
Special Session Paper

Learning to Automate the Design Updates From

Observed Engineering Changes in the Chip

Development Cycle

Victor N. Kravets
IBM T. J. Watson Research Center

New York, NY

kravets@us.ibm.com

Jie-Hong R. Jiang
National Taiwan University

Taipei, Taiwan

jhjiang@ntu.edu.tw

Heinz Riener
EPFL

Lausanne, Switzerland

heinz.riener@epfl.ch

Abstract—The behavioral revisions to the design are frequent
in the late stage of the semiconductor chip development. Quite
often, their realization emphasizes incrementality that seeks min-
imum perturbation of the existing implementation. This tutorial
paper poses the engineering change order (ECO) problem as the
functional decomposition and proposes its solution in the form
of the Boolean equations. We hope that the sufficient generality
of the statement will be useful in extending the existing state-
of-the-art design revision techniques. To assist in this process,
we present an observed variety of design revisions encountered
in the chip development cycle. The knowledge of such frequent
and realistic ECOs is essential in advancing a tool’s ability to
yield compact implementation updates. We believe that sharing
our experience of practical ECOs would benefit the research
community in developing an open-source tool.

I. INTRODUCTION

The engineering change order (ECO) is an essential practice

in the chip development cycle that incrementally updates the

current implementation relative to a revised specification. Such

revisions are often a result of the functional bugs discovered

late in the cycle or may target an improved operation of the

current implementation. To avoid the often volatile task of

rerunning the design automation tool-chain or the costly re-

generation of masks, the ECO asks to rectify the current cir-

cuitry of design incrementally, with minimal incurred penalty

to its already attained quality. The research to automate the

ECO task spans several decades and continues contributing to

the maturity of available software tools.

Various factors may inhibit the potential quality of the

automated updates, including the relative complexity of the

revision, the design closure effort already invested in the

current implementation, the stability of tools used to obtain the

implementation, among others. These and other factors drive

practical decisions when crafting an automated rectification

approach. The ultimate challenge, however, is making an ECO

tool that separates these concerns, and reliably handles a broad

set of chip design scenarios.

In recent years the research community made notable con-

tributions towards the functional ECO methods. The advances

in Boolean satisfiability (SAT) engines now enable answers to

propositional queries for larger designs. The ECO methods

can localize errors and offer their correction under certain

assumptions; both are crucial steps in automating the ECO

solutions. The popularized application of satisfiability solvers

also extends into domains of quantified Boolean logic. Its

use offers concise statements of rectification [9]; whose syn-

thesized patch depends less on the acquired structure of a

revised specification. However, the general-purpose solvers,

even for the quantified Boolean logic, is still a developing

subject in research. The limited scalability of the solvers

gives prominence to the ECO algorithms that integrate the

medium of heuristic reasoning. These algorithms also enable

the controlled rectification quality outside of a solver.

This paper poses the ECO problem in the form of functional

decomposition. The rigor of Boolean equations is used to

derive a closed-form representation that captures the functional

rectification choices. The formulation does not depend on the

representation form of the revised specification. The stated

equations, however, raise the scalability concerns even when

applied to small designs. We, therefore, propose to overload

the said computation with a sampling domain that yields an

over-approximated solution. Validating the presented hypothe-

ses while learning from their falsifying counter-examples leads

to a rectification answer or proves that it is not possible. The

work in [10] studies a constrained variant of this approach that

uses the synthesized revised specification.

We illustrate the scope of the design rectification prob-

lem with the examples of ECOs observed during the chip

development cycle. The encountered examples are described

in the context of their connecting logic. The knowledge of

such realistic ECOs is vital in the development of a robust

rectification tool, to yield compact implementation updates.

We believe that sharing our experience with practical ECOs

would benefit the research community in developing ever-

improved, open-source tools.

The remainder of the paper is organized as follows. Section

II states the task of ECO using the rigor of Boolean reasoning.

The symbolic sampling approach to assist in solving the

stated computational forms is given in Section III. Section IV

describes the types of revisions in specification during the chip

development. Section V concludes this paper summarizing

potential future directions.

978-3-9819263-4-7/DATE20/ c©2020 EDAA 738

Special Session Paper

f ≡ (f1, . . . , fk)

circuit implementation

f
′
≡ (f ′

1
, . . . , f ′

k
)

new specification

f
′
≡ (f ′

1
, . . . , f ′

k
)

rectified circuit

Figure 1. ECO problem asks to rectify implementation of f to meet new
specification f

′.

II. RECTIFICATION USING BOOLEAN REASONING

This section uses Boolean reasoning to formulate the ECO

problem for the design rectification. It states the computational

methods for finding a rectification.

A. Functional ECO formulation

The work in [10] formulates the functional ECO problem

using the notion of functional decomposition. The formulation

is re-stated below, establishing the terminology for further

discussion.

Consider a Boolean function f : Bn → B
k that describes

behaviour of an n-input k-output combinational logic. For a

changed specification f ′ ≡ (f ′

1, . . . , f
′

k), the ECO problem

asks to rectify the k-output circuit implementation C of f ≡

(f1, . . . , fk) to meet the revision (see Figure 1 illustration). To
solve the ECO problem, it suffices to search for a vector of

pins (p1, . . . , pm) at gate inputs or possibly at circuit outputs
in C, changing the functions of their driving nets. Let h ≡

(h1, . . . , hk) denote the composition function that is computed

at the outputs of C while treating the pins p1, . . . , pm as free

circuit inputs. The circuit rectification then finds h and r such

that f ′ = h(r), where h composes individual functions of r ≡
(r1, . . . , rm) at the inputs that correspond to pins p1, . . . , pm.
We refer to r as a rectification function, highlighting the

behavioral change in the specification that it captures. The pins

(p1, . . . , pm) are referred to as rectification points. They define

outputs of a patch that updates the current implementation C.

Optimization also selects the patch inputs from existing signals

in the circuit implementation, with the common goals that

include reduced size of patch, and its improved connectivity.

B. Validation of candidate rectification

For the given functions f ′ and h, we can determine valid

choices for the rectification function r from the analytically

derived consistency of equation f ′ = h(r).
Let y ≡ (y1, . . . , ym) be variables of the m rectification

points, and let f ′ and h denote the index-corresponding single-

output functions from f ′ and h. Given a rectification function

r(x), the following characteristic function expresses consistent
input-output behavior of its circuit implementation:

R(x,y) ≡ (y1=r1(x)) ∧ · · · ∧ (ym=rm(x)) (1)

It also serves as the characteristic function of a care-set that

determines the choice of h: the values of h must agree with

the values of f ′ in the set, and can be arbitrary outside of it.

With this observation, the function r rectifies an output of h if

and only if the following inequality holds for all assignments

to x and y:

f ′(x) ∧R(x,y)
︸ ︷︷ ︸

L(x,y)

≤ h(x,y) ≤ f ′(x) ∨ ¬R(x,y)
︸ ︷︷ ︸

U(x,y)

(2)

Using the short-hand notation for the lower and upper bounds,

the above inequality reduces to a single equation:

φ(x,y) ≡ ¬L(x,y)∧¬h(x,y)∨h(x,y)∧U(x,y) = 1 (3)

The universal consistency for all input values of φ(x,y), i.e.
the equation tautology, determines validity of the presented

rectification function or else prunes it. For the general case

of a k-output circuit, the consistency of the product com-

puted over all the given outputs validates the rectification:
∏k

i=1 φi(x,y) = 1.

C. Synthesis of rectification

We continue by deriving a closed-form computation for the

functional choices of a patch. The stated computational form

makes no use of structure acquired by the representation of a

revised specification f ′, treating it in this sense as a black box.

It synthesizes the patch expressing its functional choices using

internal signals in the circuit implementation C. Thus any of

the signals from C that keeps it well-formed is a legitimate

patch input candidate, although potentially superfluous.

Let s ≡ (s1, . . . , sK) be variables that uniquely identify the
K candidate patch inputs, and let the ti(x) functions (1 ≤
i ≤ K) describe their individual behavior. Analogous to the

equation (1), the input-output consistency of these signals is

captured by

T (x, s) ≡ (s1= t1(x)) ∧ · · · ∧ (sK = tK(x)) (4)

The meaning of inequality (2) extends when its R(x,y)
function is replaced with the T (x, s) function. The substitution
introduces an implicit relation between the s and y variable

values that control the consistency of the inequality. The re-

sulting generalized inequality can be solved for the consistent

values of x and y obtaining their explicit characterization

R(s,y). Indeed, let us reduce the inequality to an equation
ψ(x, s,y), analogous to how φ(x,y) derives from (2). The

solution R(s,y) must hold independent of all x values, and
is computed as

R(s,y) ≡ ∀xψ(x, s,y) (5)

For R(s,y) to yield a valid patch function, its relation must
be total in the space of s:

∃yR(s,y) = 1.

There could be a variety of distinct patch functions that

are characterized by R(s,y). To solve the relation for a

patch function, the process of determinization (see, e.g., [2]

[8]) is applied to R(s,y)). It yields a deterministic relation
R(s,y) compatible with R(s,y) that identifies a unique output

Design, Automation And Test in Europe (DATE 2020) 739

Special Session Paper

response to each input of the patch. A practical pre-processing

step in the determinization is to eliminate as many candidate

patch inputs as possible, with the justifiable hope that it leads

to reduced patch size, or other measure. The elimination can be

done through the universal quantification of a carefully chosen

subset of the s variables while ensuring that the resulting

relation remains total.
The approach in [6] describes a tailored heuristic for elim-

inating candidate patch inputs in the context of SAT-solving.

The solution avoids the explicit construction of rectification

choices. The SAT-based formulation, however, is not stated in

the closed form. It constructs the patch one output at-a-time,

successively deriving the permitted output behavior in the form

of an interpolant [5] [12] from a companion satisfiability (SAT)

problem. The approach uses the CNF to represent a revised

specification, and its innate structure may influence the choice

of the interpolant function that ultimately determines the patch

quality.
An optimal selection of patch inputs that works well on

the ECOs encountered in practice is not a solved problem

yet. Although the existing approaches for the optimal support

computation of incompletely specified functions [11] can be

adopted when the patch characterizations R(s,y) have a small

number of variables (i.e., a few dozen).

D. Rectification points enumeration

A set of m pins, designated by the independent variables

y, forms the rectification points if and only if the following

equation is consistent:

η(x,y) ≡ (∀x∃y(f ′(x) = h(x,y))) = 1 (6)

The formula states that for every assignment to the x variables,

there must be an assignment to the y variables, which makes

values of f ′ and h equal. The equation consistency may also be

demonstrated by finding the Skolem functions for variables y

such that substituting y with their respective Skolem functions

in equation (6) yields a tautology. In this way, the Skolem

functions serve as the rectification function r, which amounts

to a more complex problem of solving the Section II-A

functional decomposition equation f ′ = h(r). Deriving a patch
for already validated rectification point-sets while pruning the

falsified sets, reduces the ECO automation effort. However,

enumeration of the pin-sets that give a feasible rectification

remains computationally challenging.
Heuristic approaches (such as in [7]) that assess a point’s

controllability of outputs are prone to conservative decision

making when m > 1. The formulation in [15] uses implicit

enumeration, instrumenting the diagnostics with decision vari-

ables that determine the rectification point-sets. The approach

is stated in the context of error localization using SAT-

solving. It is further studied with the application to rectification

logic synthesis in [13]. In the other work [10], the search

space encoding draws an analogy with the classical facility

location problem (see, e.g., [3]), that assigns a customer (i.e.,

rectification variable yi) to a facility (i.e., circuit pin pj). The

work uses auxiliary variables that parameterize the η(x,y)
computation to obtain a characteristics function of rectification

point-sets.

The inherent combinatorial complexity of enumerating the

rectification points may also be addressed algorithmically.

Instead of the simultaneous revision of all outputs, the iterative

rectification of individual non-equivalent output pairs (or of

their carefully selected subsets) reduces the complexity. It

divides the search into more manageable subproblems, whose

deduced patches tend to have a small number of rectification

points. They may also be structurally shared with other out-

puts, possibly yielding their simultaneous correction of logic.

III. APPLICATION OF SAMPLING

This section discusses a sampling method to improve the

scalability of the computational forms for fulfilling an ECO.

A. Symbolic sampling

The computational forms stated in Section II may not scale

well on the larger designs. Their binary-decision diagrams

(BDD) representation is particularly sensitive to the design

size parameters, such as the number of input variables x.

As a result, for example, the construction of characteristic

function T (x,y) for the candidate patch inputs could become

prohibitive even when the number of candidate inputs K is

small.

While adapting the studied Boolean reasoning notions to the

SAT-solving is possible, the symbolic sampling method, pro-

posed in [10], retains the derived computational structures, and

solves the derived equations in their earlier stated form. Given

a formula that contains input variables x ≡ (x1, . . . , xn), a
sampling domain is a set of assignments to x. The assignments

may also be viewed as bit patterns. For a sampling domain

with N bit patterns {x̂1, . . . , x̂N}, a set of z variables of size

≥ ⌈log
2

N⌉ is introduced to encode those patterns. The en-

coding is defined by a vector of mutually orthogonal functions

(e0(z), . . . , eN−1(z)). In a straight-forward encoding choice,

each function ei picks a single assignment to z that valuates

it to the truth. A sampling function g ≡ (g1, . . . , gn) then

uses a chosen encoding to map the z assignments to the x

assignments, and is computed as the matrix product:

[

e0(z), . . . , eN−1(z)
]











x̂1
x̂2
...

x̂N











=[g1(z), . . . , gn(z)]

where the multiplicand is an N × n binary matrix comprised

of the sampling domain patterns.

The overloading of variables x with the sampling function

g(z) casts the formula operation from its exact domain of x

to the sampling domain of z. This way, the symbolic sampling

method trades off the desired degrees of precision versus

computational complexity. It makes computations more robust

as the formula no longer depends on the design inputs x.

For example, the re-stated characteristic function T (g(z),y)
represents well with BDDs, as opposed to the original function

in formula (4) that depends on the design-specific x variables.

Similarly, replacing x with the sampling domain g(z), over-
approximates the search for rectification points in equation

(6).

740 Design, Automation And Test in Europe (DATE 2020)

Special Session Paper

B. Learning a rectification

The work in [10] gives a symbolic formulation that pa-

rameterizes equation (3) with choices for the rectification

function construction. Thus, the formula solutions are the

hypotheses that need validation. The formulation uses the pre-

synthesized representation of the revised specification to obtain

the “building blocks” ri for the potential rectification functions

r. Their enumeration prioritizes functions that maximize logic

sharing with the current circuit implementation, and hence lead

to smaller patches.

In general, if the formula has variables x universally quanti-

fied, then its behavior gets over-approximated in the sampling

domain. Indeed, the replacement of variables x in formula (5)

yields a new relation
`

R that contains the original R:

`

R(s,y) ≡ ∀zψ(g(z), s,y)
`

R(s,y) " R(s,y).

The computed function
`

R describes an incomplete specifi-

cation of the candidate rectification function. The specifica-

tion can be concretized with an iterative process, to yield a

rectification solution. The determinized relation R of
`

R is a

hypothesis that serves counter-examples in the form of (ŝ, ŷ)

assignments, if falsified. They constrain the
`

R relation in the

subsequent selections of R. The refinement loop continues un-

til the correct rectification function is found, whose existence

is guaranteed by the initial choice of
`

R. Such an iterative

process follows the steps of counterexample-guided inductive

synthesis (CEGIS), originating from abstraction refinement

(CEGAR) [4]. The application of CEGIS to the ECO problem

was studied by [14] to synthesize Boolean functions in sum-

of-products form with a bounded number of terms. This

approach relies on the incremental solving feature of modern

SAT solvers that enables the solver to reuse information from

previous solver calls. Each obtained counter-example is ruled

out by strengthening the relation until finally a valid patch is

found.

IV. LEARNT ENGINEERING CHANGES

This section describes a collection of industrial ECOs

encountered in the course of chip development. The corre-

sponding test cases of the studied ECOs are available online.1

The test cases come as Verilog files that list equations for

their NAND2/INV netlist representation and are derived from

the experimental setting in [10], keeping the numeric value

in their names. They capture the combinational portion of

the design that is relevent to their ECO. The suite is devoid

of any technology-specific information, thereby simplifying

its use and facilitating its portability. The test cases point

to valuable considerations for developing a capable ECO

engine. They also emphasize the significance of conditions

in which an update is needed. Even a small change to an

HDL specification may lead to a substantial perturbation of

the current implementation when realizing the update.

1ECO Benchmark Suite, https://doi.org/10.5281/zenodo.3588388

s1

◦

◦ ◦

××

s2

. . .

◦ – rectification sinks
× – not rectification sinks

Figure 2. The relevant part of the circuit implementation in example 2. The
s1 and s2 wires represent the HDL variable s. Not all of these sinks are the
rectification points. In the design, two rectification points (in the small ellipse)
revise 15 of the outputs. The revision of the remaining 113 outputs uses all
three rectification points.

1. Signal introduced into an expression. This design3

example has a very simple ECO that asks to compose a latch

output with the existing expression, rewriting the statement

c <= a and not b

as

c <= a and not b and d

The requested change resides in the entity that gets instantiated

48 times, each instance influencing 40 of outputs design3.

The circuit implementation underwent the aggressive opti-

mization of the ABC tool [1], which makes finding good

rectification points challenging. This example illustrates how

a simple change may require a patch with over a hundred of

inputs and outputs. A robust tool should handle such a situation

efficiently, observing the relative independence of rectification

points.

2. Logic introduced into an expression. This design11

rectification is similar to the previous ECO. It extends the

HDL expression

y <= . . . or (s . . .

adding a simple logic. The introduced logic uses latch outputs

q(0 to 2) that represent the 1-hot encoding of three states

restricting operational semantics of the state bit s:

y <= . . . or ((s and not (q(0) or

q(1) or q(2)) . . .

We can rectify an implementation of the initial expression

composing the inverted s and q signals into a single 4-input

nor gate. The challenging part is to find the correct set

of pins to form the rectification points. Figure 2 illustrates

the distribution of the signal s sinks in the optimized circuit

implementation. The signal s in the figure is represented with

two wires s1 and s2. This example emphasizes the significance

of using sinks rather than nets to define candidate rectification

points.

3. Logically deep and replicated change. In this design1

example, the ECO replaces

f <= a and b and (c and not d)

with

f <= a and b and ((c and not d) or e)

Design, Automation And Test in Europe (DATE 2020) 741

Special Session Paper

The introduced signal e extends the controlling semantics of

the f function, forcing an FSM transition to a particular state.

Similar to example 1, the design places it within an entity that

gets instantiated four dozen times:

for i in 0 to 47 generate

machine : ENTITY . . . fsm(i) . . .

The aggressive optimization of a flat design leads to a much-

varied realization of the multiple instances, testing a tool’s

vulnerability to a structural difference in the implementation.

The logical depth of the rectification points in the ECO em-

phasizes the benefit of the ”sweeping” technique that explores

functionally equivalent signals to reduce the patch at its inputs.

4. Boolean operator changed. This design2 example de-

picts the significance of selecting rectification points carefully.

The update modifies a Boolean operation in two of its HDL

expressions, replacing the logic of

d <= (a and not b) and not c

e <= (. . .) or not c

with

d <= (a and not b) or not c

e <= (. . .) or c

The two changed signals d and e are inputs to a transition

relation function of a finite-state machine (FSM). The HDL

description specifies the transition relation explicitly listing its

terms. It is defined on the present-state variables s, the two

inputs d and e, and the next-state variables t as

with (s & d & e) select

t <= "100...011" when "000...0010",

"100...001" when "000...0011",

...

Although the requested change is relatively simple, the context

of the change places a special emphasis on accurate selection

of rectification points. During synthesis and optimization, the

logic of the d and e signals may get absorbed into the transition

relation, making it difficult to isolate the rectification points.

5. Spare latches used. This design3 is the first on the

list that makes use of spare latches, whose data inputs are tied

initially to a constant, extending the sequential behavior of a

design. The ECO replaces constant inputs of the two reserved

latches with a simple next-state logic. The present-state signals

of the two latches are used to correct the logic of 12 outputs

changing functions at the sinks of two nets, that correct 8 and

4 outputs independently. The remaining ”error” outputs are

rectifiable through three small functional changes at the sinks

of a particular net. We observed three such rectification nets

in total, each respectively correcting 139, 4, and 1 output. The

last single output is timing-critical, whose circuit structure is

much-optimized with an in-house tool. As a result, its update

may use more gates than the other corrected outputs. This

example emphasizes the robust handling of the aggressively

optimized critical paths.

6. Signal dropped from an expression. In this design5

example a signal is removed from the expression, leading to its

2 2

a0 b c(0)

d(0)

2 2

a1 b c(1)

d(1)

. . .

2 2

a5 b c(5)

d(5)

(a) original implementation

2 2

vdd b c(0)

d(0)

2 2

vdd b c(1)

d(1)

. . .

2 2

vdd b c(5)

d(5)

(b) rectfied implementation

Figure 3. In the ECO of example 6, a signal is dropped for a logic expression.
It is fulfilled reconnecting sinks of the 2-bit signals ai (0 ≤ i ≤ 5) to VDD.

simplification. Its ECO changes the behavior of a 6-bit wide

signal, replacing the logic of the individual bit i (0 ≤ i ≤ 5):

d(i)<=and_reduce(not(ai(0 to 1)) or

b(0 to 1)) or not(c(i))

with the simpler variant

d(i)<=and_reduce(b(0 to 1)) or not(c(i))

Such simplification of a logic expression has the compact

realization that replaces the variable with a constant. The Fig. 3

schematics illustrate the ECO update for this example, replac-

ing its ai signals with the positive voltage VDD signal. The

top portion (a) in the figure depicts the multi-sink signals a(i)
shared with current implementation already. The rectification

must omit the changing circuit locations that are not part of

the requested ECO. This example emphasizes the significance

of using constants for the simplified operation of a design.

7. Change in the next state decision-making. The schematic

shown in Figure 4 depicts the context of the next state change

for this design6 example. In the schematic, the ECO is

isolated to a functional change of blocks r1 and r2. The

two blocks are controlled by the incoming multi-bit signals s1

and s2, whose logic gathers the relevant state of the design,

producing the encoding of its deduced meaning at the outputs

of r1 and r2.

There is a total of 18 next-state signals to which the 6-bit

output values of r1 and r2 are getting forwarded to complete

the decision-making. The operations on the 6-bit signals are

r1

6

s1

6

r1 changed

n1

6 6

6

n3

r2

6

s2

6

r2 changed

n2

Figure 4. The ECO of example 7 asks to change functions r1 and r2, to
correct the design behavior.

742 Design, Automation And Test in Europe (DATE 2020)

Special Session Paper

performed bit-by-bit, thereby forming bit slices of their logic.

The revision in the block r1 changes 3 out of 6 next-state

functions of the n1 latches. Similarly, the r2 revision changes

all 6 next-state functions of the n2 latches. Collectively, the

r1 and r2 revision changes all 6 functions of the n3 latches.

The latched logic of n3 is more complex than of the other

next-state signals, as its additional inputs are used to account

for the broader state of the design.

This example illustrates how a separate rectification of

more straightforward functions may combine to automatically

correct the larger ones.

8. Bit slices depend on the change. This design7 example

contains several ECOs. Each of the revisions has a simple

statement in HDL, and their combinational logic is indepen-

dent from one another. The difficulty in their implementation

however, is in the large number of outputs that have their

function changed. The most challenging revision among the

requested ECOs extends the functionality of an 8-bit signal

b ≡ (x0, . . . , x7) padding it with an additional bit a

b(0 to 8) <= (x0 & ... & x7 & a)

In the revised statement below, when the signal a value is 1,

it prevents any of the b string-matches:

y1 <= EQ(b, "1---0--00")

y2 <= EQ(b, "01---00-0")

y3 <= EQ(b, "00010--00") or

EQ(b, "0-0101-00")

While only a few outputs in the design depend on the y1
variable, there is a total of five 64-bit register banks that rely

on the other y2 and y3 variables. As a result, the logic of their

functions is shared bit-wise, yielding a large number of bit

slices that depend on the signals y2 and y3. This implies a large

number of the rectification to revise the next-state logic of the

wide register banks. The example illustrates, how operations

on the wide signals can lead to a large number of rectification

points. A robust tool should be able to handle this dimension

of rectification complexity robustly.

9. Sequential behaviour overriding using spare latches. This

design8 example uses spare latches to define the conditional

override of design behavior. In Figure 5, the combinational

block A has its current implementation function extended.

The figure schematic omits signals that are not relevant to

the revision. The ECO task extends the sequential behavior of

the design, introducing the next-state logic B to spare latches,

whose data inputs are tied initially to a constant. The 16

outputs of the purposed latches get connected to block A,

conditionally substituting data of the current implementation.

The multiplexer decision is driven by a single bit signal

whose value gets deduced from the design state. This example

emphasizes robust handling of the purposed latches, of their

new logic that extends design behavior.

V. CONCLUSIONS AND FUTURE WORK

The automation of the design revisions in the chip develop-

ment cycle remains a challenging problem. The ECO examples

in this paper short-list the revision types that a versatile tool

purposed spare

latches

0 1

16 16

A

B

Figure 5. In the ECO of example 9, the spare latches purposed with the next-
state logic B extend the functionality of block A in current implementation.

should handle. By no means the list of the presented types is

complete. However, the exhibit lays the groundwork objectives

in designing the ECO algorithms that are scalable. Their

synthesized rectification patches should adhere to the already

attained quality of the current implementation. The varying

requirements for the logic depth emphasize the robust handling

of arbitrary logic complexity. At the same time, the automated

rectification should account for a design flow constrain where

the structural similarity between the current circuit and its

synthesized revised specification is not an available option.

Although the Boolean reasoning methods described in the

paper do not offer readily available solutions to these concerns,

their succinct capture is one of the intentions. We hope

that the research community finds its use in academic tool

development.

REFERENCES

[1] Berkeley Logic Synthesis and Verification Group. ABC: A system
for sequential synthesis and verification, http://www.eecs.berkeley.edu/
∼alanmi/abc/.

[2] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M.
Weiglhofer. Automatic hardware synthesis from specifications: A case
study. In Proc. DATE, pp. 1188-1193, 2007.

[3] A. Bumb. Approximation algorithms for facility location problems. PhD
Thesis, Univ. Twente, The Netherlands, 2002.

[4] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, Counterexample-
guided abstraction refinement. In Proc. CAV, pp. 154–169, 2000.

[5] W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model
theory and proof theory. J. Symb. Log., 22(3):269–285, 1957.

[6] A.-Q. Dao, N.-Z. Lee, L.-C. Chen, M. P.-H. Lin, J.-H. R. Jiang, A.
Mishchenko, and R. K. Brayton. Efficient computation of ECO patch
functions. In Proc. DAC, pp. 51:1-51:6, 2018.

[7] S.-L. Huang, W.-H. Lin, and C.-Y. Huang. Match and replace: A
functional ECO engine for multi-error circuit rectification. IEEE Trans.

CAD, 32(3): 467-478, 2013.
[8] J.-H. R. Jiang, H.-P. Lin, and W.-L. Hung. Interpolating functions from

large Boolean relations. In Proc. ICCAD, pp. 779-784, 2009.
[9] J.-H. R. Jiang, V. N. Kravets, and N.-Z. Lee. Engineering Change Order

for Combinational and Sequential Design Rectification. In Proc. DATE,
2020.

[10] V. N. Kravets, N.-Z. Lee, J.-H. R. Jiang. Comprehensive search for
ECO rectification using symbolic sampling. In Proc. DAC, pp. 71:1-
71:6, 2019.

[11] B. Lin. Efficient symbolic support manipulation. In Proc. ICCD, pp.
513-516, 1993

[12] K. L. McMillan. Interpolation and SAT-based model checking. In Proc.
CAV, pp. 1-13, 2003.

[13] H. Riener and G. Fey. Exact diagnosis using Boolean satisfiability. In
Proc. ICCAD, pp. 53-58, 2016.

[14] H. Riener, R. Ehlers, and G. Fey. CEGAR-based EF synthesis of Boolean
functions with an application to circuit rectification. In Proc. ASP-DAC,
pp. 251-256, 2017.

[15] A. Smith, A. G. Veneris, M. F. Ali, and A. Viglas. Fault diagnosis and
logic debugging using Boolean satisfiability. IEEE Trans. CAD, 24(10):
1606-1621, 2005.

Design, Automation And Test in Europe (DATE 2020) 743

