities among the multiple fidelities. To

the best of our knowledge, correlated multi-fidelity model is introduced

into the HLS directive optimization domain for the first time and has

been proven to be effective. We hope this paper will stimulate new

research directions in this domain.
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