
TiVaPRoMi: Time-Varying Probabilistic
Row-Hammer Mitigation

Hassan Nassar, Lars Bauer, Jörg Henkel
Chair for Embedded Systems, Karlsruhe Institute of Technology

Karlsruhe, Germany
{hassan.nassar, lars.bauer, henkel}@kit.edu

Abstract—Row-Hammering is a challenge for computing sys-
tems that use DRAM. It can cause bit flips in a DRAM row by
accessing its neighboring rows. Several mitigation techniques on
memory controller level were already suggested. The techniques
are in two categories: The first category uses static probabilities,
which leads to a performance penalty due to a high number of
extra row activations. The second category is based on so-called
Tabled Counters, which have large hardware requirements and
are mostly infeasible to implement.

We introduce a novel Row-Hammer mitigation technique that
uses time-varying probabilities combined with a relatively small
history table. Our technique reduces the number of extra row
activations compared to static probabilistic techniques and it
demands less storage than Tabled Counters techniques. Compared
to state of the art, our technique offers a good compromise that
has 9×− 27× reduced storage requirement than Tabled Counters
and 6×− 12× fewer activations than probabilistic techniques.

Index Terms—Row-Hammer, DRAM, Security

I. INTRODUCTION

DRAMs are composed of two-dimensional array structures
consisting of rows and columns. To access data, its corre-
sponding row has to be activated first, which basically copies
the content of the DRAM cells to a row buffer. Due to their
nature, DRAM cells suffer charge leakage with time. Therefore,
the memory controller has to refresh each row periodically [2]
and the period between two refreshes is called refresh window.
It consists of multiple refresh intervals that refresh a subset
of all rows. However, frequent refreshing is not sufficient to
ensure data reliability, as frequent activation of a row can cause
disturbances in its adjacent rows [5].

In a Row-Hammer (RH) attack [12], the attacker targets a
victim row and aims at causing bit flips in it. The attacker
achieves this by activating one or both of its two neighboring
rows, the so-called aggressor rows, multiple times. If the sum
of activations of both aggressor rows exceed 139 K, then the bit
flipping would start in the victim row. This threshold was first
experimentally found by [12] and later used by different works
investigating the RH effect, e.g. [11], [13], [17]. The attack is
powerful and easy to launch even without any software level
vulnerability, as it only uses memory access patterns [15].

Mitigation against RH is done either on software or hardware
level [1]. On software level, the malicious application can
be detected and properly dealt with. However, the detection

This work was partly supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Center “Invasive
Computing” (SFB/TR 89).

is slow and normally requires the length of several refresh
windows [4], and until then, bit flipping might already start
in the victim row. On the hardware level, the aggressor rows
can be detected before the bit flipping starts. Once an aggressor
row is identified, its possible victim rows are activated to restore
their charge level, which prevents the bit flipping [12]. The
hardware mitigation can either be integrated into the memory
controller or into the memory chips [13]. The drawback when
implementing it into the memory chips is that some extra logic
is needed to handle conflicts between the mitigation activities
(i.e. additional activations) and the commands coming from the
memory controller, while still ensuring the memory timing.

There are two main techniques used to mitigate RH on
hardware level. The first technique is probability-based, which
was for the first time proposed in [12]. At each new activation
of a row, one of its neighbors is also activated with a small
probability. If an aggressor row is activated frequently, then
the probabilistic activation will take place and thus the victim
row will not flip bits. To successfully mitigate RH, a relatively
high probability needs to be used, which results in a high rate
of overall extra activations that degrade the performance.

The second technique uses so-called Tabled Counters to
count the memory activation for each row. When the number of
activations surpasses a certain threshold, then both neighboring
rows are activated in a deterministic way. In its simplest form
it tracks each row with a separate counter, as implemented in
CRA [11]. The storage needed for the tracking ranges between
tens of KBs to tens of MBs and is too large to be integrated
into the memory controller. Instead, the table needs to be
implemented in the DRAM, and significant storage from the
memory is consumed [13].

This paper proposes TiVaPRoMi, a Time-Varying Probabilis-
tic Row-Hammer Mitigation technique that has a very low
overhead, but is still very effective in mitigating RH attacks.
The main contributions of our work are:

• We propose to use time-varying probabilities to reduce the
false positive rate compared to state-of-the-art techniques
that use static probabilities.

• We propose and evaluate four variations that differ in the
way how the time-varying probabilities are determined.

• Instead of using tables to count the activations of rows, in
one of our four variations we propose to use small tables to
track for which rows the probabilities should be calculated
differently.

1711978-3-9819263-5-4/DATE21/ c©2021 EDAA

• We achieve significant reductions in the area overhead
(number of counters, table size) and the performance
overhead (number of extra row activations) compared to
state of the art.

The rest of the paper is organized as follows. Section II
shows the previous RH mitigation techniques and their limita-
tions. Section III explains our four variations of TiVaPRoMi.
Section IV shows the experimental results and Section V
presents the conclusions.

II. PREVIOUS RH SOLUTIONS

As mentioned in Section I, there are two main techniques
for RH mitigation on the hardware level, i.e. probabilistic
based and Tabled Counters based. Some of the probabilistic
techniques use tables to track frequently activated rows. When
tables are used, then each table tracks one memory bank,
because the banks can be attacked independent of each other.

PARA [12] is a state-of-the-art probabilistic technique. It is
simple yet effective, given a reasonable choice of the proba-
bility p. A value of at least 0.001 is considered as effective
[17]. Whenever a row is activated, one of its neighboring rows
is probabilistically activated based on p. However, it has a
high false positive rate, as many normal rows will be falsely
identified as aggressors. PARA is also vulnerable to attacks
where multiple aggressors are sequentially activated [17].

ProHit [17] attempts to overcome the vulnerability of PARA.
It utilizes tables to track the neighbors of frequently activated
rows. Insertion to the table and promotion to the top of the
table is performed in a probabilistic manner. The top entry of
the table is added to the list of rows that are refreshed in the
next refresh interval. It is more effective than PARA in case
of sequential activations of multiple aggressors. However, it
increases the false positive rate [19].

MRLoc [19] uses a queue to track the neighbors of recently
activated rows and calculates weighted probabilities. It slightly
reduces the false positive rate but ends up with a higher or equal
number of extra activations compared to PARA. And it is also
vulnerable against multiple aggressors like PARA. Additionally,
both MRLoc and ProHit assume that the neighboring rows of
a row with address N are the rows with the addresses N + 1
and N − 1. But this is not always true, as defected rows might
be remapped to other rows [13].

As mentioned in Section I, techniques that use Tabled Coun-
ters have huge storage requirements. To reduce the needed area,
two main approaches were proposed. The first one uses a binary
tree of counters implemented as an extension of the memory
controller. Each node in the tree counts the activations of a
certain number of rows. When the counter overflows, then the
node is split and both children count half of the rows [16]. To
optimize the needed storage, the tree is unbalanced as only the
frequently activated rows require several tree levels. The shape
of the tree is adaptive and the tree is reset at each new refresh
window. For successful mitigation against RH, a large tree has
to be used of no less than 1 KB per bank [10]. Additionally,
trees are vulnerable to carefully chosen attack patterns [13]. An
attacker might fill all the levels of the tree to make it balanced

and saturated before it reaches the levels where it would track
the aggressor rows precisely.

The second approach to reduce the needed area is called
Time Windowed Counters (TWiCe) [13]. It utilizes a reduced
set of counters, based on an analysis about the number of
possible activations within a refresh window. The authors of
TWiCe remark that during a refresh interval only a small
number of activations can occur, and they determine a minimum
number of activations that need to take place in a single refresh
interval to have a successful attack against a row. Additionally,
they calculate a threshold for every counter that increases from
one refresh interval to the next one. The authors eventually
proof that they will not miss a potential attack by removing
those rows from the counters that do not reach the threshold at
the end of a refresh interval, which enables them to reduce the
number of needed counters. As any counter needs to be able
to track any row, TWiCe uses content addressable memories
(CAMs) in order to link the counters to the rows. However,
CAMs require lots of resources making it hard to integrate
TWiCe into the memory controller. Therefore, in [13] they
recommend to implement it in the DIMM. The drawback
is that in case a command issued by TWiCe is executing
while a command from the memory controller arrives, then
an unexpected delay for the memory controller command will
occur, i.e. the memory controller must no longer rely on
predetermined memory timings.

RH can be detected and mitigated at the software level too.
ANVIL [1] can detect RH attacks with a slowdown of 1%, but
requires modification of the Linux kernel [4]. Machine learning
algorithms are also used [4], [5], [14], [18], but they can be
surpassed by certain code patterns and inserting junk bytes [5]
and they require a relatively long time to detect an attack [4].

III. PROPOSED TECHNIQUE

Our proposed technique is probabilistic at hardware level,
similar to PARA [12], ProHit [17], and MRLoc [19]. But
instead of a static probability (as used by [12], [17], [19])
it uses time-varying weighted probabilities. In the following
explanation, we focus on a single memory bank with RowsPB
rows per bank. All other banks are treated exactly the same.
Whenever a row r ∈ [0, RowsPB−1] of the memory bank is
activated, then both neighbors (r−1 and r+1) are probabilisti-
cally activated based on a probability pr. Note that (i) the row
number r denotes the physical address of the row and (ii) the
two rows 0 and RowsPB−1 have only one physical neighbor.

The main idea of the weighted probabilistic activation is to
reflect the time how long a row has not been activated or
refreshed. For example, when a row was activated recently,
then there was insufficient time for a possible attack to become
harmful. No extra activation needs to be triggered to protect it,
i.e. the probability should be low. But when the last activation
is already some time ago, then the probability should be higher.

Storing the last activation time of every row would demand a
significant overhead. Instead, we utilize the information, when
a row was refreshed for the last time (no information needs to
be stored as we will see) and refine that by some additional in-
formation stored in a small table. This does not provide exactly

1712 Design, Automation and Test in Europe Conference

the same result as if we would have stored the last activation
time for each row individually, but it still achieves a very good
quality (i.e. low number of extra activations combined with a
high reliability against attacks) while only having minimal area
overhead, as we will evaluate in Section IV.

A refresh window consists of a fixed number of RefInt
refresh intervals (typically in the range of a few thousands)
and RowsPI rows are refreshed per interval. We assume that
a refresh interval refreshes rows with neighboring addresses, i.e.
refresh interval i ∈ [0, RefInt−1] refreshes rows

(
i·RowsPI

)

to
(
(i + 1) · RowsPI − 1

)
. For example, if RowsPI = 8

then the first refresh interval refreshes rows 0− 7, the second
interval refreshes rows 8−15, etc. Therefore, the mapping from
a row r to the refresh interval fr where it will be refreshed is
calculated as fr = r/RowsPI. Normally RowsPI is a constant
power of 2 so fr can be obtained from r by a simple right shift.
These assumptions of refreshing neighboring addresses and the
calculation of fr simplify the following explanations. However,
they are not required for our technique to be effective and we
will evaluate alternative mappings in Section IV.

For the current refresh interval i ∈ [0, RefInt−1], every
row r has a weight wr that determines the number of refresh
intervals since r was refreshed last.

wr =

{
i− fr i ≥ fr

i− fr +RefInt i < fr
(1)

For every activated row r, the probability pr to trigger an
extra activation for both of its neighbors is calculated as pr =
wr ·Pbase, where Pbase is a small constant base probability. It
is selected such that RefInt·Pbase = 0.001, i.e. it bounds the
highest possible probability to be similar to the probability that
is used in PARA. After pr is calculated, it is compared against
a (pseudo) random number, and if it is smaller, then the two
neighboring rows are activated to ensure their reliability.

If r is an aggressor row that is used to attack one (or both) of
the neighboring rows, then the attacker needs to keep activating
r for a few hundred to a few thousand refresh intervals in
order to reach the 139 K activations that are needed to inject
bit flips [12]. During these refresh intervals, the weight wr

will keep increasing. Frequent activations of the aggressor and
the increasing weight will increase the likelihood that our
technique triggers an extra activation for both neighbors. After
that happened, the likelihood to trigger another extra activation
(or even multiple) would remain high (as in PARA). But another
extra activation of the neighbors is only needed after another
139 K activations of r, i.e. from a few hundred to a few
thousand refresh intervals later. To reduce this overhead, we
store the aggressor row r and the refresh interval i, in which
the extra activation was triggered, in a history table. We use
a small table per bank to keep the overhead small. When the
table is full, then old entries are replaced based on a simple
FIFO policy. Whenever a row r is activated, we sequentially
search the table whether it contains an entry for r. Note that
this sequential search is not delaying the row activation and
it only needs to be finished until the next activation of a row
in the same bank. If an entry is found in the table, then we

calculate the weight wr (see Eq. (1)) by using the stored refresh
interval of the extra activation instead of the last refresh time
(i.e. fr). This way, wr has a smaller value so it does not cause
unneeded extra activations. The table is cleared when a new
refresh window starts.

TiVaPRoMi Bu er
BARH
RARH
IRQRH

Memory controller

M
aster

Memory Interface

Refresh
Interrupt

Logic

RH
Interrupt

Logic

R/W
Logic

BA
RH

RA
RH

IRQ
RH

ctrl
datain
dataout

stall

Mux

BARH
RARH

IRQ

IRQRH

IRQref

w
ait

memcmd

ref

memI/O

memdata

BA
RA
act
ref

-IRQ: interrupt -act: activate -memI/O: memory input/output
-ctrl: control signals -RA: row address -memcmd: memory command
-BA: bank address -ref: refresh -memdata: memory data

Figure 1. Extension to the memory controller

Our Time-Varying Probabilistic Row-Hammer Mitigation
technique TiVaPRoMi is implemented as an extension of the
memory controller. Figure 1 shows its interaction with a stan-
dard memory controller. TiVaPRoMi receives the row address
RA, bank address BA, and two of the memory controller
commands (activate act and refresh ref) as input. Based on
BA, it selects the right history table for the activated row.
When TiVaPRoMi wants to trigger an extra activation, then
it informs the memory controller through sending the row
address RARH , the bank address BARH and an interrupt signal
IRQRH . The signals are buffered if wait is raised. When it
is low, then the signals are passed through an interrupt logic
similar to the interrupt logic used by the memory controller to
issue refreshes. The memory controller then issues the activate
neighbor command act n (as also used in literature [12], [13]),
which activates the two neighbors of the given row address. The
addresses of the two neighbors are not passed directly, because
they depend on the internal mapping of the memory.

The four variants of TiVaPRoMi that differ in the time-
varying probabilistic logic are explained in the following.

A. Linear Weighting (LiPRoMi)

The first variation is LiPRoMi, which is the direct implemen-
tation of the basic technique that was just explained. Figure 2
shows the implementation details of its FSM. The duration
between two ref or act commands (issued by the memory
controller) is long enough for one loop in the FSM from idle
back to idle, which will be further analyzed in Section IV.

Linear weighting enables the most fine-grained change of
weights over the refresh window. However, the slow increase
of weights makes it possible to be vulnerable against attacks
where the attacker either knows the weights mapping or floods
the system with activations for the same row. This vulnerability

Design, Automation and Test in Europe Conference 1713

rst

 ref

calculate
weight

search
in table

rst: reset
act: activate command
ref: refresh command
search_cm: search complete
neg: negative decision
pos: positive decision
same_RW: same refresh window
new_RW: new refresh window

search_cm

act

update
refresh
interval

same_RW

new_RW

reset
table

pos

neg

idle

decide

init

activate
neighbor
& update

table

Figure 2. Linear weighting FSM

rst

decision

rst: reset
ref: refresh command
not_end: not end of the table
end: end of the table
act: activate command
found: match found
insert: insert new entry
full: table full do a replace
fail: probabilistic replace failed
success: probabilistic replace

idle

search/
increase

act

found

full

insert

fail

success

update

not_end
end

init

weight

nd linked

replace

link

ref

Logari-
thmic
weight

Figure 3. Counter-assisted weighting FSM

will be further analyzed in Section IV. It makes it important to
investigate other weighting methods in the following.

B. Logarithmic Weighting (LoPRoMi)

The second variation LoPRoMi uses logarithmic weighting.
It can be described with the same FSM as in Fig. 2. In the
calculate weight state, the weigh w logr is calculated following
Eq. (2) and is then utilized (instead of wr) to calculate pr. The
addition of 1 in Eq. (2) handles the corner case of wr = 0.
The ceiling function is used so that all values of wr between
two powers of 2 will have the same w logr. The calculation
of Eq. (2) is implemented by a modified priority encoder. The
logarithmic weighting leads to a faster increase of the weights
when it is in the range of low weights. For example, for all
values between 16 and 31, their weight will be constant 32.
This solves the vulnerability mentioned for the linear weighting,
but with an increased number of extra activations. These extra
activations will be optimized in the next subsection.

w logr = 2�log2(wr+1)� (2)

C. Logarithmic/Linear Weighting (LoLiPRoMi)

To optimize between being vulnerable and increased un-
needed activations, LoLiPRoMi is proposed. If the row address
is found in the history table, then the linear weighting is used,
otherwise, the logarithmic weighting is used. The reason is
that the probability, that an extra activation is needed, is lower
if the address is already in the table. The FSM from Fig. 2
can also be used to describe the logarithmic/linear weighting
implementation.

D. Counter-assisted weighting (CaPRoMi)

All three mentioned variations are purely probabilistic. How-
ever, the combination of probabilistic and counter-based tech-
niques is not yet discussed. In the literature, such a combination
does not exist, but we think that it is worth investigating
whether such a combination would be beneficial or not. We
propose the counter-assisted probabilistic technique CaPRoMi.

It uses a table of a small set of counters in addition to the
history table. Figure 3 shows the FSM of the execution for the
counter-assisted weighting implementation.

CaPRoMi works in a different way than the other three
variations: The counters track the activations within a refresh
interval. At the end of a refresh interval, the history table is
updated and the extra activations are decided collectively. Once
an activation command is received, the counter table is searched
for row r. If a match is found, then the counter is incremented.
Otherwise, a new entry with a value of 1 is inserted into the
counter table. In parallel, the history table is searched for a
match with r and if found, then the matching address of the
history table is added to the counter table entry of r. This will
later on simplify the calculation of Eq. (1). If the number of
entries exceeds the size of the counter table, then one randomly
chosen entry is removed. The replacement has one condition:
If an entry has reached a certain threshold of activations,
then it cannot be replaced anymore, which prevents removing
frequently activated entries and is realized by a simple lock bit.

When a refresh command is received, then the decision is
made which entries of the counter table shall be activated
additionally. w logr is calculated for each entry of the counter
table using Eq. (2). The probability to activate the neighboring
rows is then calculated as pr = cntr · w logr · Pbase, where
cntr corresponds to the number of activations of row r. If the
probabilistic decision is taken, then the history table is updated
with the new value. The extra activations will then be issued
during the next refresh interval based on the addresses from
the history table.

IV. RESULTS

In this section, the experimental results are shown. We use
the gem5 simulator [3] to get realistic memory traces. The
workload is a mixed load from the SPEC CPU2006 benchmark
suite [8] along with an attacker code that has aggressors
increasing gradually from 1 to 20 aggressors per targeted bank.
The simulated workload is the same as the one used in literature
to evaluate RH solutions [13], [16], and the attacker code is

1714 Design, Automation and Test in Europe Conference

similar to the attack suggested in [12] using cache flushing.
We use the memory controller model provided by [6] and target
DDR4 [9]. Table I shows the most relevant parameters of the
simulated system.

Table I
SIMULATED SYSTEM SPECIFICATIONS

parameter value
Work load SPEC CPU 2006 mixed load

Number of cores 4
Frequency 3.4 GHz

L1 Cache size 64 KB
L2 Cache size 256 KB

DDR4 refresh window 64 ms
DDR4 refresh interval 7.8 µs

DDR4 activation to activation 45 ns
DDR4 refresh time 350 ns
DDR4 frequency 1.2 GHz

Memory activations 175 Million
Number of executed instructions 1.6 Billion

Number of refresh intervals 1.56 Million
Bit flipping activation threshold 139 K [12]

Pbase 2−23 (similar to
RefInt · Pbase 9.8 · 10−4 PARA [12])

Based on the simulated system and targeting DDR4, the
variations of TiVaPRoMi were implemented using VHDL. The
history table has 32 entries and a total size of 120 B per
1 GB memory bank. This was the best optimization based
on the simulated memory traces from the workload and the
attacker code. CaPRoMi needs a table of counters in addition
to the history table, hence it utilizes more storage. The size
of the table of counters is based on the following. First, for
DDR4 the maximum number of activations per refresh interval
is 165 [13]. Second, based on the simulated memory traces
(including the aggressors), the average number of activations
per refresh interval is 40. Optimizing between both values, the
table of counters has 64 entries. The total storage overhead for
CaPRoMi is only 374 B per 1 GB memory bank.

Additionally, the VHDL implementation is used to determine
the needed number of clock cycles to execute TiVaPRoMi.
TiVaPRoMi executes in parallel to the memory controller and
uses the DDR4 frequency of 1.2 GHz. Based on the DDR4
specifications from Table I, one loop in the FSM (see Fig. 2
and 3) from idle and back after receiving act should not
exceed 45 ns, which is equivalent to 54 clock cycles. For a
loop in the FSM after ref , it should not exceed 350 ns, which
is equivalent to 420 clock cycles. Table II shows the number
of clock cycles needed for one FSM loop for the different
variations of TiVaPRoMi. From the table, it is clear that no
violations of the clock cycle limits occur.

Table II
NUMBER OF NEEDED CLOCK CYCLES TO PROCESS AN OBSERVED act AND

ref COMMAND

CaPRoMi LoLiPRoMi LoPRoMi LiPRoMi
act 50 36 37 37
ref 258 3 3 3

To evaluate TiVaPRoMi, the memory traces from the mixed
workload (incl. the aggressors) are used to simulate our four
variations of TiVaPRoMi and the five state-of-the-art tech-
niques PARA [12], ProHit [17], MRLoc [19], TWiCe [13],

and CRA [11]. For these nine mitigation techniques, no active
attacks were successful. This shows that TiVaPRoMi is able
to achieve the same reliability as state-of-the-art techniques.
Now we need to check TiVaPRoMi against its assumptions
regarding the refresh policy. Four different refresh policies are
evaluated: (i) refreshing neighbours (as in the assumption),
(ii) refreshing neighbors but with few replacements (as with
replacing defected rows), (iii) fully random, and (iv) counter
based combined with a mask. No significant change in the
performance of TiVaPRoMi was observed.

Additionally, TiVaPRoMi has to be checked against the
flooding attack. As mentioned in Section III-A, LiPRoMi might
be vulnerable to the flooding of act to the same row. LoPRoMi
and LoLiPRoMi issued an extra activation in the first 10 K
activations. For CaPRoMi the extra activation is issued slightly
later (at 15 K activations) and for LiPRoMi it is significantly
later (around 40 K activations). While all of them are sooner
than 69 K activations, it still shows a potential vulnerability.
Note that 69 K is roughly half of the 139 K activations threshold
(needed for a successful attack) to take the case into account
where both neighbors are aggressors.

To investigate the different advantages and disadvantages,
an overhead comparison of the required table size and the
activation overhead needs to be performed. Later we will also
compare the needed hardware resources. Figure 4 shows the
results of all nine mitigation techniques (note the log scale). It
is clear from the figure that our TiVaPRoMi variants provide
a very good Pareto-optimal compromise. Compared to TWiCe,
i.e. the state of the art of tabled counters, our solutions are
9×− 27× smaller in the table size while having an activation
overhead lower than all the other probabilistic techniques.

100 102 104 106
10 3

10 2

10 1

100

Table Size per Bank in Bytes

A
ct

iv
at

io
ns

 O
ve

rh
ea

d
%

PARA
MRLoc
ProHit
TWiCe
CRA
LoPRoMi
LoLiPRoMi
LiPRoMi
CaPRoMi

Figure 4. Table size to activation overhead tradeoff

To better evaluate the performance of TiVaPRoMi compared
to existing solutions, we also implemented the five state-of-the-
art techniques (PARA, ProHit, MRLoc, TWiCe, and CRA) in
VHDL targeting DDR4 specifications. Moreover, we integrated
the VHDL implementations of all nine techniques into an actual
memory controller. As we could not find a DDR4 controller
with available HDL code, we used and modified a stable DDR3
memory controller [7]. Compared to the frequency of the DDR4
controller (1.2 GHz, see Table I), it works on a significantly

Design, Automation and Test in Europe Conference 1715

Table III
COMPARISON WITH STATE-OF-THE-ART RH MITIGATION SOLUTIONS

Resource Usage (when targeting Resource Usage (when targeting Vulnerable Activations Overhead False Positive
DDR4) in #LUTs (relative to PARA) DDR3) in #LUTs (relative to PARA) to Attack μ ± σ Rate

ProHit [17] 1, 653 (4.7×) 4, 274 (12×) No (0.6 ± 0.019)% 0.34%
MRLoc [19] 1, 865 (5.3×) 4, 667 (13×) Yes (0.11 ± 0.012)% 0.064%
PARA [12] 349 (1×) 349 (1×) Yes (0.1 ± 0.0084)% 0.062%
TWiCe [13] 258, 356 (740×) 3, 456, 558 (9, 904×) No (0.0037 ± 0.0001)% 0%
CRA [11] 5, 694, 107 (16, 315×) 5, 694, 107 (16, 315×) No (0.0037 ± 0.0001)% 0%
CaPRoMi 21, 061 (60×) 97, 863 (280×) No (0.008 ± 0.00023)% 0.007%
LiPRoMi 5, 155 (15×) 6, 586 (19×) Yes (0.012 ± 0.00034)% 0.013%
LoPRoMi 5, 228 (15×) 6, 603 (19×) No (0.016 ± 0.00064)% 0.010%

LoLiPRoMi 5, 374 (15×) 6, 701 (19×) No (0.014 ± 0.00027)% 0.011%

slower frequency of 320 MHz. This is due to the difference
between DDR4 and DDR3 specifications and also because the
DDR4 controller targets an ASIC implementation, while the
DDR3 controller targets an FPGA implementation, which does
not support so high frequencies. Due to the lower frequency of
the DDR3 controller, we have less cycles to realize a mitigation
technique compared to Table II. Only PARA and CRA could fit
in the cycle budget of the low-frequency DDR3 controller due
to their simple internal structure. For the other seven mitigation
techniques, we created modified VHDL versions that target the
DDR3 controller by increasing their parallelism per cycle (to
finish all processing in the given cycle budget), which also
increases their area requirements.

Table III shows a comparison between the different RH mit-
igation solutions from the literature and the different variations
of TiVaPRoMi. For the resource usage, PARA is used as the
reference as it has the minimum size, which is expected as it
is stateless. The LUT usage and target frequency are based on
synthesis and implementation results for a Virtex UltraScale+
XCVU9P FPGA. Among our four proposed approaches, only
LiPRoMi might be vulnerable to attacks, whereas our three
other variations are resilient against attacks. Compared to that,
it can be seen that all previous probabilistic methods except for
ProHit are prune to attacks. However, ProHit has high activation
overhead and high false-positive rate (FPR). Our techniques
use more resources than ProHit (1.6× − 23×), but provide a
reduction of activation overhead (37×− 75×) and a reduction
of FPR (23× − 44×). Compared to TWiCe, i.e. the state of
the art of tabled counters, we have a slight increase in the
activation overhead (2.1× − 4.3×), but provide a significant
reduction of needed resources (12×− 521×). It is worth noting
that the implementations of CRA and TWiCe for DDR3 need
even more resources than the targeted FPGA offers.

V. CONCLUSIONS

In this work, the RH problem is tackled. We introduce
the novel concept of time-varying probabilistic RH mitigation,
which reaches similar performance to state-of-the-art Tabled
Counters, but without their very high area requirements. Actu-
ally, our work reaches a very good trade-off between (a) hard-
to-implement counter-based techniques and (b) probabilistic
techniques with their high activation overhead and high false-
positive rates. The suggested variation LoLiPRoMi is the best
when optimizing for area, as it has a 27× reduction of storage

requirements compared to state-of-the-art tabled counters, while
demanding only 0.014% extra activations and providing a
low false-positive rate of 0.011%. When optimizing for extra
activations, then CaPRoMi is the best choice with only 0.008%
and a very low false-positive rate of only 0.007%, while still
achieving a 9× reduction of the storage requirements compared
to state-of-the-art tabled counters.

REFERENCES

[1] Z. B. Aweke, S. F. Yitbarek, R. Qiao et al., “ANVIL : Software-
Based Protection Against Next-Generation Rowhammer Attacks,” ACM
SIGPLAN Notices, vol. 51, no. 4, pp. 743–755, 2016.

[2] I. Bhati, M. Chang, Z. Chishti et al., “DRAM refresh mechanisms,
penalties, and trade-offs,” IEEE Transactions on Computers, vol. 65,
no. 1, pp. 108–121, 2016.

[3] N. Binkert, B. Beckmann, G. Black et al., “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 1–7, Aug. 2011.

[4] A. Chakraborty, M. Alam, and D. Mukhopadhyay, “Deep Learning Based
Diagnostics for Rowhammer Protection of DRAM Chips,” in Asian Test
Symposium (ATS). IEEE, 2019, pp. 86–91.

[5] T. Eisenbarth and B. Sunar, “MASCAT : Preventing Microarchitectural
Attacks Before Distribution,” in Conference on Data and Application
Security and Privacy, 2018, pp. 377–388.

[6] A. Farmahini-Farahani, DRAM Memory Controller, The Gem5 Simulator,
2013.

[7] D. Gisselquist, WB DDR3 SDRAM Controller, Gisselquist Technology,
LLC, 2012.

[8] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, p. 1–17, Sep. 2006.

[9] JEDEC, DDR4 SDRAM Specification, jesd79-4b ed., 2012.
[10] I. Kang, E. Lee, and J. H. Ahn, “CAT-TWO: Counter-Based Adaptive

Tree, Time Window Optimized for DRAM Row-Hammer Prevention,”
IEEE Access, vol. 8, pp. 17 366–17 377, 2020.

[11] D. Kim, P. J. Nair, and M. K. Qureshi, “Architectural support for
mitigating row hammering in DRAM memories,” IEEE Comput. Archit.
Lett., vol. 14, no. 1, pp. 9–12, 2015.

[12] Y. Kim, R. Daly, J. Kim et al., “Flipping bits in memory without accessing
them,” SIGARCH Comp. Arch. News, vol. 42, no. 3, pp. 361–372, 2014.

[13] E. Lee, I. Kang, S. Lee et al., “TWiCe: Preventing row-hammering
by exploiting time window counters,” in International Symposium on
Computer Architecture, 2019, pp. 385–396.

[14] C. Li and J. L. Gaudiot, “Detecting malicious attacks exploiting hardware
vulnerabilities using performance counters,” in International Computer
Software and Applications Conference, 2019, pp. 588–597.

[15] K. Razavi, B. Gras, E. Bosman et al., “Flip Feng Shui: Hammering a
needle in the software stack,” in USENIX Secur. Symp., 2016, pp. 1–18.

[16] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Mitigating wordline
crosstalk using adaptive trees of counters,” in International Symposium
on Computer Architecture (ISCA), 2018, pp. 612–623.

[17] M. Son, H. Park, J. Ahn et al., “Making DRAM Stronger Against Row
Hammering,” in Design Automation Conference (DAC), 2017.

[18] S. Wei, A. Aysu, M. Orshansky et al., “Using power-anomalies to counter
evasive micro-architectural attacks in embedded systems,” in Int. Symp.
on HW Oriented Security and Trust (HOST), 2019, pp. 111–120.

[19] J. M. You and J. S. Yang, “MRLoc: Mitigating row-hammering based on
memory locality,” in Design Automation Conf. (DAC), 2019, pp. 1–6.

1716 Design, Automation and Test in Europe Conference

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

