
Special Session Paper

Exact DAG-Aware Rewriting

Heinz Riener1 Alan Mishchenko2 Mathias Soeken3

1Integrated Systems Laboratory, EPFL, Lausanne, Switzerland
2Electrical Engineering and Computer Sciences, University of California, Berkeley, USA

3Microsoft, Switzerland

Abstract—We present a generic resynthesis framework for

optimizing Boolean networks parameterized with a multi-level

logic representation, a cut-computation algorithm, and a resyn-

thesis algorithm. The framework allows us to realize powerful

optimization algorithms in a plug-and-play fashion. We show

the framework’s versatility by composing an exact DAG-aware

rewriting engine. Disjoint-support decomposition and SAT-based

exact synthesis together with efficient caching strategies enable

the algorithm to resynthesize larger parts of the logic. DAG-

aware rewriting is used to compute the gain of resynthesis while

taking the benefit of structural hashing into account.

I. INTRODUCTION

Logic synthesis and logic optimization techniques play a

key role in the automated design of all digital systems and

are often capable of substantially reducing area and delay re-

quirements of a circuit under design. In particular, resynthesis

methods based on Boolean reasoning on homogeneous multi-

level logic representations [1] have proven effective, and are

today indispensable in any complex design [2] or engineering

change order (ECO) flow [3], [4], [5].

Under the hood, state-of-the-art resynthesis frameworks [6],

[7] rely on an interplay of scalable structural analysis and

peephole optimization algorithms. Such algorithms first parti-

tion the given Boolean network into small subnetworks, iden-

tify the output functions implemented by the subnetworks, and

replace them with size-optimum solutions obtained from a pre-

enumerated database. Effective strategies for pre-enumerating

and storing databases of optimum circuitry for all Boolean

functions up to 5-input variables exist [8]. Resynthesizing

larger subnetworks requires on-the-fly computation [9] of

replacement candidates using, e.g., SAT-based exact synthesis

methods [10], which consequently challenges the efficacy and

scalability of resynthesis.

The rise of cloud-based software tools in IT, and in par-

ticular in the EDA industry [11], promises significant more

computational power and memory resources readily available

for future algorithms. The memory resources of realistic cloud-

based EDA solutions have been estimated in [11] to amount

up to 20 petabytes. This estimation is based on a comparison

to the traffic analysis services offered by Google maps. The

game-changing opportunity offered by cloud services allows

us to design a new generation of logic synthesis algorithms

that can make heavily use of large-scale caching and multi-

core parallelization. We envision a logic resynthesis frame-

work capable of resynthesizing larger subnetworks using exact

synthesis—each computed solution (as well as a timeout)

is cached, such that all exact synthesis queries have to be

solved only once. This strategy is supported by the fact that

companies often work on the same design for many months

and run logic synthesis algorithms on a daily or weekly basis.

A first run of logic synthesis may be slow. However, with every

rerun of the synthesis engine, the cache will be populated with

more solutions such that the runtime over the project time

quickly amortizes.

In this paper, we present a generic resynthesis framework

for optimizing Boolean networks parameterized with a multi-

level logic representation, a cut-computation algorithm, and

a resynthesis algorithm. This framework allows us to realize

powerful optimization algorithms in a plug-and-play fashion.

Different resynthesis algorithms are available including algo-

rithms based on recursive top-down disjoint-support decom-

position, exact synthesis, and database lookups of best-known

realizations. The implementation is available online as a part

of the EPFL logic synthesis libraries [12].

II. BACKGROUND

A Boolean network (or circuit) N is a directed acyclic

graph (DAG) with nodes corresponding to Boolean functions

and edges corresponding to wires connecting them. The fanin,

respectively, fanout of a node n ∈ N are the incoming,

respectively, outgoing edges of n. The primary inputs (PIs)

are the nodes of the Boolean network without fanin. The

primary outputs (POs) are a subset of the nodes connecting

the Boolean network with its environment. A k-bounded tran-

sitive fanin-cone TFIk(n) and k-bounded transitive fanout-

cone TFOk(n) of a node n are the subsets of the nodes

reachable through traversing at most k transitive fanin-edges

and at most k transitive fanout-edges of n. Without loss

of generality, the transitive fanin-cone and transitive fanout-

978-3-9819263-4-7/DATE20/ c©2020 EDAA 732

Special Session Paper

cone, respectively, can be generalized to sets N ′ ⊂ N of

nodes in N , such that TFIk(N
′) =

⋃
n∈N ′ TFIk(n) and

TFOk(N
′) =

⋃
n∈N ′ TFOk(n).

A cut C = (r, L) of a Boolean network N is a pair, where r

is a node, called root, and L is a set of nodes, called leaves,

such that

1) each path from any PI in N to r passes through at least

one leaf in L and

2) for each leaf l ∈ L, there is at least one path from a PI

to r passing through l and not through any other leaf.

The cover N.cover(C) of a cut C = (r, L) in N is the set of

all nodes n ∈ N that appear on a path from any l ∈ L to r

including r, but excluding the leaves. The cover N.cover(W)

of a pairW = (R,L), where R and L are two node sets called

roots and leaves, respectively, is the union
⋃
r∈R(r, L) of all

covers of cuts (r, L) for r ∈ R.

A fanout-free cone (FFC) of a node r is a cut (r, L) such

that no node n ∈ N.cover(C) with n != r has a fanout node

that is outside of N.cover(C). The maximum fanout-free cone

(MFFC, [13]) of a node r, denoted by N.mffc(r), is its largest

FFC. The MFFC of a node r is unique and contains all the

logic used exclusively by this node. If the node is substituted

or removed from the network all nodes in its MFFC can be

removed.

We use Boolean chains to formalize exact synthesis of

Boolean networks. A k-input operator Boolean chain with

p inputs x = x1, . . . , xp and q outputs f = f1(x), . . . , fq(x)

is a sequence xp+1, . . . , xp+s, where

xi = φi(xj(i,1), . . . , xj(i,k)) for p+ 1 ≤ i ≤ p+ s

such that φi : B
k → B is a k-input Boolean function,

1 ≤ j(i, ·) < i, and for all 1 ≤ k ≤ q either fk(x) = xl(k)
or fk(x) = x̄l(k), where 0 ≤ l(k) ≤ p + s, and x0 = 0

denotes the constant zero input. We call s the length of the

Boolean chain and f : Bp → B
q the (multi-output) Boolean

function implemented by the Boolean chain. A Boolean chain

is minimum-length if no other Boolean chain exists that

implements the same Boolean function f with smaller length.

Minimum-length Boolean chains are not unique.

III. BOOLEAN RESYNTHESIS FRAMEWORK

In this section, we describe a generic and flexible resynthesis

framework for optimizing Boolean networks. The framework

is parameterized with a multi-level logic representation, a cut-

computation algorithm, and a resynthesis algorithm. The de-

scribed approach is generic [7] and applicable to Boolean net-

works provided in form of a multi-level logic representation,

such as an And-Inverter Graph (AIG) or a Majority-Inverter

Graph (MIG), or a k-input lookup-table (LUT) network.

Algorithm 1 summarizes the overall process of resynthesis

for a given Boolean network N . The network is optimized

“inplace”—subnetworks are iteratively extracted by a cut

computation algorithm, simulated to determine the Boolean

Algorithm 1: Boolean resynthesis framework

Data: Boolean network N , Boolean flag z

Result: Optimized network N

foreach n ∈ N do

C ← ExtractSubnetwork(n);
f ← Simulate(C);
C′
← Resynthesize(f);

g ← Gain(N,C,C′);
if (g > 0) then

N.substitute(C,C′);
else if (z ∧ g = 0) then

N.substitute(C,C′);
return N ;

(r, L) (r, L′) ∪D

Fig. 1. Extended fanout-free cut to extract additional divisors.

functions at the subnetwork’s outputs, and resynthesized. A

subnetwork C is substituted with its resynthesized counterpart

C ′ if C ′ is preferred over C with respect to a cost function. The

usual cost functions consider the network’s number of nodes

(as a technology-independent indicator for area requirements)

or the network’s longest path from the PIs to the POs (as a

technology-independent indicator of the delay requirements).

An additional Boolean flag z provided as input to the algorithm

allows us to enable zero-gain rewriting, which is often useful

to restructure a Boolean network N and to step out of local

minima during optimization.

A. Cut computation

Extracting subnetworks from a Boolean network is an

important step in many resynthesis frameworks. A simple,

yet powerful, way to extract a fraction of nodes is commonly

known as cut computation. Cut-computation algorithms exist

in many variations. Given a single node n ∈ N in a Boolean

network N , a cut-computation algorithm computes one (or

more) sets L1, . . . , Ll of leaf nodes such that each pair (n, Li)

for 1 ≤ i ≤ l is a cut. Many cut-computation algorithms take

additional parameters to constrain the shape of the computed

cuts. Depending on the application, for instance, one may

desire to limit the number of leaves in a cut, the number of

nodes in the cover of a cut, or the number of levels in a cut.

We present a simple algorithm to compute cuts and a

strategy for growing them to extract additional divisors from

their surroundings depicted in Fig. 1.

Fanin cuts. Algorithm 2 shows an eager strategy to expand

a given leaf set in fanin-direction. Starting with the singleton

Design, Automation And Test in Europe (DATE 2020) 733

Special Session Paper

Algorithm 2: ExpandLeaves

Data: Boolean network N , set L of nodes, cut size k

Result: Expanded leaf set L

foreach l ∈ L ∪ {⊥} do

if N.isPI(l) and |L| − 1 + |N.fanin(l)| ≤ k then

break;

if l = ⊥ then return L;

L← L\{l}
foreach n ∈ N.fanin(l) do

L← L ∪ {n};
return L;

Algorithm 3: ExtendedCut

Data: Boolean network N , set L of nodes, cut sizes k

Result: Expanded leaf set L′, set D of additional divisors

L′ ← ExpandLeaves(N,L, k);
D ← N.cover(L,L′)
foreach n ∈ D do

foreach d ∈ N.fanout(n) do
if d ∈ D ∪ TFO∞(L) then continue;

if N.fanin(d) ⊆ D then
D ← D ∪ {d}

D ← D\
(
⋃

l∈L
N.mffc(l)

)

;

return L′, D;

L = {r}, r ∈ N , the algorithm iteratively expands L

by substituting leaves in L by their respective fanins. The

expansion process stops at a leaf if (i) the leaf is a primary

input and has no fanin or (ii) the size of L would exceed

the cut’s size limitation k if further expanded at this leaf. As

output, the algorithm computes a set L′ of leaves such that

(r, L′) is a cut and |L′| ≤ k.

The described expansion algorithm can start from a single-

ton with one root r to compute a cut with a single output r

or from a set of roots to produce a multi-output cut.

Cut extension. In several applications, extracting additional

divisors from the surroundings of a cut is useful without re-

quiring the divisors being fanout-free themselves. Algorithm 3

shows a cut-computation strategy that greedily expands a node

set L in the fanin-direction using Algorithm 2. Afterward, the

algorithm iterative merges fanouts to the cover of the extended

cut if (i) they are not part of the transitive-fanout cone of L

and (ii) all their fanins are in the cover or already considered

as additional divisors. The first condition guarantees that the

DAG remains acyclic. The second condition ensures that the

divisors depend only on the leaves of the extended cut.

B. Exact synthesis

Exact synthesis is the problem of finding an optimum

implementation of a given specification. In the context of logic

synthesis, the specification is a Boolean function to implement

by a Boolean network with additional constraints such as upper

and lower bounds on the number of gates or the number of

levels or restrictions on the type of gates to use.

x1 x2 x3

∧ ∧

∧

∧ ∧

∧ ∧

c s

x1 x2 x3 x4 = x1 ⊕ x3

∧ ∧ ∧

∧ ∧

c s

Fig. 2. Minimum-length Boolean chains implementing a full adder with the

three inputs x1, x2, and x3 (left) and the additional known function x4 =

x1 ⊕ x3 (right).

There is substantial research work in solving such con-

strained logic synthesis problems using SAT-based methods.

The constraints are encoded into a propositional logic formula

over Boolean variables in such a way that every satisfying

assignment of the formula corresponds to a Boolean network

that meets the desired constraints. More formally, given a

multi-output Boolean function f : B
p → B

q over inputs

x1, . . . , xp as specification, a constraint satisfaction problem

can be formulated that asks for the existence of a minimum-

length Boolean chain xp+1, . . . , xp+s that implements f [10].

Exact synthesis with known functions. We consider the

following variation of the exact synthesis problem for k-

input operator Boolean chains: given a (multi-output) Boolean

function f : Bp → B
q over inputs x1, . . . , xp as specification

and additional single-output functions xp+1(x), . . . , xp+r(x)

(depended only on x), find a minimum-length Boolean chain

xp+r+1, . . . , xp+r+s with p inputs, r additional functions, and

q outputs that implements f , where

xi = φi(xj(i,1), . . . , xj(i,k)) for p+ r + 1 ≤ i ≤ p+ r + s

such that φi : B
k → B is a k-input Boolean function, 1 ≤

j(i, ·) < i, and for all 1 ≤ k ≤ q either fk(x) = xl(k) or

fk(x) = x̄l(k), where 0 ≤ l(k) ≤ p + r + s, and x0 = 0

denotes the constant zero input.

The proposed formulation of the exact synthesis problem

allows us to consider additional known functions during syn-

thesis. As a simple example, suppose that a Boolean chain over

the three inputs x1, x2, and x3 for the specification of a full

adder should be synthesized. The full adder has two outputs

c = maj3(x1, x2, x3) (carry) and s = x1 ⊕ x2 ⊕ x3 (sum),

where maj3 is the three-input majority operation, and the

Boolean chain should only consist of And-gates and inverters.

Fig. 2 (on the left) shows a minimum-length Boolean chain

that implements this specification. Each node in the graph

denotes an And-gate. Regular edges are shown with solid lines,

dotted lines are used to denote inverters. Now, suppose that

additionally the Boolean function x4 = x1 ⊕ x3 is available

and can be used during synthesis, e.g., because a divisor with

this Boolean function exists already in the Boolean network.

Fig. 2 (on the right) shows the corresponding Boolean chain

with 5 nodes, where the known function is represented as an

additional input x4.

734 Design, Automation And Test in Europe (DATE 2020)

Special Session Paper

Algorithm 4: DerefNode

Data: Boolean network N , node n, leaf set L

Result: Integer value

if n ∈ L then return 0;

value← 1;

foreach c ∈ N.fanin(n) do
ref(c)← ref(c)− 1;

if ref(c) = 0 then

value← value + DerefNode(c, L);

return value;

Algorithm 5: RefNode

Data: Boolean network N , node n, leaf set L

Result: Integer value

if n ∈ L then return 0;

value← 1;

foreach c ∈ N.fanin(n) do
ref(c)← ref(c) + 1;

if ref(c) = 1 then

value← value + RefNode(c, L);

return value;

C. DAG-aware rewriting

DAG-aware rewriting [8] is an effective technique to com-

pute the gain of replacing a part of logic in a Boolean network

with another part. The techniques associates each node n ∈ N

with a reference counter, an integer value ref(n), that keeps

track of how many other nodes in N use (or depend) on n.

Initially, ref(n) is set to the node’s fanout size. An reference

counter value ref(n) = 0 denotes that the node is not used by

any other logic and can be consequently removed from N .

Removing a node n from the network or adding a node n

to the network can be “simulated” by recursively updating the

integer values of n and all its predecessors in TFI∞(n) until

either the value of a node becomes 0 or a leaf node is reached.

Alg. 4 and 5 show how the reference counters are recursively

manipulated. The input of the algorithms are a node and a leaf

set L.

The gain of replacing a cut C = (n, L) with C ′ = (n′, L)

can then be efficiently computed using Algorithm 6. The

algorithm is capable of exploiting structural hashing, i.e.,

nodes already in the Boolean network will not be re-added.

D. Disjoint-support decomposition

A top-down disjoint-support decomposition for a Boolean

function f(x), x = x1, . . . , xn, checks whether there exists

and finds a two-input gate function g, an (n − 1)-input

remainder function f ′, and a variable index i ∈ {1, . . . , n}

such that

f(x) = g(xi, f
′(x1, . . . , xi−1, xi+1, xn)). (1)

Similarly, a bottom-up disjoint-support decomposition for f

checks whether there exists and finds a 2-input gate function

Algorithm 6: Gain

Data: Boolean network N , node n replaced with n′, leaf set L

Result: Gain of replacing (n,L) with (n′, L) in N

v1 ← DerefNode(n,L);
Insert (n′, L) into the network N ;

v2 ← RefNode(n′, L);
DerefNode(n′, L);
RefNode(n,L);
return v1 − v2;

g, an (n − 1)-input remainder function f ′, and two distinct

variable indexes i, j ∈ {1, . . . , n} such that

f(x) = f ′(g(xi, xj),

x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn). (2)

These decompositions “extract” a gate from the original

Boolean function, either at the output or at the inputs, thereby

reducing the support size by 1, remaining with a smaller

function f ′.

A disjoint-support decomposition algorithm checks whether

an input function f is top-down decomposable or bottom-

up decomposable for variable indexes in a fixed given order

repeatedly until no further decomposition is possible [14]. The

final remainder function f ′ is called prime.

Disjoint-support decomposition can be performed as a pre-

processing step to exact synthesis. Every successful decom-

position drops one support variable from the original function

and already extracts one gate for the final solution. The final

prime function is expected to be solved easier without losing

the overall optimality guarantee. Further, knowing that the final

function f ′(x1, . . . , xn′) is prime and assuming that it depends

on all variable in its support, we can lower bound the number

of minimum gates to implement f ′ to its support size n′.

E. Caching strategies

Cut functions in practical Boolean networks are not uni-

formly distributed at random; instead, it is often the case that

many cuts across different Boolean networks have the same cut

function. Since Boolean resynthesis—and particularly SAT-

based exact synthesis—is a computationally intensive task, it is

convenient to store the optimized Boolean network implemen-

tation for a given cut function, and reuse it whenever the same

cut function occurs. This cache, called solution cache, cannot

only be used for one (or more) runs of a logic optimization

script, but also stored and reused as a database of known

solutions that bootstrap an exact synthesis algorithm right from

the start. In addition to the solution cache, caching timeouts

can further save significant runtime. When a query to an exact

synthesis algorithm fails, i.e., no optimum Boolean network

could be found for a Boolean function due to a resource limit

in the SAT solver, the failed synthesis query is stored in a

cache, called blacklist cache.

Design, Automation And Test in Europe (DATE 2020) 735

Special Session Paper

Solution caching. The solution cache stores optimum

Boolean networks to exact synthesis problems. If we were

to disregard additional divisors that can be used to find the

optimum network, the cache can simply be implemented by a

hash map that maps Boolean functions to Boolean networks.

In order to reduce the size of the cache, the Boolean networks

from all entries can be primary outputs in a shared Boolean

network, thereby sharing the primary inputs but also some

intermediate gates that are present in multiple Boolean net-

works. Since our implementation also makes use of additional

divisors, we need to store them in the cache as well. In this

case, the key of the hash map is a tuple (f, d1, . . . , dk), where

f is the Boolean function to synthesize and d1, . . . , dk are the

functions of the divisors. Inside the shared Boolean network

that represents the hash map’s values, the divisors are simply

represented as additional primary inputs, distinct from the

ones that are primary inputs to the optimum Boolean network.

The hash map can easily be serialized by storing all Boolean

functions as truth tables, e.g., as an array of integers, and some

textual representation of the Boolean network, e.g., Aiger for

AIGs, or Verilog for more general Boolean networks.

Blacklist caching. For a blacklist cache, there exists no

Boolean network as a solution, as the cache should mark

functions for which no solution could be found. However,

the reason that no solution was found is due to a resource

limit, e.g., a conflict limit in the SAT solver. Therefore, a

blacklist cache is just a hash set, whose keys are the Boolean

function and the exact configuration that was passed to the

exact synthesis algorithm. Further, given two configurations,

the blacklist cache must define a partial order that can decide

whether a configuration is strictly better than another one.

Then, the algorithm only needs to retry finding an optimum

network for a Boolean function that exists in the blacklist

cache, if the new configuration is strictly better than the one

in the cache.

IV. EXPERIMENTS

The resynthesis framework described in the previous sec-

tions has been implemented and is available online as a part

of the EPFL logic synthesis libraries [12].

Setup of exact DAG-aware rewriting. We have evaluated

quality and performance of the framework by realizing an

exact DAG-aware rewriting algorithm that combines disjoint-

support decomposition with SAT-based exact synthesis and

uses caching to cope with the high runtime requirements

of SAT-based exact synthesis. As benchmarks, we use the

well-known EPFL logic synthesis benchmark suite, which

serves as a comparative standard for benchmarking logic

optimization algorithms. All experiments have been conducted

on an Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz. The

correctness of the results has been verified using combinational

equivalence checking implemented in ABC [15].

TABLE I

RUNTIME AND NODE REDUCTION FOR EXACT DAG-AWARE REWRITING

Benchmark Exact DAG-Aware Rewriting

Name Size Size Impr Impr% Runtime

[-] [-] [-] [%] [s]

adder 1020 1011 9 0.88 0.15

bar 3336 3142 194 5.82 0.61

div 57247 57220 27 0.05 3.23

hyp 214335 196081 18254 8.52 20.56

log2 32060 32006 54 0.17 7.06

max 2865 2861 4 0.14 0.66

multiplier 27062 26841 221 0.82 4.12

sin 5416 5404 12 0.22 0.62

sqrt 24618 24615 3 0.01 1.39

square 18484 15347 3137 16.97 2.39

arbiter 11839 11839 0 0.00 6.70

cavlc 693 679 14 2.02 0.44

ctrl 174 131 43 24.71 0.04

dec 304 304 0 0.00 0.00

i2c 1342 1316 26 1.94 0.46

int2float 260 222 38 14.62 0.08

mem_ctrl 46836 46355 481 1.03 14.90

priority 978 970 8 0.82 0.21

router 257 247 10 3.89 0.05

voter 13758 12263 1495 10.87 1.36

The realized DAG-aware exact rewriting algorithm com-

putes for each node in the Boolean network an extended

cut limited to at most 10 inputs with additional divisors.

Each obtained cut function is first decomposed using disjoint-

support decomposition. The remainder functions with up to 6

inputs are synthesized using SAT-based exact synthesis with a

conflict limit of 105 in the SAT solver. Remainder functions of

larger size are discarded. Successful synthesis queries as well

as unsuccessful synthesis attempts are cached in the solution

and blacklist caches, respectively.

Node reduction and runtime. We run the high-effort

resynthesis algorithm four times on all benchmarks while

alternating between zero-gain replacements turned on and off.

Table I shows that this leads to a substantial node reduction

for several of the considered benchmarks. Populated solution

and blacklist caches ensure good performance and allow the

algorithm to scale even for benchmarks of large size. The table

is built as follows: the first two columns present the benchmark

name and the initial number of nodes before optimization. The

other four columns list the number of nodes after optimization,

the absolute improvement in the number of nodes, the relative

improvement with respect to the initial benchmark size, and

the total runtime in seconds. Overall the algorithm achieves a

node reduction of 5.19% in a runtime of 65.03 seconds.

Caching. Table II provides further insight into the caching

and the number of occurred resynthesis queries. In total, over

all four runs of the algorithm, the resynthesis function has

been executed 98179 times with Boolean functions of up to

736 Design, Automation And Test in Europe (DATE 2020)

Special Session Paper

TABLE II

SUMMARIZED CACHING PARAMETERS OF EXACT SYNTHESIS

Parameter

Total resynthesis queries 98179

Size of solution cache 57132

Size of blacklist cache 1117

10 variables. The solution cache contains 57132 entries of

Boolean functions of up to 6 variables. The blacklist cache

lists 117 Boolean functions of up to 6 variables. These Boolean

functions could not be synthesized with the given limit of 105

SAT conflict. To store both caches (uncompressed), less than

200 MB of memory were required.

V. SUMMARY & CONCLUSIONS

This paper presents a generic resynthesis framework for

Boolean networks parameterized in a multi-level logic rep-

resentation, a cut-computation algorithm, and a resynthesis

algorithm. By instantiating this resynthesis framework, an

exact DAG-aware rewriting algorithm has been proposed that

utilizes a composition of SAT-based exact synthesis, disjoint-

support decomposition, and efficient caching strategies to size-

optimize Boolean networks. The algorithm follows the recent

idea of generic logic synthesis algorithms and, as such, can

be applied to different multi-level logic representations, such

as AIGs, MIGs or alike, as well as LUT networks.

The framework enables more fine-grained control for high-

effort logic synthesis by addressing the high runtime require-

ments of exact synthesis in various ways. First, disjoint-

support decomposition can identify top-down and bottom-

up decompositions as trivial cases, which make the exact

synthesis problem unnecessarily more difficult. Caches help

to store successful as well as unsuccessful exact synthesis

attempts, thereby not requiring to find a solution twice, but

also only to retry finding solutions for difficult instances if

they have not been found before with the same or a weaker

configuration.

There are several interesting directions for future work.

First, exploiting don’t cares of the cut functions can signif-

icantly reduce the size of the Boolean network, however, it is

non-trivial to store functions with don’t care information in

the cache. It remains open how to make use of caching and

don’t care information efficiently at the same time. Second,

for DAG-aware rewriting it is beneficial to consider multiple

Boolean networks for a cut function, since some solutions

may enable a larger amount of sharing with the remaining

network. In fact, even non-optimum Boolean networks can

lead to a larger gain, if they share more logic with the re-

maining network. Third, the caching idea can also be used for

verification problems, e.g., to store intermediate equivalence

checking results; and similar to the proposed method, both for

successful and failed attempts.

ACKNOWLEDGMENTS

This research was supported by the Swiss National Science

Foundation (200021-169084 MAJesty), by the European Re-

search Council in the project H2020-ERC-2014-ADG669354

CyberCare, by the EPFL Open Science Fund, and in part by

SRC Contracts 2710.001 and 2867.001.

REFERENCES

[1] L. Hellerman, “A catalog of three-variable Or-invert and And-

invert logical circuits,” IEEE Trans. Electronic Computers,

vol. 12, no. 3, pp. 198–223, 1963. [Online]. Available:

http://dx.doi.org/10.1109/PGEC.1963.263531

[2] G. De Micheli, Synthesis and Optimization of Digital Circuits.

McGraw-Hill, 1994.

[3] H. Riener, R. Ehlers, and G. Fey, “CEGAR-based EF synthesis of

Boolean functions with an application to circuit rectification,” in Asia

and South Pacific Design Automation Conference, 2017, pp. 251–256.

[Online]. Available: https://doi.org/10.1109/ASPDAC.2017.7858328

[4] A. Q. Dao, N. Lee, L. Chen, M. P. Lin, J. R. Jiang, A. Mishchenko,

and R. K. Brayton, “Efficient computation of ECO patch functions,”

in Design Automation Conference, 2018, pp. 51:1–51:6. [Online].

Available: https://doi.org/10.1145/3195970.3196039

[5] V. N. Kravets, N. Lee, and J. R. Jiang, “Comprehensive

search for ECO rectification using symbolic sampling,” in

Design Automation Conference, 2019. [Online]. Available:

https://doi.org/10.1145/3316781.3317790

[6] A. Mishchenko and R. Brayton, “Scalable logic synthesis using a simple

circuit structure,” in Int’l Workshop on Logic and Synthesis, 2006.

[7] H. Riener, E. Testa, W. Haaswijk, A. Mishchenko, L. G. Amarù,

G. De Micheli, and M. Soeken, “Scalable generic logic synthesis: One

approach to rule them all,” in Design Automation Conference, 2019, pp.

70–75. [Online]. Available: https://doi.org/10.1145/3316781.3317905

[8] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG

rewriting a fresh look at combinational logic synthesis,” in Design

Automation Conference, 2006, pp. 532–535. [Online]. Available:

http://doi.acm.org/10.1145/1146909.1147048

[9] H. Riener, W. Haaswijk, A. Mishchenko, G. De Micheli, and M. Soeken,

“On-the-fly and DAG-aware: Rewriting Boolean networks with exact

synthesis,” in Design, Automation and Test in Europe, 2019, pp. 1649–

1654. [Online]. Available: https://doi.org/10.23919/DATE.2019.8715185

[10] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, “SAT-

based exact synthesis: Encodings, topology families, and parallelism,”

IEEE Trans. on CAD of Integrated Circuits and Systems, 2019.

[Online]. Available: https://doi.org/10.1109/TCAD.2019.2897703

[11] L. Stok, “The next 25 years in EDA: A cloudy future?” IEEE

Design & Test, vol. 31, no. 2, pp. 40–46, 2014. [Online]. Available:

https://doi.org/10.1109/MDAT.2014.2313451

[12] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,

F. Mozafari, and G. De Micheli, “The EPFL logic synthesis

libraries,” CoRR, vol. abs/1805.05121, 2018. [Online]. Available:

http://arxiv.org/abs/1805.05121

[13] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a

general and efficient FPGA mapping solution,” in Int’l Symp. on Field

Programmable Gate Arrays, 1999, pp. 29–35. [Online]. Available:

http://doi.acm.org/10.1145/296399.296425

[14] V. Bertacco and M. Damiani, “Boolean function representation

based on disjoint-support decompositions,” in Int’l Conf.

on Computer Design, 1996, pp. 27–32. [Online]. Available:

https://doi.org/10.1109/ICCD.1996.563527

[15] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-

strength verification tool,” in Int’l Conf. on Computer Aided Verification,

2010, pp. 24–40. [Online]. Available: https://doi.org/10.1007/978-3-

642-14295-6_5

Design, Automation And Test in Europe (DATE 2020) 737

