
Post Silicon Validation of the MMU
Tom Kolan1, Hillel Mendelson1, Vitali Sokhin1, Shai Doron1, Hernan Theiler1, Shay Aviv1

Hagai Hadad1, Natalia Freidman1, Elena Tsanko2, John Ludden2, Bryant Cockcroft2
1IBM Research. Email: {tomk, hillelm, vitali, dshai, Hernan.Theiler, Shay.Aviv, hagaih, natalief}@il.ibm.com

2IBM Systems & Technology Group. Email: {etsanko, ludden, cockcrof}@us.ibm.com

I. ABSTRACT

Post silicon validation is a unique challenge in the design
verification process. On one hand, it utilizes real silicon and
is therefore able to cover a larger state-space. On the other, it
suffers from debugging challenges due to a lack of observability
into the design. These challenges dictate distinctive design
choices, such as the simplicity of validation tools and a built-
for-debugging software design methodology.

The Memory Management Unit (MMU) is central to any de-
sign that uses virtual-memory, and creates complex verification
challenges, especially in many-core designs.

We propose a novel method for post silicon validation of
the MMU that brings together previously undescribed tech-
niques, based on several papers and patents. This method was
implemented in Threadmill, a bare metal exerciser and was
used in the verification of high-end industry-level POWER and
ARM SoCs. It succeeded in increasing RTL coverage, hitting
several hidden bugs, and saving hundreds of work-hours in the
validation process.

II. INTRODUCTION

Modern day Systems on Chip (SoC) are becoming more and
more complex, implementing multiple levels of functionality.
To verify that the designs work as intended, the SoCs go
through a rigorous functional verification process, from pre-
silicon verification in the design stage to post-silicon validation
after fabrication. This verification is crucial. Fixing a bug after
an SoC has been shipped to customers can be expensive and
could require another tape-out or even a recall. Furthermore, it
harms customer trust and may cause future revenue to decline.
Post-silicon functional validation is the last step in the verifi-
cation effort of a processors design, before it goes into mass
production. Improvements in pre-silicon design verification
methodology cannot yet bridge the design-verification gap, and
the role of post-silicon validation continues to be significant.
Moreover, according to one study [1], 75 percent of processors
today go through at least 2 tape-outs, and 25 percent go through
3 or more tape-outs. The reasons include a tight design schedule
that limits core verification time and the extreme scarcity of
some bugs (e.g., ”SAO/TLB-invalidation” [2]). The post-silicon
phase complements that of pre-silicon, with the added ability
to leverage the fabricated hardware to find these difficult bugs.

Bare-metal exercisers are an essential post-silicon tool, used
by many companies (see [3]). An exerciser is a piece of soft-
ware that is loaded to the Design Under Test’s (DUT) memory,
and runs an infinite loop of pseudo-random test generation,
execution, and checking. It generates tests on-target to avoid
the I/O bottlenecks associated with on/off-loading. Because
exercisers run on the silicon without an OS, hypervisor, or
any other supporting software, they must be self-contained and

implement memory allocation, address translation, exception
handlers, and print methods.

A key component of many modern CPUs is the Memory
Management Unit (MMU), which performs virtual to physical
address translation. Every memory access, including those to
I/O and other devices, is to a virtual address (VA) that the
MMU translates into an actual physical address (PA). Address
translation is the basis for virtualization, which lies at the heart
of all modern OS, data centers, and cloud platforms. Thus,
a bug in this mechanism can render the processor unusable.
Hardware implementations of this mechanism are complex and
consist of several pipelined layers of caches such as Translation
Look-aside Buffers (TLBs) and ERAT, in-memory translation
logic, and table-walk logic.

Pre-silicon verification of address translation cannot cover
the full state space of the MMU logic. While it covers table-
walks and specific sequences for replacing translation entries
well, it can only scale up to a handful of cores. Thus, it misses
corner cases that depend on rare timing combinations between
the MMU and other micro-architectural state machines, such
as the Load Store Unit (LSU). One of the goals of post-silicon
validation is to cover these corner cases. The challenge is to
produce rich, high-quality translation stimuli by generating a
large variety of translation paths. These paths should span all
possible translation levels, with a focus on resource sharing,
e.g., the same real address used by two or more translation
paths, the same virtual address used in different contexts, or
different memory allocations translated using the same page.
Another challenge is to create real-life OS scenarios, such as
context switches and page migration, in a randomized manner
that will stress the DUT into interesting corner cases.

Existing pre-silicon solutions for address translation such
as those by Adir et al. [4] [5] are too slow; they will result
in poor utilization of the silicon and low overall coverage.
Existing post-silicon solutions are too simplistic; they mostly
use a constant offset to map each VA to a PA, and the resulting
translation entries are not shared between different paths. They
usually lack the abstraction level and built-in mechanisms to
create stimuli which emulates interesting real-life scenarios.

In this paper, we present a novel solution for post-silicon
MMU validation, which is particularly well-suited for exer-
cisers. We implemented it on Threadmill, a state-of-the-art
exerciser [6], for both POWER and ARM architectures. The
solution leverages the speed of the platform to reach corner
cases of the design and found several hard-to-hit bugs.

The rest of the paper is organized as follows. Section III
describes our solution and Section IV describes translation
related test scenarios, made possible by it. Section V provides
results for the RTL coverage of IBM POWER10 MMU, and
compares our solution with other exercisers. Additionally, the
section describes hard-to-hit bugs found by our system. We

212978-3-9819263-5-4/DATE21/ c©2021 EDAA

Fig. 1. Translation validation system

present our conclusions in Section VI.

III. SYSTEM DESIGN

The MMU implements a contract between software and
hardware that indicates how VAs are mapped to PAs. Typically,
the OS is responsible for creating the address translation
mapping, for initializing and maintaining it in memory, and
handling exceptions in case of translation faults. The hardware
MMU allows the software to access physical memory on the
device by carrying out the given translation, and by handling
functional attributes of the memory (e.g., protection, caching,
and shared memory). Thorough verification of such translation
mechanisms requires sophisticated test-generation methods, in-
cluding the use of constrained-random stimuli generators [7].

We chose to create the translation mapping off-target, at
the time the test image is built. The tables are packed and
embedded into the image, which is loaded onto the target
machine. Whenever a memory address is accessed for the first
time, these tables are used by our exception handlers to install
the translation path in memory. When the CPU returns to the
test code, it can then continue its execution. We considered
several trade-offs when choosing this method: build time vs.
exception handling time, size of the test image, and verification
quality. We opted for off-DUT translation path generation,
because it allows us to utilize constraint satisfaction solvers,
and offers the most flexibility and randomness. Moreover, from
a software engineering perspective, it allowed us to build a
standalone package that was reused in several other projects.

As shown in Figure 1, our system comprises the following
components: (a) off-DUT Translation Builder consisting of a
Memory Manager, which generates random memory alloca-
tions, and a Translation Engine, which creates a variety of
address translation paths for each allocation; (b) Translation
Data, which may be part of the image loaded into the DUT
and used to create address translations in the Page Table area.
To reduce the number of translation interrupts, it is possible to
have Page Tables created off-DUT and pre-loaded as part of an
image. In this case, Translation Data is not added to the image;
(c) Exception Handlers for installing address translations in
memory and handling translation issues, either unintended or
as part of a user directed scenario.

A. Memory Manager

In the post-silicon test environment, physical memory is
limited in size. Hence, the allocation of intervals in memory
becomes a challenge when the test case requires many inter-
vals of many different attributes. For example, in the ARM
architecture, there may be hundreds of different combinations

of memory attributes. To achieve good RTL coverage, it is also
desirable to: allocate the intervals across the entire physical
memory, create false-sharing cases, and generate translations
for these intervals with a variety of page sizes (e.g., not
only small pages of 4KB). Moreover, certain intervals would
typically be translated using only large pages in order to
increase the utilization of specific micro-architectural resources.

Translating intervals with large pages imposes significant
constraints on their allocation, since memory attributes need
to be consistent across all overlapping pages, while virtual
pages of different sizes can overlap with each other in the
physical memory domain. Our test generator provides a solution
for allocating the intervals in memory such that the physical
memory can be translated with large pages while maintaining
the consistency of its attributes.

Our Memory Manager allocates memory according to the
specifications of the design under test (DUT), the physical
memory configuration of the post-silicon platform, and the user
requirements extracted from the test template. The Memory
Manager is composed of two stages:
Coloring Stage:
In this preliminary coloring stage, we divide the memory
into different segments according to the given ISA, the DUT
memory configuration, and the user requirements written in
the test template, such as desired page sizes and attributes.
Examples for attributes are protection bits, memory cacheability
type, and valid bit setup. We: (a) Identify all the intervals that
need to be allocated and group them together according to their
attributes (aka color-group), summing up the space required by
each group. (b) Segment the available memory into different
colors, such that fragmentation would be minimal yet still yield
an allocation that is interesting for verification purposes.

Algorithm 1 Memory intervals allocation

Data: C is the set of all colors; I = {Ici } is the set of all
intervals where c ∈ C; K is a constant parameter.

Coloring:
for c in C do

Allocate K segments Sc
1, S

c
2, ..., S

c
K in memory for this

color, such that ΣkSize(S
c
k) � ΣiSize(I

c
i).

end for

Allocation:
for Ici in I do

1. Allocate Ici in one of the segments Sc
k, s.t.:

• The interval’s color matches the color of the segment
• The interval is fully contained within the segment

boundaries
• The interval creates (randomly biased) false sharing

2. If such an allocation is not possible, go back to coloring
stage, allocate larger segments, and start the Allocation
stage again.

end for

Allocation Stage:
The objective of this stage is to optimize the allocation of
physical memory, such that intervals are placed in memory
according to the coloring done in the above stage. We allocate
the intervals in physical memory according to their attributes
(i.e., color) and the preliminary coloring segmentation. Each
interval is allocated into one of the color segments of its color-

Design, Automation and Test in Europe Conference 213

group. Additionally, intervals are allocated in such a way that
they share the same cache-line and page with as many other
intervals as possible; or, alternatively, across cache-line and
page boundaries, such that at execution time they trigger several
memory accesses and translation exceptions.

The final step before invoking the Translation Engine, is to
determine the set of page sizes used to translate each interval.
The maximum page size is the maximal page size that overlaps
with the interval but will not intersect with adjacent segments
of a different color. For more details see [8].

B. Translation Engine

The common address translation process passes through a
sequence of steps and can therefore be naturally described as
a directed acyclic graph (DAG). Using a constraint satisfaction
problem (CSP) solving technique, we developed a framework
we call graph-based constraint satisfaction problem (GCSP)
solving. These problems consist of a DAG, combined with a
CSP, where each variable and constraint of the CSP is linked to
a particular node or edge of the graph. A solution to the problem
is an end-to-end path in the graph, such that all constraints
defined along this path must be satisfied. We base our algorithm
for solving GCSPs on conditional CSPs [7].

For each physical interval, we generate one or more virtual
pages that are mapped to it, referred to as ”virtual aliases”.
Large physical intervals may require more than one virtual
page to cover them. On the other hand, a single virtual page
can cover more than one physical interval, if they are small
and dense enough. We generate translations for every possible
translation context, for example one- and two-stage translations,
secure and non-secure memory. For each translation context,
we generate virtual page(s) for each interval, while randomizing
translation parameters as much as possible (e.g., virtual address,
page sizes, granule size, and memory attributes). On target,
the exerciser executes the test-case code while randomly and
frequently switching between various translation contexts and
various translation aliases. We further stress the MMU as
follows: 1) Reuse of the same virtual addresses across different
translation contexts, by the same or by multiple threads. These
VAs are randomly mapped to the same or to different physical
addresses. 2) Sharing of translation entries across different
pages in different translation paths, tables, and levels.

C. Data Structures and Their Usage

The output of the Translation Engine is a data structure that
holds the actual translation tables, including additional meta
data used by the on-DUT exerciser.

For each context there is a unique set of translation tables,
packed into the image as C-struct arrays. The structures are
organized as a Database (DB) of table entries, each including
{VA, PA, page-size, and indexes of raw entries along the trans-
lation path of that page}. We require this DB to be efficiently
searchable according to different attributes, including VA and
PA. To accomplish this we keep several sorted pointer lists,
which allow for a binary search according to each attribute.
For test generation, whenever a memory access is initialized,
a PA to VA search is needed. For exception handling during
test execution, a VA to PA search is executed allowing for
on-demand initialization of the tables in physical memory and
entry modification. This modification is done by injecting errors
into existing installed entries in memory. The subsequent faults

and exceptions that arise are fixed by restoring the original
legal values from the DB. These include page invalidation any-
where along the translation path, migration, and the changing
of attributes such as memory type, security privilege, access
permission (read/write/execute), and shareability.

D. Exception Handlers

Since an exerciser is a bare-metal program that runs without
an OS, it requires exception handlers to be embedded inside
the tool. Unlike OS handlers, which are usually focused on
efficiency and security, our handlers are geared towards val-
idation and the constant continuation of the user scenario.
Each handler begins by printing debug information to the
trace log. This includes the address of the instruction that
triggered the exception (DAR in POWER / FAR in ARM),
the exception reason (DSISR / ESR), and the cycle count
SPR (TB / CNTCV). It then updates a counter per interrupt
type, so these can be compared over multiple runs of the
same test-case (multi-pass consistency checking). For example,
the interrupt priorities mechanism can have a bug
where a privilege instruction interrupt and a debug interrupt
occur on the same instruction, in an incorrect order. If the
debug interrupt handler is invoked first, it will skip to the next
instruction and the privilege interrupt will be missed. We assert
several invariants that should hold:

1) The machine state register is updated accordingly when
entering an exception. For example, in POWER, verify
that a Hypervisor Data Storage Interrupt (HDSI) sets the
privilege level to Hypervisor.

2) The address of the instruction that triggered the exception
should be a valid VA in our translation DB, and point
to a PA within the test-case boundaries. The kernel code
should not trigger exceptions, nor should the DAR point
to address 0 (a common HW bug).

3) The VA that triggered the exception is the expected one.
For this purpose we keep a partial reference model that
enables us to expect a certain range of exceptions and
addresses per executed PC [9].

4) SPRs that shouldn’t be updated by an exception should
remain unchanged. To ensure this, we reset some SPRs
to 0 at the end of each exception handler. For exam-
ple in ARM, if an exception is triggered in EL2, only
ELR_EL2 should be modified, and we can assert that
ELR_EL0, ELR_EL1, ELR_EL3 remain 0.

Finally, we try to handle every exception in a way that will
allow the CPU to return to the same instruction, and success-
fully execute it without re-triggering the same exception. This
is useful for several reasons. It preserves the test-case intent,
allowing non-perfect test generation and initialization, knowing
that the exception handler would fix any faulty conditions that
may prevent the user scenario from executing as planned. We
create multiple exceptions on the same instruction (see [10]).
This is important to validate many possible combinations of
multiple pending exceptions. Therefore, we fix only a random
subset of the entries that need to be updated. For example, in a
page fault exception, we turn the Valid bit to 1; in a protection
exception, we update the protection bits to allow the access.
After that, the exception handler will conclude and the CPU
can go back to executing the same instruction, triggering more
exceptions. This allows us to create more variability and hit
additional coverage events (see Section V).

214 Design, Automation and Test in Europe Conference

IV. TEST SCENARIOS

Some common real-life scenarios are important to verify,
but difficult to implement in a bare-metal setting. To properly
cover these use-cases, an exerciser should have built-in support
for generating them. This would allow the user to add these
scenarios in almost every test-template, rather than hand-coding
them, thus increasing the cross-coverage and hitting bugs that
involve interaction between the MMU and other design units
(mainly the LSU, L2 which handles coherency, and the ISU).
The following scenarios all use the ”irritation template” [11].
The irritated VAs can belong to a data region or to the actual
test-case instructions being executed (irritating the I-Caches).
Importantly, any existing test scenario is suitable for irritation
so that we can achieve full cross-coverage.

A. TLB-invalidate Irritation

TLB-invalidate instructions (e.g., tlbie in POWER, tlbi
in ARM) are some of the most difficult for the processor to
execute. They are typically broadcast to the entire core or
even to the entire system, atomically invalidating the TLBs
and possibly other tables. A typical data-side TLB-invalidate
scenario includes several ”victim” threads executing load/stores
from VA1; these may be any load/store instructions, of any
access length and any offset. An irritator thread performs local
and system-wide tlbi instructions on the same VA1, or on other
VAs to add more noise. Without a supporting design mechanism
to throttle back the tlbis, this scenario could cause a HW
hang. This type of irritation cannot flag bugs where the TLB-
invalidate did not occur, but it can find bugs in the way that
the TLB-invalidate instruction spreads throughout the chip.

B. Page Migration

Page migration is when translation tables are changed during
run-time within the same context, such that a VA would point
to a new PA, i.e., from VAx→PA1 to VAx→PA2. This would be
similar to an OS moving a page on the physical disk, while
the page is being used by a program. This requires a specific
software sequence described by Algorithm 2. Verification of
this scenario is aimed at finding TLB-invalidate bugs that cause
the invalidation to not occur (or to not occur on time), thereby
generating invalid or duplicate translation cache entries.

Our method follows Ibraheem and Kolan [12]. During build-
time, we create groups of pages (”modification sets”) of arbi-
trary size. The special property of each group is that all of
the translations start from the same VA, but at some level of
the tables, the paths split. This is where modification is done.
Any change to this level’s entries will cause the mapping to
change to a different PA. Therefore, the modification handler
can be invoked over and over again, and randomly change the
VA to PA mapping to a different PA in the modification set.
Importantly, we want one thread to modify another thread’s
translation; this is what happens in the OS scenario and self-
modification is not difficult for the HW to implement.

The test scenario itself can modify translations for either
the data or the instruction sides: (1) For data, we allocate
a true/false shared array. Then we load or store to it from
each thread, while one of the threads acts as the ”OS” and
performs the page migration. During this time, data access by
other threads is blocked, because the translation entry is invalid,
and causes an exception. (2) For instructions, we branch to
the migrated reservation, execute some random instructions,

Algorithm 2 Page Migration

Thread 0:
for times do

1. Lock VA1 page entry, so other threads cannot access it
while being modified
2. Invalidate translation entry
3. Invalidate TLB
4. Modify translation
5. Swap data, so the victim scenario can continue from
where it left off
6. Validate translation entry
7. Release lock

end for

Threads 1..N :
loop

Perform algorithm under test involving loads/stores to VA1

end loop

and branch back. During this time, another thread modifies the
VA to PA mapping, which is used by the tested thread as the
mapping of the branch target page. Because the contents of the
PAs are also swapped, execution can continue normally after
the new translation is installed.

On top of the general scenario, we randomly generate all
forms of TLB-invalidate instructions that can possibly invali-
date a given migrated entry. The purpose is to create more stress
and confusion across the system. Even though two threads
(”OS”+”Application”) are sufficient to expose some bugs, we
found it beneficial for many threads to share the same context.
In this way, they all experience the page migration at once.
Some additional ingredients to detecting the triggered bugs are:

1) To preserve multi-pass consistency and enable true shar-
ing, we swap the memory content between the ”old” and
the ”new” physical intervals. This enables any scenario to
continue undisturbed after a migration is done.

2) To ease debugging, we employ false sharing. Each HW
thread stores to a constant offset in a common interval,
and the stored value is the thread’s logical index. This
way, we can easily see which thread ”missed” its store,
when a bug occurs.

3) To catch bugs closer to where they appeared, we use
self-checking. This involves loading the value from the
modification interval after the modification and asserting
that it contains the expected value.

C. Context Change

Context change is one of the most heavily used sequences in
operating systems and hypervisors. It is used to switch between
programs that run on a certain HW thread. Effective and quick
context changes are key to gaining high performance in modern
day workloads. In POWER, the context change itself is done
by changing the LPIDR and/or PIDR values; and in ARM, by
changing the TTBRx value. Projected on the MMU, a context
change is an alteration of the translation context of a running
HW thread, thus changing the VA to PA mapping of the thread
(using tlb-invalidate, translation entries updates, and more).

The main differences from the above page migration scenario
are: (1) Although both involve changing from VAx→PA1 to
VAx→PA2, here we do so by changing the entire translation

Design, Automation and Test in Europe Conference 215

context rather than modifying the existing one. (2) This is
a single threaded scenario, since the thread switches its own
context rather than waiting for some other ”OS” thread.

Papadimitriou et al. [13] use one VA pointing to two different
PAs in two different contexts. After a context change, any data
previously written by the thread to this VA should no longer be
accessible. We expand on this idea, creating a full VA to PA
bipartite graph following Kolan and Mendelson [14]. During
image build-time, we create ”context change groups” of N>=2
physical pages that are mapped to the same N virtual pages in
every context. When switching between two contexts, a specific
VA is randomly mapped to a different PA. This allows us to
verify that the MMU has updated its tables correctly and will
use the data from the new PA after the context switch. This
full graph enables using any of the VAs by any of the threads,
creating multiple false sharing scenarios in the physical domain.

Similar to the page migration scenario, the context change
scenario can be done for data and/or instructions. For data,
we load/store from the same VA before and after the context
change. For instructions, see Algorithm 3.

Algorithm 3 Instruction-side context change

1. Branch to the PA interval, which is part of the ”context
change group”
2. Execute some random instructions
3. Change the context, swapping the data into the new PA,
so the CPU can continue reading the instruction stream; this
is done using a system-call if running in user-level
4. Execute some random instructions
5. Branch back to the test

D. Light Context Change

In this method, which follows [15], we artificially create new
”light” contexts that have the exact same translation mapping
as other existing contexts. This is done instead of creating
more ”full” contexts, which require costly building of the entire
translation structure and inflating the image. The purpose of this
method is to create stress by filling µ-arch caches like the TLB.
These caches store data tagged by the context, so they can be
”fooled” by creating almost-duplicate entries at a very low cost
to the exerciser. This allows a faster uninterrupted test execution
that can hit some unique ERAT bugs (see Section V-B3).

In POWER, this is done by copying entries in the partition
table and/or the process table into different entries; for example,
entry 0 in the partition table is copied into entry 64. This means
we can randomly change the LPIDR value from 0 to 64 (and
back), anywhere in the test-case, without executing the full
software sequence for context change. Specifically, no barrier
instructions are required. The translations remain the same, so
no additional computation is needed but the TLB will be filled
by these new translation ”aliases”. In ARM, the implementation
is done by copying the entire first level of translations to a
different location, and randomly updating TTBRx to point to
this new location.

When interleaved with ”real” context changes as described
above, this method enables us to hit more delicate corner-case
bugs. This occurs because when the CPU carries out the ”real”
context change, it needs to invalidate many more entries of
the TLB, because the it is full, thus the chances of erroneous
behavior increase. For example, in POWER, two TLB entries

that differ only in their LPIDR value, may be added to the
same set of the TLB. A good stress scenario would over fill a
TLB set to cause many evictions of TLB entries, while issuing
TLB-invalidate instructions on the same entries.

E. Translation Attribute Changes

We implemented a set of functions that can be invoked and
used to randomly change many attributes in translation entries,
such as valid bit, protection bits, and reference/change bits.
Because the translation entries are in memory, these functions
can be applied by any thread to any other victim thread in
any context. When the victim thread performs a data access,
the CPU encounters the corrupted entry during the table walk.
It then notices the wrong attribute and takes an exception.
Since our kernel controls the translation database (see III-C),
it has all the information required to fix the entry back to the
value that will allow forward progress. We randomly invoke a
combination of these functions in test-cases to create a ”storm”
of interrupts, which stresses many aspects of the design.

A significant part of this scenario focuses the above tech-
nique around Segment/Page/Cache-line crosses. This way, each
data access can incur several different exceptions on the differ-
ent pages it accesses. Additionally, we mix in other kinds of
exceptions such as alignment and debug exceptions, to further
stress the CPU and verify that they are handled in the correct
order as defined by the ISA.

Moreover, we deliberately create a ”race” between the
threads that are invalidating the translations, and the ones trying
to fix them so they could access the data, while making sure
the latter are slightly faster to prevent live-lock.

The bugs are detected by HW hangs (i.e., instructions exe-
cution can’t make progress) or by assertions in the exception
handlers (see Section III-D). In general, bugs in this area can
be very severe, causing problem for the OS/hypervisor that are
very difficult to work around.

V. RESULTS

When we evaluated the method described in this paper, the
results were very positive. They contain qualitative (complexity
of triggered bugs), as well as quantitative (coverage) improve-
ments. The method has led to shorter time-to-market of the
POWER processors, with fewer field escapes that could have
significantly affected the users.

A. Coverage Improvement

We measured the RTL coverage improvement obtained by
implementing our method in Threadmill, against three methods:
(1) (”SOA”) The existing state-of-the-art method for validating
the MMU, used by another exerciser of POWER designs.
(2) (”Simple”) Against a simple straight-forward MMU vali-
dation method, implemented by a third exerciser of POWER
designs. (3) Core pre-silicon coverage.

Coverage of the final synthesized design was collected on
an emulation platform. Each coverage event belongs to exactly
one design ”entity”. We compared the coverage percentage of
the translation-related entities. For the sake of brevity, we show
only the entities in which there was a difference in coverage
between the four methods.

Table I depicts the RTL coverage of the MMU entities,
in the POWER10 core. The results show that in all but two
entities, Threadmill’s coverage is at least as good as the other
two exercisers. Overall, Threadmill outperforms the simple

216 Design, Automation and Test in Europe Conference

TABLE I
RTL COVERAGE (%), POWER10 MMU ENTITIES

Entity Core SOA ex. Simple ex. Threadmill
Exceptions 58.90 50.20 30.10 51.70
TLB invalidate 80.60 69.90 10.70 79.50
Context table 96.10 96.10 23.30 96.10
Invalidation #1 100.00 90.50 76.20 100.00
Invalidation #2 63.50 58.10 31.40 61.10
Pipeline 86.30 84.00 64.20 85.90
Thread reconfig 80.20 79.00 79.00 80.20
SPRs 62.90 61.80 53.90 61.80
TLB 86.60 76.50 53.60 80.90
Store miss queue #1 96.30 96.30 96.30 94.50
Store miss queue #2 61.60 50.00 26.90 56.60
Store miss queue #3 88.60 85.90 80.40 77.70
Total 83.25 76.31 51.90 80.02

exerciser by 28%, and the state-of-the-art exerciser by 4%.
Moreover, the gap between Threadmill’s coverage and the core
pre-silicon coverage is 3%, which is acceptable given that pre-
silicon stimuli is much more directed and controllable.

B. Bugs Found

We briefly describe several unique bugs found in POWER9
and POWER10, including the bug scenario, root cause, and
detection mechanism. These bugs were critical and in one case
even required two additional tape-outs to fully mitigate.

1) Incorrect register update in interrupt: The bug was de-
tected by asserting that some special-purpose register contains
zero value in the beginning of a translation exception handler,
since this register should not be updated by the exception. The
POWER9 LSU contains multiple slices so that different parts of
the same ld/st instruction may be processed by different slices.
In such a design, different parts of an instruction may cause
different exceptions, but the LSU has to process the exception
with the higher priority. In our case, one slice reported an
alignment interrupt, which has a higher priority, while another
reported a hypervisor page fault. Because of the bug, the
hypervisor page fault was handled first, and the hypervisor
level address registers were updated instead of the user level
ones. To trigger such a bug, a test has to be designed to cause
different exceptions by different parts of a store instruction, for
example, one slice hits TLB with exception and another slice
misses TLB, see IV-E for more details.

2) TLBI is not executed properly: The bug was detected by
multi-pass consistency checking at the end of test, while a test
performed page migration as described in IV-B. In this bug, a
writer thread stores data using VA→PA1 translation. Another
thread, the page mover thread, first invalidates the translation
used by the writer thread. It then invalidates the TLB entry,
moves the data, and finally validates the translation entry. The
writer thread hits a page fault during the next access, updates
the TLB and uses the new translation. But as it turned out, even
though the data was moved after the TLBI had completed, the
last store was not drained before the TLB snoop was completed.
This caused a mis-compare at the end of test.

3) ERAT multi-hit: The bug was detected by an embedded
HW assertion that there can be no more than one entry with
the same EA in the ERAT table, for a given context. The bug
was triggered by a context-switch test described in IV-D, and
required nested user-level translations. The light context-switch
happened while an instruction fetch missed the ERAT and was
sent to the MMU to provide a translation and update the ERAT.

The context-switch caused the fetch request to become invalid,
but the MMU still updated the ERAT. Then, the LSU sent a
new translation request for the same EA and context tag, but
with a different index into the ERAT table. The request was
served and another ERAT entry was created with the same EA,
which triggered the assertion.

VI. CONCLUSION AND FUTURE WORK

We presented an end-to-end method for post-silicon valida-
tion of the MMU. Our method is based on existing bare-metal
exercisers, and extends them to support a thorough validation of
the MMU and its components. This method has shown good
results on both POWER and ARM designs for several of the
most complicated industry-level processors to date. Specifically,
we were able to cover more RTL events and uniquely detect
several novel critical bugs. The method continues to save a
significant amount of labor in future designs, and helps secure
revenue by reducing the number of tape-outs and field escapes.

There is still room for more work to be done. Here is a
partial list of the future items on our plate:

1) Cover more built-in scenarios, especially sequences that
are frequently performed by the OS and hypervisors.

2) Improve existing scenarios to cover more cases.
3) Achieve better coverage of page-cross, segment-cross,

physical memory boundary accesses, etc.
4) More tightly control VA bits to create more VA reuse

between different contexts, e.g., reuse specific bits in the
VA for different hash functions in the design.

5) Add debugging mechanisms to shorten the time-to-debug
of a post-silicon fail in the MMU.

MMU specifications are ever evolving, and new ISA features
are constantly being added to them, for security reasons and
for performance improvements. These features create new chal-
lenges for the MMU validation, and we believe that the method
described in this paper is a good infrastructure to support most
of these future ISA changes.

REFERENCES

[1] H. Foster. Functional verification study - 2018. [Online]. Available: https:
//verificationacademy.com/seminars/2018-functional-verification-study

[2] T. Kolan et al., “Post-silicon validation of the ibm power9 processor,” in
DATE, 2020, pp. 999–1002.

[3] T. Kolan, H. Mendelson, A. Nahir, and V. Sokhin, Post-Silicon Validation
of the IBM POWER8 Processor. Springer International Publishing, 2019.

[4] A. Adir et al., “Deeptrans - a model-based approach to functional
verification of address translation mechanisms,” in MTV, 2003, p. 3.

[5] A. Adir, L. Fournier, Y. Katz, and A. Koyfman, “Deeptrans - extending
the model-based approach to functional verification of address translation
mechanisms,” in HLDVT, 2006, pp. 102–110.

[6] A. Adir et al., “Threadmill: a post-silicon exerciser for multi-threaded
processors,” in DAC, 2011, pp. 860–865.

[7] M. Aharoni et al., “Using graph-based csp to solve the address translation
problem,” in CP. Springer International Publishing, 2016.

[8] S. Doron et al., “Attribute driven memory allocation,” Patent, 2017.
[9] T. Kolan et al., “Utilization of partial results for post-silicon validation,”

Patent, 2020.
[10] T. Kolan et al., “Recoverable exceptions for post-silicon validation,”

Patent, 2020.
[11] A. Adir et al., “Advances in simultaneous multithreading testcase gener-

ation methods,” in HVC, 2010, pp. 146–150.
[12] W. Ibraheem et al., “Circuit modification,” Patent, 2017.
[13] G. Papadimitriou et al., “Unveiling difficult bugs in address translation

caching arrays for effective post-silicon validation,” in ICCD, 2016, pp.
544–551.

[14] T. Kolan et al., “Efficient translation context change testing for memory
management unit verification,” Patent, 2020.

[15] T. Kolan, H. Mendelson, and V. Sokhin, “Efficient translation table
replication for memory management verification,” Patent, 2020.

Design, Automation and Test in Europe Conference 217

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

