
Tiny-CFA: Minimalistic Control-Flow Attestation Using

Verified Proofs of Execution

Ivan De Oliveira Nunes
University of California, Irvine

ivanoliv@uci.edu

Sashidhar Jakkamsetti
University of California, Irvine

sjakkams@uci.edu

Gene Tsudik
University of California, Irvine

gene.tsudik@uci.edu

Abstract—The design of tiny trust anchors attracted much attention
over the past decade, to secure low-end MCU-s that cannot afford more
expensive security mechanisms. In particular, hardware/software (hybrid)
co-designs offer low hardware cost, while retaining similar security
guarantees as (more expensive) hardware-based techniques. Hybrid trust
anchors support security services (such as remote attestation, proofs of
software update/erasure/reset, and proofs of remote software execution) in
resource-constrained MCU-s, e.g., MSP430 and AVR AtMega32. Despite
these advances, detection of control-flow attacks in low-end MCU-s
remains a challenge, since hardware requirements for the cheapest miti-
gation techniques are often more expensive than the MCU-s themselves.
In this work, we tackle this challenge by designing Tiny-CFA – a Control-
Flow Attestation (CFA) technique with a single hardware requirement
– the ability to generate proofs of remote software execution (PoX). In
turn, PoX can be implemented very efficiently and securely in low-end
MCU-s. Consequently, our design achieves the lowest hardware overhead
of any CFA technique, while relying on a formally verified PoX as its
sole hardware requirement. With respect to runtime overhead, Tiny-CFA
also achieves better performance than prior CFA techniques based on
code instrumentation. We implement and evaluate Tiny-CFA, analyze
its security, and demonstrate its practicality using real-world publicly
available applications.

I. INTRODUCTION

With the growth of the Internet of Things (IoT) and popularity

of Cyber-Physical Systems (CPS), embedded devices have become

ubiquitous in modern society. Since they often perform safety-critical

tasks and process security- and privacy-sensitive data, they become an

attractive attack targets. In this context, Remote Attestation (RA) has

been proposed as a means to secure the software state of embedded

systems. RA is a challenge-response protocol (see Section II-B for

details) whereby a trusted verifier (Vrf) obtains an authentic and

timely report about the software state of an untrusted (and potentially

infected) remote device, called prover (Prv). This report allows Vrf
to learn whether Prv’s current state is trustworthy, i.e., whether it

hosts benign software. RA has been implemented efficiently, even

on low-end MCU-s [9], [15], [5] to detect malware presence in the

form of modified executables. However, conventional (aka static) RA
can only ensure integrity of binaries and not of their execution.

Runtime/data-oriented attacks [22] tamper with execution state

on the program’s stack or heap to arbitrarily divert the program’s

execution flow. Such attacks need not modify the executable itself,

but only the order in which its instructions are executed. Thus, they

are not detectable by conventional RA. In particular, RA cannot

detect runtime software attacks that hijack the program’s control-

flow. Control-flow attacks can be launched by a variety of means.

For instance, in languages such as C, C++, and Assembly (which

are widely used to program MCU-s), buffer overflows [4] can over-

write functions’ return addresses, hijacking the program’s control-

flow and launching well-known Return-Oriented Programming (ROP)

attacks [17]. These attacks are especially dangerous for low-end

MCU-s that can not avail themselves of more sophisticated OS-based

mitigations, e.g., canaries, Address Space Layout Randomization

(ASLR), and Control-Flow Integrity (CFI) techniques, available in

high-end platforms. We discuss a concrete example of such an

attack in low-end MCU-s (and how it is detected by Tiny-CFA) in

Section IV-A.

Control-Flow Attestation (CFA) [1], [8], [7], [24] augments con-

ventional RA capability to enable detection of control-flow attacks.

In a nutshell, CFA techniques provide Vrf with a report that allows

it not only learn if the expected code is loaded on Prv, but also

which particular instruction path was taken during each execution of

this program. In other words, CFA provides Vrf with an authentic

and unforgeable report that allows Vrf to learn if instructions of a

given program were executed in a particular expected/legal order,

or a set thereof. This is typically achieved by securely logging

information associated with the destination of each control-flow

altering instruction, e.g., jumps, branches, returns, during

program execution.

CFA techniques have been implemented on medium- to high-end

embedded devices (e.g., Raspberry Pi, and RISC-V based processors),

by leveraging trusted hardware support, such as ARM TrustZone,

hardware branch monitors, and hardware hash engines. However,

for resource constrained MCU-s, these requirements are too costly,

since their hardware overhead is often higher than that of the

MCU’s core itself, in terms of size, energy and monetary cost. To

bridge this gap, our work leverages a recently proposed primitive

– Proofs of Execution – PoX [6] (see Section II-D for details) –

along with automatic code instrumentation, to derive a new CFA
technique. Since PoX can be implemented efficiently even on most

resource-constrained MCU-s, our CFA technique has considerably

lower hardware overhead than that of prior work.

Contribution: we design, implement, and evaluate Tiny-CFA– a

CFA technique based on automated software instrumentation where

the only hardware requirement is that already provided (at relatively

low-cost) by PoX architectures. As a result, Tiny-CFA hardware cost

is about 1 to 2 orders of magnitude lower than prior CFA techniques

and it is suitable for the low-end and ultra-low-energy MCU-s, such

as MSP430 and AVR ATmega32. Furthermore, because our Tiny-CFA
implementation relies on a formally verified PoX architecture as the

sole architectural component on Prv, it is also the first CFA technique

to offer the high-level of assurance provided by a formally verified

Trusted Computing Base (TCB).

II. BACKGROUND & RELATED WORK

A. The Scope of Low-End Devices

This paper focuses on tiny CPS/IoT sensors and actuators (or

hybrids thereof) with low computing power. These are some of the

smallest and weakest devices based on low-power single-core MCU-

s with only a few KBytes of program and data memory (such as

641978-3-9819263-5-4/DATE21/ c©2021 EDAA

the aforementioned Atmel AVR ATmega and TI MSP430), with 8-

and 16-bit CPUs, typically run at 1-16MHz clock frequencies, with

≈ 64 KBytes of addressable memory. SRAM is used as data memory

normally ranging in size between 4 and 16KBytes, while the rest

of address space is available for program memory. Such devices

usually run software atop “bare metal”, execute instructions in place

(physically from program memory), and have no memory manage-

ment unit (MMU) to support virtual memory. Our implementation

is based on MSP430. This choice is due to public availability of

formally verified RA [5] and PoX [6] architectures implemented on

OpenMSP430 [10], which our work relies upon. Nevertheless, our

design rationale is applicable to other low-end MCU-s in the same

class.

B. Remote Attestation (RA)

As mentioned earlier, RA allows a trusted verifier (Vrf) to detect

unauthorized code modifications (e.g., malware infections) on an

untrusted remote device, called a prover (Prv) by remotely measuring

the latter’s software state. Per Figure 1, RA is typically realized as

a challenge-response protocol:

1)- Vrf sends an attestation request containing a challenge (Chal) to

Prv. This request might also contain a token derived from a secret

that allows Prv to authenticate Vrf.
2)- Prv receives the attestation request and computes an authenticated
integrity check over a pre-defined memory region (e.g., program

memory) and Chal.
3)- Prv returns the result to Vrf.
4)- Vrf receives the result from Prv, and checks whether it corre-

sponds to a valid memory state.

Prover (Prv)Verifier (Vrf)

(2) Authenticated

Integrity Check

(4) Verify

Report

(1) Request

(3) Report

Fig. 1. RA interaction

The authenticated integrity check is usually realized as a Message

Authentication Code (MAC) or a digital signature over Prv’s mem-

ory. However, these cryptographic primitives require Prv to have a

unique secret key (K) either shared with Vrf (MAC-s), or for which

Vrf knows the public key (signatures). This K must reside in secure

storage, and not be accessible to any (potentially compromised)

software running on Prv, except for trusted attestation code itself.

Since most RA threat models assume a fully compromised software

state on Prv, secure storage implies some level of hardware support.

RA architectures fall into three categories depending on the level

of hardware support: software-based, hardware-based, and hybrid.

Security of software-based attestation [13], [19], [20], [21] relies on

strong assumptions about precise timing and constant communication

delays, which are unrealistic in the IoT/CPS ecosystem. Hardware-

based methods [16], [23], [14], [18] rely on dedicated hardware

components, e.g., TPMs [23], Intel SGX [11], or ARM TrustZone [2].

However, the cost of such hardware is prohibitive for low-end MCU-

s. Hybrid RA [9], [3], [5] aims to achieve security equivalent to

hardware-based mechanisms, with low(er) hardware cost. It imple-

ments the authenticated integrity ensuring function in software, while

relying on minimal hardware support to assure that this software

implementation executes properly and securely.

APEX/Tiny−CFA Atrium LiteHAX LO−FAT

N
um

be
r o

f A
dd

iti
on

al
 L

oo
k−

U
p

Ta
bl

es

0
20

00
40

00
60

00
80

00
10

00
0

(a) Additional HW overhead (%) in
Number of Look-Up Tables

APEX/Tiny−CFA Atrium LiteHAX LO−FAT

N
um

be
r o

f A
dd

iti
on

al
 R

eg
is

te
rs

0
50

00
10

00
0

15
00

0

(b) Additional HW overhead (%) in
Number of Registers

Fig. 2. Overhead comparison between CFA architectures and PoX (APEX).
Dashed lines represent the total hardware cost of MSP430 core itself.
Hardware costs are as reported in the original papers [8], [7], [24], [6].

C. Control-Flow Attestation (CFA)

In addition to detection of code modification via RA, CFA detects

runtime attacks that hijack the program’s control-flow. C-FLAT [1]

is the earliest CFA architecture. It uses ARM TrustZone’s secure
world [2] to implement CFA, by instrumenting the executable with

context switches between TrustZone’s normal and secure worlds.

At each instruction that alters the control-flow (e.g., jump, branch,

return), execution is trapped into the secure world and the control-

flow path taken is logged into protected memory. C-FLAT targets

higher-end embedded devices (e.g., Raspberry Pi) and its dependence

on TrustZone (plus, numerous context switches) makes it unsuitable

for low-end MCU-s targeted in this work. (Section II-A describes the

scope of low-end MCU-s that we consider).

To remove the TrustZone dependence, subsequent CFA techniques:

LO-FAT [8] and LiteHAX [7], implement CFA using stand-alone

hardware modules: a branch monitor and a hash engine. Atrium [24]

enhances aforementioned CFA techniques, securing them against

physical adversaries that intercept instructions as they are fetched

to the CPU. Though less expensive than C-FLAT, such hardware

components are still not viable for low-end MCU-s, since their cost

(in terms of price, size, and energy consumption) is typically higher

than the cost of a low-end MCU itself. This is evident from Figure 2,

which compares hardware costs – in terms of Look-Up Tables (LUTs)

and numbers of Registers – of aforementioned CFA techniques and

the total hardware cost of the OpenMSP430’s core itself, represented

by dashed lines.

D. Proofs of Execution (PoX)

PoX augments RA capability by proving to Vrf that: (1) the

expected executable is stored in program memory, and (2) this code

indeed executed, and any claimed outputs were produced by its timely

and authentic execution.

The first PoX architecture targeting low-end MCU-s was recently

proposed in APEX [6]. APEX implements a hardware module

controlling the value of a 1-bit flag called EXEC, that cannot be

written by any software. A value EXEC = 1 indicates to Vrf
that attested code must have executed successfully, between the time

when the challenge was received from Vrf (recall the RA protocol

from Section II-B) and the time when the RA measurement occurs

(via authenticated integrity ensuring function). Similarly, when it

receives an attestation reply with EXEC = 0, Vrf can conclude

that execution of said code did not occur, or that execution (or its

output) was tampered with. In APEX, the RA measurement covers:

642 Design, Automation and Test in Europe Conference

(i) the EXEC flag itself; (ii) the region where this execution’s output

is saved (output region – OR); and (iii) the executable itself (stored in

the executable region – ER). Thus, security of the underlying RA
architecture guarantees that the contents of these memory regions

cannot be forged/spoofed to something different from their values at

time of the attestation computation. In turn, APEX considers a code

to execute properly (and sets EXEC = 1) if and only if:

1)- Execution is atomic (i.e., uninterrupted), from the executable’s

first instruction (legal entry ERmin), to its last instruction (legal exit

ERmax);

2)- Neither the executable (ER), nor its produced outputs OR are

modified in between the execution and subsequent RA computation;

3)- During execution, data-memory (including OR) cannot be mod-

ified, by means other than the executable in ER itself, e.g., no

modifications by other software or Direct Memory Access controllers.

These conditions mean that EXEC = 1 assures that memory con-

tents (of ER and OR) are consistent between ER’s code execution

and respective attestation, and that execution itself is untampered,

e.g. via interruptions, or modification of intermediate results in data

memory. ER and OR locations and sizes are configurable, allowing

for PoX of arbitrary code and output sizes. APEX implementation is

built atop the formally verified hybrid RA architecture VRASED [5],

and APEX hardware module is itself formally verified to adhere

to a set of formal logic specifications. These properties, along

with VRASED verified guarantees, are proven sufficient to imply

a security definition (stated using the cryptographic security game

framework [12]) for unforgeable of proofs of execution. Due to space

constraints, we do not overview APEX proofs and refer the interested

reader to [6].

As discussed in [6], similar to Trusted Execution Environments

(TEEs) targeting higher-end platforms (e.g., Intel SGX [11] and

ARM TrustZone[2]), APEX assumes executable correctness, i.e.,

the user is responsible for programming Prv with bug-free and

memory-safe code. Hence, by default, APEX does not provide any

security against runtime (aka control-flow) attacks. In this work, we

bridge this gap by introducing an automated code instrumentation

technique that leverages APEX to implement CFA in low-end MCU-

s. In other words, we show that CFA on top of APEX (or more

generally any PoX), without any additional hardware requirement,

is both possible and affordable. As a clear advantage over prior

techniques, our approach requires 5.4 times fewer additional LUTs

and 50 times fewer additional registers than the second cheapest

approach – LiteHAX; see comparison of APEX hardware overhead

with other CFA techniques in Figure 2).

III. Tiny-CFA

Tiny-CFA couples a formally verified PoX with code instrumenta-

tion to obtain CFA. It uses APEX PoX that ties the executed code

to its output, stored in a data-memory range of configurable size,

called OR. The basic idea is to instrument the code to produce a

log of the program control-flow path, and make it a part of output.

The program instrumentation writes the destination address of each

control-flow altering instruction into OR. We denote this control-flow

log as CF-Log.

As shown in Figure 3, in Tiny-CFA, both regular program outputs

and CF-Log are written to OR. Recall from Section II-D that OR
size/location is configurable. Hence, Vrf can chose OR to be large

enough to fit both the regular program output and its expected CF-

Log. Note that, in any CFA scheme, Vrf must have a priori knowledge

of the expected/benign control-flows and their sizes. Therefore, the

Fig. 3. OR region used to store regular program outputs and CF-Log.

appropriate OR size is trivially obtained by adding the regular output

and CF-Log sizes. The regular program output is written to OR
normally, bottom-to-top of OR, as in APEX. Whereas, Tiny-CFA
instrumentation writes CF-Log to OR from top to bottom. This

strategy is similar to how stack and heap are handled in RAM and

it assures that the program output and CF-Log do not interfere or

overlap with each other, as long as OR is appropriately sized.

We believe that this general idea is both intuitive and sensible; it

guides Tiny-CFA’s design. However, ensuring that Tiny-CFA results

in a secure CFA design is significantly more challenging. To see

why, note that the executable to be attested, (i.e., security-critical

code stored in ER) is itself subject to control-flow attacks. Thus,

any values logged to CF-Log by the instrumented executable can, in

principle, be modified as part of a control-flow attack. In other words,

Tiny-CFA’s approach is only secure is CF-Log is an append-only
log. Otherwise, upon completion of its nefarious tasks, a control-flow

attack can overwrite CF-Log to reflect a benign or expected control-

flow, erasing any trace of the compromised control-flow and thus

fool Vrf. In higher-end CFA architectures (e.g., C-FLAT [1]), this

property is obtained by logging the control-flow to dedicated secure

memory, which is never accessible to untrusted/application code, e.g.,

C-FLAT uses TrustZone’s secure world. However, as discussed in

Sections I and II, low-end MCU-s cannot afford such expensive

security features. Below, we detail how Tiny-CFA can be made secure

by relying exclusively on PoX and instrumentation, thus retaining its

suitability for low-end MCU-s.

A. Design Rationale & Security

We now discuss Tiny-CFA design rationale and security properties

(P1-P6) at high-level. Implementation details of an instance of Tiny-
CFA on MSP430 are further specified in Section III-C. We postulate

the properties that ensure that control-flow attacks are always detected

under the following comprehensive adversarial model:

Adversarial Model – we assume that the adversary controls Prv’s
entire software state, including code and data. Adv can modify
any writable memory and read any memory that is not explicitly
protected by hardware-enforced access control rules (e.g., APEX
rules). Program memory modifications can be performed to change
instructions, while data memory modifications may trigger control-
flow attacks. Adversarial modifications are allowed before, during,
or after the execution of the program whose control-flow is to be
attested.

[P1]: Integrity of Code, Instrumentation and Output – Clearly,

any instrumentation-based approach is only sound if unauthorized

modifications to the instrumented code itself (e.g., to remove instru-

mentation) are detectable. Detection of modifications is offered by the

underlying RA and PoX architectures (see Section II). In particular,

these architectures guarantee that any unauthorized code modification

is detected by Vrf. They also guarantee that modifications to attested

Design, Automation and Test in Europe Conference 643

executable’s output (OR – which includes CF-Log) are only possible

if done by the attested executable itself, during its execution.

[P2]: Secure logging of control-flow instructions– The first step

in Tiny-CFA, is to instrument all control-flow altering instructions to

log their destinations to CF-Log, in OR. CF-Log is implemented as a

stack, from the highest value in OR (ORmax) growing downwards,

as shown in Figure 3. The pointer to the top of this stack is

stored in a dedicated register R. Each control-flow instruction is

then instrumented with additional instructions to push its destination

address to this stack, i.e.: (i) write the destination of address to

the memory location pointed to by R; and (ii) decrement R. At

instrumentation time, the assembly code of the executable is inspected

to assure that no other instructions utilize the MCU register R. In all

practical examples considered in this work, executables have at least

one free register available. If no such register exists by default, the

code can be recompiled to free up one register.

[P3]: Secure logging of conditional branches – Conditional

branches determine control-flow at runtime, depending on a result

of a conditional statement, e.g., a comparison or equality test. These

instructions are used to implement loops and if-then-else
statements used in high-level languages. Conditional branches are

instrumented by pushing to CF-Log’s stack (using the same method as

in P2) the possible destinations as well as the result of the conditional

statement. This way, by inspecting CF-Log, Vrf can determine the

exact path taken by the conditional branch.

[P4]: Write safety – Write operations are dangerous since they

can be used during an attack to overwrite CF-Log, thus hiding the

compromised control-flow from Vrf. Direct writes (which modify

constant addresses) are easy to deal with, because they can be

statically inspected for safety at instrumentation time. In particular,

the instrumenter can verify that no direct writes modify CF-Log

reserved addresses in OR. Indirect writes modify memory addresses

determined at runtime. Consequently, they require instrumentation to

check their safety, also at runtime. After each indirect write, Tiny-CFA
instrumentation introduces instructions to check whether the write

destination is within CF-Log by checking if the write destination is

within the range [R, ORmax] – the memory range currently in use to

store CF-Log. Upon detection of an illegal write, execution is halted,

implying an invalid control-flow.

[P5]: Wrap-around attack protection – Given the inability to

modify CF-Log due to checks performed in previous steps, the last

resort for a control-flow attack to go undetected is to keep executing

control-flow instructions until R value overflows and wraps-around,

coming back to its initial value R = ORmax and overwriting of

CF-Log. To protect against such attacks, modifications to R have an

additional check, ensuring that whenever R points to an instruction

outside OR range, execution is halted.

[P6]: R initialization verification – Previous properties rely on

the fact that R is initialized as R = ORmax at the start of execution,

to assure that CF-Log is indeed stored in OR. However, performing

this initialization inside the executable being attested allows for

control-flow attacks that jump back to the R initialization code to

reset R in the middle of the execution. Instead of initializing R
inside the attested executable, Tiny-CFA instruments the executable to

check if R has been previously properly initialized to R = ORmax.

In turn, the caller application becomes responsible for initializing

R appropriately, making control-flow attacks that re-initialize R to

reset CF-Log impossible, sine they require jumping outside of the

executable range – ER – which is detected by APEX as a violation.

Security Argument: Let P denote a procedure/function/code-

segment for which execution and control-flow need to be attested.
Properties P2 & P3 assure that all changes to the control-flow of P
are logged to CF-Log at runtime. Then, by inspecting an authentic
(untampered) CF-Log, Vrf can determine the exact control-flow taken
by that particular P execution. Meanwhile, properties P5 & P6
guarantee that CF-Log is stored inside OR, within [R, ORmax]
range. Property P4 detects any illegal writes during execution that
attempt to modify CF-Log, i.e., writes to [R, ORmax] range. Hence,
for a given execution of P , the combination of P4, P5 & P6
guarantees that each written value can never be overwritten or
deleted from CF-Log. Finally, P1, inherited from the underlying
PoX architecture, assures that neither P instructions (including
instrumentation), nor its output (including CF-Log) can be modified
by other means (e.g., other software on Prv, interrupts, DMA) before,
during, or after execution. Any such attempt is detectable by Vrf,
because it causes APEX to set EXEC = 0; recall the EXEC flag
behavior described in Section II-D. Therefore, Tiny-CFA properties
P1-P6 suffice to implement secure CFA, under the aforementioned
adversarial model.

B. Optimizations

In practice, CF-Log size determines the practicality of Tiny-CFA
due to the resource-constrained nature of low-end MCU-s, especially,

with respect to memory size. In fact, although secure, the approach

described thus far tends to bloat rapidly for control-flow intensive

code segments, e.g., loops with many iterations. In this section, we

discuss two simple optimizations (O1 & O2) that significantly reduce

CF-Log size without sacrificing overall security.

O1- Static Control-Flow Instructions – We observe that control-

flow instructions with constant destination addresses (determined

statically in the code) need not be logged to CF-Log, as their effect on

the program control-flow can not change at runtime. This removes the

need to log operations, such as usual function calls (with exception

of callbacks), fixed-address go-to-s, and similar.

O2- Loops – Loops are challenging to log efficiently due to their

high number of control-flow operations. For instance, consider a

delay function based on busy-wait, commonly used in MCU code. It

essentially consists of a loop that increments a counter up to a certain

constant. The higher the delay, the higher the number of iterations,

implying the higher the number of control-flow instructions to be

logged. In turn, even a simple loop, such as a 1-second delay, would

require millions of iterations (assuming typical clock frequencies on

the order of MHz) resulting in millions of symbols logged to CF-

Log. To deal with such cases, we introduce an optimization that

removes the requirement to store each control-flow instruction for

loops for which number of iterations can be predicted statically, at

instrumentation time.

Specifically, Tiny-CFA instrumenter inspects each conditional

branch. For each loop branch instruction instruction bi, changing the

control-flow to destination instruction di, the instrumenter inspects

all instructions in the range [bi, di]. If no indirect control-flow

instructions exist in this range, the number of iterations caused by

such a loop can be determined exclusively by checking the branch

condition and the variables involved in this condition. Therefore,

instead of logging each branch at every iteration, Tiny-CFA simply

logs the condition itself, only once. This allows Vrf to learn the exact

control-flow generated by a loop (i.e., # iterations) without bloating

CF-Log. In our 1-second delay example, instead of logging millions

of symbols, the loop would log just a couple of bytes, corresponding

to the loop exit condition (typically, a comparison to a constant, e.g.,

644 Design, Automation and Test in Europe Conference

1

2

3

4

5 ret

(a) Original

1 mov r1, @r4
2 dec r4
3 cmp #OR_MIN, r4
4 jn .L11
5 ret

(b) Instrumented

Fig. 4. Instrumentation example: indirect control-flow instructions.

1 mov.b r15, @r14
2

3

4

5

6

7 ...

(a) Original

1 mov.b r15, @r14
2 cmp r4, r14
3 jlo .L12
4 cmp #OR_MAX, r14
5 jlo .L11
6 .L12:
7 ...

(b) Instrumented

Fig. 5. Instrumentation example: indirect write instructions.

i < 106). This optimization also applies to loops used in common

memory/array manipulations, e.g., in memset, and memcpy.

C. Implementing Tiny-CFA

We now describe how properties P1-P6 are securely implemented

via automatic assembly instrumentation on the MSP430 MCU. Our

instrumenter is implemented in Python with approximately 300
lines of code.

Figure 4 shows the instrumentation of indirect control-flow instruc-

tions: return in this particular example. It writes the return address,

which in MSP430 assembly must be loaded to register r1 before

ret is called, to CF-Log. In our implementation R = r4. Hence, the

content of r1 (destination address) is copied to the address pointed

to by R in OR, as required by P2. To also enforce P5, upon writing

to the address of R, and moving R to point to the next address, the

comparison at line 3 checks if R is still inside OR, otherwise exiting

the program, by jumping to an exit instruction at line 4.

Figure 5 depicts the instrumentation of indirect write instructions

to enforce P4. Upon writing to a given memory location (address

pointed to by r14, in this example), checks are performed to

determine if this write operation did not modify CF-Log memory

range: [R, ORmax]. If an illegal write occurs, program execution is

halted (at line 5) and a control-flow attack attempt is detected.

Figure 6 shows the instrumentation, required by P6, at the begin-

ning of the code segment. It ensures that R is properly initialized,

otherwise halting execution at line 3.

Finally, Figure 7 depicts the instrumentation required by P3. It

logs to CF-Log the results of conditional statements. Note that, after

a conditional statement (e.g., at line 1) evaluation, the result is stored

in the status register r2. Hence, the content of r2 is written to CF-

Log (line 2), since it is sufficient to determine the destination of the

conditional branch. The same check to enforce P5 in Figure 4, is

also performed in this case, because information is being written to

CF-Log. Since this check itself overwrites r2, the original value of r2
needs to be retrieved (at line 6) before the actual branch instruction

at line 7.

Remark: Tiny-CFA can not be abused by control-flow attacks that
jump in the middle of the instrumentation instructions. Such an illegal
jump is logged to CF-Log and is thus detectable by Vrf. Since R never
retracts (within a given execution), write checks (see Figure 5) make
it impossible to delete any information logged to CF-Log, including
jumps into the middle of instrumented code instructions.

1 application:
2

3

4 ...

(a) Original

1 application:
2 cmp #OR_MAX, r4
3 jne .L11
4 ...

(b) Instrumented

Fig. 6. Instrumentation example: R initialization check.

1 cmp.b #64, r15
2

3

4

5

6

7 jne .L2
8 ...

(a) Original

1 cmp.b #64, r15
2 mov r2, @r4
3 dec r4
4 cmp #OR_MIN r4
5 jn .L11
6 mov l(r4), r2
7 jne .L2
8 ...

(b) Instrumented

Fig. 7. Instrumentation example: conditional branches.

IV. CASE STUDY & EVALUATION

A. Case Study: Control-Flow Attacks in Low-End MCU-s

Control-flow attacks can be extremely harmful, especially, for

low-end devices used for safety-critical tasks. To illustrate this

point, we show an attack on a medical syringe pump application

implemented on a low-end MCU. For clarity, we focus on a simplified

version of the OpenSyringePump application1. Later, in Section IV,

we evaluate Tiny-CFA on three applications, including the original

OpenSyringePump code, which is longer and more complex than the

example used here. OpenSyringePump was also used to motivate and

evaluate prior CFA approaches, e.g., C-FLAT.

Consider the C code segment in Figure 8. In this application, the

MCU is connected through the general-purpose input/output (GPIO)

port P3OUT (used at lines 5 and 8) to an actuator, responsible for

injecting a given dose of medicine, determined in software, according

to commands received through the network, e.g., from a remote

physician. The function injectMedicine injects the appropriate

dosage according to the variable dose, by triggering actuation for

an amount of time corresponding to the value stored in dose. To

guarantee a safe dosage, the if statement (at line 4) assures that the

maximum injected dosage is 9, thus preventing overdosing.

Dosage is determined according to a list of values, e.g., symptom

severity measures received from a remote physician. The function

parseCommands (line 11) is responsible for making a copy of the

received values and processing them to determine appropriate dosage.

However, this function can also be used to trigger a buffer overflow

attack, leading to a malicious control-flow path. Specifically, because

the size of copy_of_commands is static and equal to 5, an input

array of larger size can cause other values in the program’s stack to

be overwritten, beyond the area allocated for copy_of_commands,

and including the memory location storing the return address of

parseCommands. In particular, the return address is overwritten

with the value of recv_commands[5]. By setting the content of

parseCommands[5] to the address of line 5 in Figure 8, such

an attack causes the control-flow to jump directly to line 5 (when

parseCommands returns), skipping the safety check at line 4, and

potentially overdosing the patient.

The above attack example is detectable neither by static RA
techniques nor by PoX techniques, since expected (unmodified) code

still executes in its entirety, yet in an unexpected order. Tiny-CFA,

however, detects such control-flow attacks, because the instrumenta-

1Available at: https://github.com/naroom/OpenSyringePump

Design, Automation and Test in Europe Conference 645

tion of indirect control-flow instructions (e.g., return in Figure 4)

commits the maliciously overwritten return address to CF-Log.

In Section IV we evaluate Tiny-CFA performance in 3 realistic

safety-critical applications: (1) OpenSyringePump – the full imple-

mentation of our toy example in Figure 8; (2) FireSensor 2 – a

fire detector based on temperature and humidity sensors; and (3)

UltrasonicRanger 3 – a sensor used by parking assistants for obstacle

proximity measurement.

1 int dose = 0;
2

3 void injectMedicine(){
4 if (dose < 10){ //safety check preventing overdose
5 P3OUT = 0X1;
6 delay(dose*time_per_dose_unit);
7 }
8 P3OUT = 0x0;
9 }

10

11 void parseCommands(int *recv_commands, int lenght){
12 int copy_of_commands[5];
13 memcpy(copy_of_commands, recv_commands, lenght);
14 dose = processCommands(copy_of_commands);
15 return;
16 }

Fig. 8. Safety critical application exploitable by control-flow attacks.

B. Experimental Results

Recall that, since Tiny-CFA requires no hardware support beyond

that already provided by APEX [6], its hardware costs remain con-

sistent with Figure 2. Therefore, this section focuses on other costs:

code size increase, runtime overhead, and CF-Log size. As mentioned

in Section IV-A, our evaluation instantiates Tiny-CFA on MSP430

with three real-world, publicly available, and safety-critical use cases:

SyringePump, FireSensor, and UltrasonicRanger. Ta-

bles I and II present experimental results for these three applications

in their unmodified forms and when instrumented by Tiny-CFA. In

each case, the attested execution corresponds to one iteration of the

application’s main loop (i.e., the application can report to Vrf with

the attestation response once per iteration), involving the respective

sensing and actuation tasks.

SyringePump FireSensor UltrasonicRanger

Code Size 218 bytes 434 bytes 238 bytes

Runtime 159644 cycles 20919 cycles 2799 cycles

TABLE I
ORIGINAL APPLICATION COSTS

SyringePump FireSensor UltrasonicRanger

Code Size 416 bytes 790 bytes 442 bytes

Runtime 162218 cycles 31818 cycles 3027 cycles

CF-Log size 400 bytes 2068 bytes 30 bytes

TABLE II
INSTRUMENTED APPLICATION COSTS

In all three cases, code size increases by ≈ 80%, while CF-Log

size ranges between 30 and 2k Bytes, and runtime overhead varies

between ≈ 2% and ≈ 50%. CF-Log size depends on the number

of control-flow transfers occurring in the application. Programs

performing simple tasks need smaller log size (< 1k bytes), while

those with complex tasks would need larger log sizes.

Tiny-CFA exhibits lower runtime overhead than C-FLAT [1]. C-

FLAT is only evaluated using the SyringePump example, and its

reported runtime overhead is ≈ 76%, due to instrumentation of tram-

polines and context switches; see [1] for details. Meanwhile, in all

considered applications, Tiny-CFA runtime overhead remains below

2Available at: https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/
Grove_Modules/temp_humi_sensor

3Available at: https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/
Grove_Modules/ultrasonic_ranger

≈ 50%. This is justified by: (1) simpler design that does not rely

on trampoline hypercalls or context switches, and (2) optimization

O2, which removes per-iteration instrumentation away from delay

loops. Since delay loops are used frequently in sensing/actuation

applications, this optimization comes in handy in most practical

scenarios. However, we do not compare runtime overhead of Tiny-
CFA with Lo-FAT and LiteHAX since these two techniques do not

instrument code, instead detecting branches in hardware.

In summary, experimental results indicate that, in all sample appli-

cations, instrumented executables remain well within the capabilities

of low-end MCU-s, thus supporting Tiny-CFA’s practicality.

V. CONCLUSIONS

We designed, implemented and evaluated Tiny-CFA: a low-cost

CFA approach targeting low-end MCU-s. Tiny-CFA couples a for-

mally verified PoX architecture with automated code instrumentation

to yield an effective low-cost CFA. We argued security of Tiny-CFA
and demonstrated, via a MSP430-based implementation, its ability to

detect control-flow attacks.

Acknowledgments: We thank DATE’21 anonymous referees for their

helpful comments. This research was supported in part by funding

from Army Research Office (ARO), under contract W911NF-16-1-

0536 and Semiconductor Research Corporation (SRC), under contract

2019-TS-2907.

REFERENCES

[1] T. Abera et al., “C-flat: Control-flow attestation for embedded systems
software,” in ACM CCS, 2016.

[2] Arm Ltd., “Arm TrustZone,” 2018. [Online]. Available: https:
//www.arm.com/products/security-on-arm/trustzone

[3] F. Brasser et al., “Tytan: Tiny trust anchor for tiny devices,” in DAC.
ACM, 2015.

[4] C. Cowan et al., “Buffer overflows: Attacks and defenses for the
vulnerability of the decade,” in IEEE DISCEX. IEEE, 2000.

[5] I. De Oliveira Nunes et al., “VRASED: A verified hardware/software
co-design for remote attestation,” USENIX Security’19, 2019.

[6] ——, “APEX: A verified architecture for proofs of execution on remote
devices under full software compromise,” in USENIX Security, 2020.

[7] G. Dessouky et al., “Litehax: lightweight hardware-assisted attestation
of program execution,” in 2018 IEEE/ACM ICCAD, 2018, pp. 1–8.

[8] ——, “Lo-fat: Low-overhead control flow attestation in hardware,” in
DAC. ACM, 2017, p. 24.

[9] K. Eldefrawy et al., “SMART: Secure and minimal architecture for
(establishing dynamic) root of trust,” in NDSS. Internet Society, 2012.

[10] O. Girard, “openMSP430,” 2009.
[11] Intel, “Intel Software Guard Extensions (Intel SGX).” [Online].

Available: https://software.intel.com/en-us/sgx
[12] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC

press, 2014.
[13] R. Kennell et al., “Establishing the genuinity of remote computer

systems,” in USENIX Security, 2003.
[14] X. Kovah et al., “New results for timing-based attestation,” in IEEE S&P

’12, 2012.
[15] J. Noorman et al., “Sancus 2.0: A low-cost security architecture for iot

devices,” ACM TOPS, 2017.
[16] J. Petroni et al., “Copilot — A coprocessor-based kernel runtime

integrity monitor,” in USENIX Security, 2004.
[17] R. Roemer et al., “Return-oriented programming: Systems, languages,

and applications,” ACM TISSEC, 2012.
[18] D. Schellekens et al., “Remote attestation on legacy operating systems

with trusted platform modules,” Science of Comp. Programming, 2008.
[19] A. Seshadri et al., “SWATT: Software-based attestation for embedded

devices,” in IEEE S&P ’04, 2004.
[20] ——, “Pioneer: Verifying code integrity and enforcing untampered code

execution on legacy systems,” in ACM SOSP, 2005.
[21] ——, “SAKE: Software attestation for key establishment in sensor

networks,” in DCOSS, 2008.
[22] L. Szekeres et al., “Sok: Eternal war in memory,” in 2013 IEEE

Symposium on Security and Privacy. IEEE, 2013, pp. 48–62.
[23] Trusted Computing Group., “Trusted platform module (tpm),”

2017. [Online]. Available: http://www.trustedcomputinggroup.org/
work-groups/trusted-platform-module/

[24] S. Zeitouni et al., “Atrium: Runtime attestation resilient under memory
attacks,” in IEEE ICCAD, 2017.

646 Design, Automation and Test in Europe Conference

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

