
Special Session Paper

Emerging Neural Workloads and Their Impact on
Hardware

David Brooks∗, Martin M. Frank†, Tayfun Gokmen†, Udit Gupta∗, X. Sharon Hu‡, Shubham Jain§,
Ann Franchesca Laguna‡, Michael Niemier‡, Ian O’Connor¶, Anand Raghunathan§,
Ashish Ranjan†, Dayane Reis‡, Jacob R. Stevens§, Carole-Jean Wu‖, Xunzhao Yin∗∗

E-mails: dbrooks@eecs.harvard.edu, mmfrank@us.ibm.com, tgokmen@us.ibm.com, ugupta@g.harvard.edu,

shu@nd.edu, jain130@purdue.edu, alaguna@nd.edu, mniemier@nd.edu, Ian.Oconnor@ec-lyon.fr, raghunathan@purdue.edu,

ashish.ranjan@ibm.com, dreis@nd.edu, steven69@purdue.edu, carolejeanwu@fb.com, xzyin1@zju.edu.cn
∗ Harvard University † IBM T.J. Watson Research Center ‡ University of Notre Dame

§ Purdue University ¶ École Centrale de Lyon ‖ Facebook ∗∗ Zhejiang University

Abstract—We consider existing and emerging neural work-
loads, and what hardware accelerators might be best suited for
said workloads. We begin with a discussion of analog crossbar
arrays, which are known to be well-suited for matrix-vector
multiplication operations that are commonplace in existing neural
network models such as convolutional neural networks (CNNs).
We highlight candidate crosspoint devices, what device and
materials challenges must be overcome for a given device to be
employed in a crossbar array for a computationally interesting
neural workload, and how circuit and algorithmic optimizations
may be employed to mitigate undesirable characteristics from
devices/materials. We then discuss two emerging neural work-
loads. We first consider machine learning models for one- and
few-shot learning tasks (i.e., where a network can be trained
with just one or a few, representative examples of a given class).
Notably crossbar-based architectures can be used to accelerate
said models. Hardware solutions based on content addressable
memory arrays will also be discussed. We then consider machine
learning models for recommendation systems. Recommendation
models, an emerging class of machine learning models, employ
distinct neural network architectures that operate of continuous
and categorical input features which make hardware acceleration
challenging. We will discuss the open research challenges and
opportunities within this space.

I. INTRODUCTION

The use of neural network (NN) and machine learning (ML)
models related to language processing tasks (e.g., recurrent
neural networks (RNNs)), image recognition (e.g., convolu-
tional neural networks (CNNs)), etc. has seen widespread
success over the last decade. Given algorithmic successes,
within the last five years, there has been a push to support
said models in hardware in order to (i) perform computa-
tions associated with a given ML model in a more energy
efficient manner and/or (ii) to use more sophisticated models
in resource constrained environments. Still, workloads/models
exist and/or are emerging that are not well-suited for existing
hardware platforms and/or existing accelerators. Moreover,
emerging workloads could have substantial benefits for an end-
user if said models can be implemented efficiently. In this
paper, we review/discuss examples of said workloads, as well
as ongoing/nascent efforts to support said models in hardware.

We begin in Sec. II by reviewing efforts that target analog
crossbar architectures that (i) can be employed for NN infer-
ence, (ii) could be employed for NN training, and (iii) can meet
the algorithmic requirements for inference and training given

the constraints of candidate crosspoint devices. As matrix
multiplication can dominate execution time in many existing
ML models, the application-level impact of crossbars should

be quite obvious. As we will discuss herein, crossbars may
also be used in support of emerging ML models as well.

An algorithmic challenge for traditional NNs is that they
cannot quickly adapt to new tasks without extensive retraining
with a large amount of information [1]. However, humans
can leverage acquired knowledge to quickly adapt to new
situations. The task of learning how to learn – or meta-learning

[2] – leverages past experiences to learn new tasks.

A promising NN-based approach for implementing meta-
learning is memory augmented neural networks (MANNs),
where features extracted from a NN can be stored and retrieved
from an attentional memory (typically DRAM [3]–[6]). Re-
cent demonstrations of MANNs include differentiable neural
computers (DNC) [3], [4] which (i) can learn to construct
complex data structures such as graphs and decision trees (e.g.,
navigating the London underground [4]), (ii) answer questions
related to data structures, and (iii) perform one/few shot
learning tasks [5], [6]. Relevant features for a classification
task are extracted from a few training examples, stored in the
network’s memory, and retrieved to make accurate predictions.

A key function of the attentional memory is content-based

addressing, where the distance between a search vector and
all stored vectors is calculated to find the closest match. In a
conventional approach, the stored memory vectors (in DRAM)
need to be transferred to a compute unit (CPU or GPU) to com-
pare distances with a given query. As such, energy dissipation
and latency limitations can represent significant challenges
to scaling up MANNs. Alternative memory architectures that
support massively parallel searches are highly desirable.

In this regard, both crossbar architectures and content ad-
dressable memory (CAM) architectures have recently been
proposed as a way to accelerate MANNs. As such, work in
[7] (referred to as X-MANN) proposes to use crossbar arrays
to perform distance calculation searches for MANNs [2] and
neural Turing machines (NTM) [8] (networks that are also
used for few-shot learning). (See Sec. III.)

Alternatively, CAMs, a special type of memory that per-
forms parallel search, can be exploited to carry out parallel
associative searches. This approach is suitable for a locality
sensitive hashing (LSH)-based search approach [9]. CAM
arrays are employed to find the Hamming distance between
the stored binary signatures (based on LSH) and a query
via a single, parallel search that obviates the need for data
transfer (e.g., from DRAM-to-GPU for cosine-based distance
calculations). Furthermore, compact CAM cells based on

978-3-9819263-4-7/DATE20/ c©2020 EDAA 1462



Special Session Paper

emerging technologies (e.g., 2 ferroelectric field effect transis-
tor (FeFET) cells per [9]) could enable larger NN memories
to support MANN algorithms. (See Sec. IV.)

Finally, in Sec. V, we consider the challenges associated
with accelerating NNs that are employed in recommender
systems. Recommendation systems aim to provide person-
alized content to a user based on his or her interests, past
searches, etc. While CNNs and RNNs operate over dense
features (e.g., matrices), recommender systems can operate
over both dense and sparse features (e.g., a small subset of
the numerous items for sale via Amazon). A user’s interactions
are captured with sparsely indexed embedding tables that inject
large irregular memory accesses into the inference stage and
complicate the training process. Recommender models may
employ different NN architectures, and can be either compute
dominated or constrained by memory capacity and bandwidth.
Given the above, this paper concludes with a discussion of how
one might meet the computational needs of recommendation
models – which (i) can dwarf CNN/RNN workloads in data
centers and (ii) may be retrained as often as daily.

II. ANALOG CROSSBAR ARRAYS

When considering hardware for deep learning acceleration,
matrix multiplications consume most of the execution time for
many typical NNs representing speech, language, and vision
processing [10]. Therefore, this operation is an attractive target
for hardware acceleration, which accounts for the success of
graphical processing units (GPUs) in deep learning.

Recently, reductions in arithmetic precision have emerged
as a pathway to improved NN inference and training efficiency.
With proper algorithmic advances, numerical precision in deep
NN processing can be reduced from a conventional 32-bit
floating point format without adversely affecting accuracy.
For example, new techniques to maintain the fidelity of
gradient computations during backpropagation (in addition to
other modifications), can facilitate training with 8-bit floating
point numbers without accuracy degradation [11] – even for
challenging tasks [12]. Circuits optimized to execute reduced-
precision arithmetic are being developed for the realization
of custom accelerators for training, which can dramatically
improve both throughput and power efficiency [10], [12].
For deep learning inference, innovations include a clipping
parameter that is optimized during training to find the optimum
activation quantization scale, and a statistical method to deter-
mine a scaling factor that minimizes the weight quantization
error. As such, state-of-the-art classification accuracy across
a range of popular models and datasets is achievable with
just 2-bit integer weights and activations [13]. Still, the use of
reduced precision computations in deep learning is not a carte
blanche; rather, which algorithmic components may benefit
must be carefully considered.

A. Crossbars for Inference and Training

The robustness of deep learning algorithms to reduced
precision motivates the reconsideration of analog computation.
For example, in a crossbar array of programmable resistive
devices, the weight matrix can be stored via conductance
values at each crosspoint. A fully parallel vector-matrix mul-
tiplication (VMM) – the main building block of generalized

matrix multiplication and convolution computations during a
forward pass – can then be performed by applying a voltage
signal to the rows and reading out the current vector from the
columns given the current-voltage relationship: Iij =

∑
GijVi

(Fig. 1 (left)). Essentially, Ohm’s law and Kirchhoff’s law are
used to perform multiplication and summation in the analog
domain [15], [16]. Due to the simplicity of the operation, many
resistive device technologies originally developed for digital
non-volatile memory (NVM) and other applications have been
proposed for VMM acceleration.

While the forward pass is sufficient for inference workloads,
when analog hardware is employed for training, it must also
support both backward pass and weight update operations.
In view of their local weight storage and data processing
capabilities, the resistive cross-point devices targeting training
workloads are often referred to as ‘Resistive Processing Units’
(or RPUs) [14]. In the backward pass, the VMM is performed
using the transpose of the weight matrix, which can be
achieved by simply swapping the functionality performed by
the peripheral circuits at the rows and the columns used
in the forward pass. However, in contrast to forward and
backward cycles, implementing the weight update requires
incremental weight changes determined by the result of a
vector-vector outer product (rank-1 update). Therefore, with
resistive crossbar arrays, a multiplication operation and an
incremental weight update must be performed locally at each
cross-point element. As such, instead of an application of
Ohm’s and Kirchoff’s laws, device switching characteristics
must be carefully considered, and different (non-trivial) puls-
ing schemes must be supported by peripheral circuitry. As
illustrated in Fig. 1 (right), the rank-1 update of crossbar
arrays can performed by using stochastic pulses [14], and each
coincidence can event increment or decrement the conductance
of the crossbar element. Alternatively, deterministic pulsing
schemes have also been proposed [17], [18].

A crossbar array of RPU devices can perform weight matrix
operations locally and in parallel, and hence achieves O(1)
time complexity in all three cycles (independent of array
size). Moreover, conceptually, such an architecture has the
potential to provide communication as well as computational
benefits: (i) calculations are performed in place, with stationary
weights, reducing the need for weight data transfer between
processor and dynamic RAM (DRAM); (ii) a digital multiply-
and-add involves many logic device operations, while the
analog equivalent is performed in a single operation by a single
weight element. Thus, lower energy per operation should be
achievable, given optimized device characteristics.

As intriguing as the concept of analog computing is,
its practical realization requires custom circuits as well as
analog resistive devices that satisfy specifications for speed,
power consumption, stability, update behavior, etc. Further-
more, these requirements depend on the intended use of the
hardware. More specifically, inference applications only rely
on the forward pass and require excellent long-term weight
retention and stability to minimize refresh operations. In
contrast, training applications rely on all three cycles – forward
pass, backward pass, and weight update – resulting in more
stringent requirements for incremental and symmetric weight
updates and endurance.

Design, Automation And Test in Europe (DATE 2020) 1463



Special Session Paper

Fig. 1: Matrix-vector multiplication and rank-1 update in an analog array (after [14]). (Left) Multiply- and-accumulate operation performed
by applying a voltage signal to conductances of the crossbar elements. (Right) Parallel rank-one update of all matrix elements performed by
applying random voltage pulse trains to the rows and columns.

Notably, the combination of pulsing and incremental con-
ductance switching makes the parallel update operation very
different than the conventional write operations performed
on NVM devices for memory applications. For each pulse
coincidence, the device is expected to change its conductance
by a small amount, in a process that is dictated by the
underlying device and materials physics. This introduces a set
of challenging device requirements.

In order to guide analog device and materials development
for NN training, it is essential to establish a set of target device
properties that support the successful execution of the back-
propagation algorithm. Initial requirements were determined
by executing a simple, fully connected network on simulated
analog crossbar arrays with parameterized resistance, update,
noise, and variability (cycle-to-cycle and device-to-device)
characteristics [14]. Results suggest that the key technical
challenge is to accumulate the gradient information in an
unbiased way. Therefore, the device switching characteristics
must be symmetric such that the conductance change for
positive and negative voltage pulse stimuli are matched to
within a few percent on average. Moreover, the change in
conductance during a single coincidence event needs to be
(on average) 0.1% of the whole conductance range, (although
each conductance increment is not resolved by the peripheral
circuits). We note that these initial device specifications were
derived empirically for a small network using the MNIST
dataset. They are being tested for progressively larger, more
complex networks and datasets [19], [20]. In addition to these
algorithmically defined specifications, due to voltage drop
issues on large arrays, the RPU device resistance must be in
the range of ∼10-100 MΩ.

B. Candidate Crosspoint Devices

Given these RPU specifications, we can assess analog

device technologies proposed for analog crossbar acceleration.
Device options include floating-gate or charge-trap (‘Flash’)
memory, phase change memory (PCM), resistive random-
access memory (RRAM), ferroelectric field-effect transistors
(FeFET) and tunnel junctions (FTJ), and electrochemical RAM

(ECRAM) among others. While digital Flash memory has been
commercially available for more than three decades, a slow,
high-voltage write and limited endurance may restrict analog
Flash-based arrays [21] to NN inference. Herein, we focus on
device options that have shown promise for NN training.
1) Phase Change Memory: We first consider phase-change

memory, arguably the most mature among the new memory
technologies. In analog PCM, conductance is increased by re-
sistively heating an amorphous chalcogenide material such as
Ge2Sb2Te5 located between two metallic electrodes, thereby
gradually crystallizing it, with resistance ranging in the tens or
hundreds of kΩ [22], [23]. The metastable amorphous state is
regenerated in a fast melt-quench process using a high current
pulse. Therefore, PCM is a unidirectional switch. Weights are
signed and need to be implemented by a differential pair of
conductances: w = G+

−G−. Again as PCM is a unidirectional
switch, both conductances will move towards saturation which
eventually will prevent further weight updates. To avoid this
situation, during training both devices periodically undergo a
simultaneous reset, while maintaining the difference [18].
Experimental weight cells often show asymmetric weight

updates caused by the underlying crystallization kinetics.
This can be addressed by separating a weight into higher-
significance and lower-significance portions. The latter will
be updated more frequently and can be implemented on a
capacitor with symmetric switching behavior, while the former
remain in PCM, and a transfer of information from the
capacitor to the PCM element(s) is performed once a threshold
is reached. With this approach, test accuracy for MNIST, and
for a transfer learning experiment with the CIFAR-10 dataset
was found to match a digital floating-point calculation, while
accuracy was slightly reduced for more challenging tasks [24].
Alternatively, one might choose to only perform matrix

multiplications in the analog crossbar, while keeping the
weight update in the digital domain [25]. This approach also
minimizes the impact of weight update noise caused by the
stochastic nature of the crystallization process [22].
Another non-ideality associated with PCM is caused by

continued structural relaxation and electronic redistribution

1464 Design, Automation And Test in Europe (DATE 2020)



Special Session Paper

Fig. 2: Read current response during three cycles of 1000 potentiation
and 1000 depression pulses applied to exemplary analog RRAM
device (after [30]).

of trapped charges in the amorphous chalcogenide material,
which results in a drop in conductance over time, and is known
as resistance drift. To mitigate this, the PCM material can be
surrounded with a metallic liner [26], or such a ‘projection
layer’ can be placed underneath it in a lateral device geometry
[27]. This liner diverts the read current around the amorphous
high-resistance region, making the current insensitive to relax-
ation effects inside the amorphous phase, which dramatically
reduces drift. We note that drift can also be compensated for
by algorithmic correction in the activation function [28].

Further improvements in power efficiency are expected
when increasing PCM device resistance deep into the MΩ

range. For accelerators fabricated in 14 nm technology that
combine such device and circuit improvements, energy effi-
ciencies during training of up to 172- 250 TOP/s/W have been
projected for base resistance of up to 100 MΩ [29]. For a
recent overview of PCM-based in-memory DNN acceleration,
we refer the reader to [23].

2) RRAM: We now turn to filamentary oxide-based resis-
tive random-access memory. Being a bidirectional device,
RRAM has the potential to reduce the circuit overhead re-
quired to accommodate the unidirectionality of phase-change
memory. In an RRAM device, a metal oxide such as HfO2

[22] located between two metallic electrodes is subjected to
a one-time forming pulse in which an oxygen-deficient con-
ductive path is formed between the electrodes. During analog
operation, suitable voltage pulses (in the nanosecond range)
gradually shrink or grow the filament (i.e., conductance re-
duction/reset and conductance increase/set respectively). Typ-
ically, a transistor is used in a 1T1R configuration in order to
precisely control the forming and switching currents.

Analog RRAM typically exhibits a device resistance in the
range of a few kΩ to tens of kΩ [22], [31], [32], resulting
in voltage drops along the interconnect lines which limits
array size. Other common challenges include imperfect yield,
asymmetric weight updates, and a stochastic update behavior
caused by the underlying atomistic switching mechanism
[22], [30] (Fig. 2). Non-yielding, stuck-open devices can be
accommodated by in-situ training [31] or hardware-aware
training [33], substantially improving inference accuracy when
compared to a conventional model trained with floating-
point arithmetic. Regarding update asymmetry, with carefully

optimized pulse conditions in the 1T1R configuration, oxygen
vacancies are moved in a more incremental fashion. Promising
update symmetricity and linearity have been achieved in this
way [34], although there typically is a trade-off with signal-
to-noise ratio. Fortunately, recent algorithmic advances relax
the symmetricity requirements compared to the original RPU
specifications [30], [35], giving the materials scientist more
freedom to optimize other device properties.

3) Ferroelectrics: Hafnium-based oxides can instead be
deployed in ferroelectric field-effect transistors (FeFETs) or
tunnel junctions (FTJs) [36], making use of a ferroelectric
phase of HfO2. Originally proposed in the early 1990s [37], the
threshold voltage of a synaptic ferroelectric field-effect tran-
sistor (FeFET), and thus its drain current, is controlled by the
polarization state of the gate dielectric, which can be adjusted
by suitable positive and negative gate voltage pulses. Crucially
for NN training, FeFETs permit faster write operations at
lower voltage than the conceptually similar Flash memory.
Asymmetric weight update behavior (similar to what is ob-
served for RRAM), can be accommodated in a 2T-1FeFET
weight cell [38], by employing a mixed-precision concept
similar to what has been demonstrated for PCM. Endurance is
currently limited to approximately 106 to 109 cycles, and im-
provements require device, materials, and process innovation
[39]. Alternatively, metal-ferroelectric-metal (MFM) ferroelec-
tric tunnel junctions (FTJ) can be employed, as MFM devices
feature better cycling endurance than FeFETs. Structurally
similar to RRAM, the current through such a two-terminal
device is controlled by polarization-induced changes to the
tunneling barrier instead of a filament. Recently, analog, bi-
directional resistance tuning in a simple, CMOS-compatible
TiN/HfO2/TiN FTJ was demonstrated [40]. Challenges include
asymmetric updates, stochasticity, and controlling an analog,
mixed FE domain state in highly scaled devices.

4) Electrochemical RAM: The device types discussed thus
far were originally devised for digital memory. Electrochem-
ical RAM (ECRAM) is instead based on intrinsically analog
materials inspired by solid-state battery technology. In three-
terminal ECRAM, a gate electrode drives mobile ions into or
out of a channel material such as Li1−xCoO2 [41] or WO3

[42] to reversibly change the resistance between a source and
a drain electrode. This separation of read and write operations
leads to good control over the channel modulation. Highly
symmetric potentiation and depression characteristics with
∼1000 up- and down-steps, and excellent SNR have been
demonstrated with gate current pulses in the nanosecond range
[42]. Voltage pulsing would obviate the compliance transis-
tors required for current control, leading to a more compact
design. However, devices demonstrated to date exhibit a non-
zero open circuit potential, resulting in poor retention and
asymmetric update characteristics when gate current control is
not employed [43]. Also, most ECRAM devices demonstrated
to date use lithium, which is not semiconductor-fab-friendly.
Materials innovation is therefore needed. Recently, parallel
array operation was demonstrated on a CMOS-compatible
metal oxide ECRAM [44].

5) Paths Forward: As we have seen, challenges remain
for each device option, in particular regarding weight update
symmetricity under constant voltage pulsing. Optimum NN

Design, Automation And Test in Europe (DATE 2020) 1465



Special Session Paper

processing will therefore benefit from adjustments to the
computational algorithms to accommodate such non-idealities.
Recently, a ’zero-shifting’ technique was introduced that can
compensate the imbalance between potentiation and depres-
sion for bidirectional but asymmetric devices. This technique
shifts the weight range such that the zero weight corresponds
to the conductance value (symmetry point) where the pos-
itive and negative pulse stimuli result in equal amounts of
conductance change [30]. Building on this technique, one
can substantially relax the symmetricity requirement. Device
asymmetry introduces an unintentional implicit cost term into
the conventional stochastic gradient descent (SGD) algorithm,
causing it to find non-optimal solutions to the training task.
Building on the zero-shifting technique, a modified train-
ing algorithm has been developed that introduces a coupled
dynamical system to simultaneously minimize the original
objective function of the network and the unintentional cost
term in a self-consistent fashion [35].

Training simulations performed on various network archi-
tectures show that even aggressive bidirectional device asym-
metry (as in the case of RRAM devices) can be compensated
for by this algorithm, giving training results that are indistin-
guishable from those achieved with perfectly symmetric, ideal
devices. Moreover, all operations performed on the crossbar
arrays are still parallel and therefore the implementation cost
of this new algorithm is minimal. It also maintains expected
power and speed benefits. Assuming other device specifi-
cations are within tolerable margins, this algorithm allows
for non-symmetric device technologies to be used for deep
learning applications. In addition, even non-yielding, corrupt
devices can be accommodated by hardware-aware training via
randomly dropping connections [33]. Such algorithmic im-
provements are crucial to relaxing the material specifications
and to realizing technologically viable resistive crossbar arrays
that outperform digital accelerators for similar training tasks.

III. CROSSBAR-BASED HARDWARE FOR MANNS

A critical requirement for

Read Heads

Differentiable Memory

External Input External Output

Soft Read Soft Write

DNN 

(Feedforward or LSTM)

Write Heads

Fig. 3: Neural turing machine

many machine learning ap-
plications is one-shot or

few-shot learning, where the
learning algorithm needs to
rapidly assimilate new con-
cepts from one or very few
training examples. MANNs
are emerging as a new direc-
tion to address these chal-
lenges [45], [46]. MANNs
are composed of a con-
troller, which is typically a
feedforward or recurrent deep NN, enhanced with an external
differentiable memory module, per the Neural Turing Machine
(NTM) in Fig. 3. The differential memory is used as a working
memory that is addressed through read and write heads with
keys produced by the controller. Recent efforts from Google’s
DeepMind, Facebook AI, etc. have demonstrated the ability
of MANNs to solve new classes of problems well beyond the
capabilities of classical DNNs [3], [4], [46], [47].

To make the memory differentiable, NTMs use soft read and

soft write operations, which are extremely memory intensive
since each soft read or write requires access to all the

locations in the memory. The extent to which each memory
element is accessed is controlled by an attentional focus
mechanism that leverages various similarity measures, e.g.,
cosine similarity, Euclidean distance, etc. Consequently, the
differentiable memory is a major performance and energy
bottleneck in current (CPU and GPU) implementations of
MANNs. This bottleneck will only grow when dealing with
real-world data requiring thousands to millions of memory
locations [4]. Specialized DNN accelerators such as Google’s
TPU, Microsoft’s Brainwave, and several others, are tuned to
the computational kernels of classical DNNs. While they can
efficiently execute the controller network of MANNs, they do
not address the memory-intensive kernels arising from soft
reads and writes to the differentiable memory.

Per the above, resistive crossbars are considered promising
as building blocks of future neural hardware fabrics due to
their ability to exploit massive degrees of parallelism when
performing in-memory dot product operations. X-MANN in-
troduces a specialized crossbar-based architecture that is de-
signed to efficiently accelerate the key differentiable memory
operations in MANNs. Fig. 4 provides an overview of the
X-MANN architecture, which is hierarchically organized into
multiple banks, with each bank comprising multiple subarrays.
Each subarray is further composed of transposable crossbar-
based processing tiles (TCPTs) that are connected via a shared
bus. The differentiable memory state is partitioned and stored
across the different tiles in a distributed manner. To reduce
the partial outputs from these tiles, X-MANN also includes
a global reduce unit. The following sections describe the key
components of the X-MANN architecture.

A. Transposable Crossbar-based Processing Tile

The transposable crossbar-based processing tile can perform
in-memory computations along both its rows and columns.
Two sets of register banks (key registers and weight registers)
feed inputs to the columns and rows of the crossbar array
within the TCPT, and an output buffer holds temporary outputs
from the array. A Special Function Unit (SFU) interfaces with
the output buffer to execute simple kernels with lower memory
intensity. A decode and control unit takes the operation type
(OpType) as input and generates the control signals, viz., col-
umn/row wordlines (CWLs/RWLs), column/row source lines
(CSLs/RSLs). Below, we describe the transposable crossbar
array, how it realizes similarity and soft read operations, and
finally outline the design of the SFU.

1) Transposable Crossbar Array: In X-MANN, the stan-
dard resistive crossbar array is enhanced with the additional
capability of providing input voltages along the columns and
reading out the output currents along the rows, making it a
transposable array. Dedicated DACs are placed on rows and
columns, while ADCs are shared across columns and rows due
to their higher overheads. Dot product operations along both
the rows and the columns form the basis for the soft read, soft
write and the similarity measure operations in MANNs. The
following paragraphs describe how two key operations on the
differentiable memory (i.e., similarity measure and soft read)
are realized in the transposable array.

1466 Design, Automation And Test in Europe (DATE 2020)



Special Session Paper

Fig. 4: X-MANN architecture: Overview

2) Similarity Measure: A similarity measure operation is
realized in two steps. First, elements of the key vector are
fed as inputs along crossbar columns by enabling the column
wordlines (CWLs). Each memory vector, stored as conduc-
tances along different crossbar rows, is multiplied with the
input key vector. The resulting output current across each row
represents the dot product of the corresponding memory and
key vectors. Next, voltages equivalent to a vector of all 1s are
applied along the columns to produce L1-Norms of all memory
vectors, across each row, in parallel. Thus, a transposable array
can compute both the dot products and L1-Norms for the entire
set of memory vectors in two crossbar operations. Using the
computed dot products and L1-Norms, the SFU performs the
remaining operations required to compute similarity measures
for each memory vector.

3) Soft Read: A soft read is identical to the vector-
matrix multiplication realized in standard crossbars and can
be performed in a single crossbar operation. The voltages
corresponding to the weights for each memory vector are
applied to the rows. The resultant current flowing through each
column is received by enabling the appropriate S/H circuit via
the column source line (CSL). The output read across each
column represents an element of the resulting soft read vector.

4) Special Function Unit: To minimize the data transfer
cost for the operations that need to be performed outside
the transposable array, X-MANN introduces a near-memory
SFU that is tightly integrated with the output buffer in the
TCPT. The SFU contains two different types of compute
elements, viz. a vector Processing Element (vPE) and a Special
Processing Element (SPE). The vPE contains a vector of adder
and multiplier units, while the SPE contains logic needed
to support functions such as exponentiation and division.
The SFU is primarily designed to perform operations such
as softmax, division, multiplication and addition/subtraction,
required for similarity measure and soft writes.

B. XMANN Performance

For a suite of MANN benchmarks with diverse memory ca-
pacities, X-MANN achieves 23.7×-45.7× speedup and 75.1×-
267.1× reduction in energy over a state-of-the-art GPU.

IV. CAM-BASED HARDWARE FOR MANNS

CAMs have also been proposed to accelerate and simplify
attentional operations by performing distance metric calcula-
tions for similarity-based searches in memory; this also elimi-
nates the need for data updates at random memory addresses,
which can be prohibitively expensive on a GPU [9], [48].
Follow-on work has combined CAM-based approaches with
Compute-in-Memory (CiM) hardware to support combinations
of distance metrics to further improve classification accuracy
in few-shot learning applications [49].

A. CAM-based MANNs

As noted earlier, augmenting a NN with an external memory
can improve its abilities to “learn how to learn” and prevent
catastrophic forgetting [50]. Training frequently occurs by
applying a series of N-way, K-shot examples. A NN may be
shown a set of supporting images from N classes, with K
examples of each class. It is then shown new query images
(from the N classes) and must identify which supporting im-
ages the query images are most similar to. Since a traditional
NN updates its weights with a bias towards the most recent
example it has seen, it can overfit on newer examples. Adding
an external memory prevents this bias by caching information
that it has previously seen [51], which can be used by the NN
for better generalization. Memory entries are then retrieved
based on their similarity with a query vector.
While recent work suggests that this approach can be

effective from the perspective of accuracy [2], [4], [52], most
research to date has considered standard datasets such as Om-
niglot, and acknowledges that substantially larger memories
are needed as problem complexity increases – e.g., language
processing at scale, etc. [4], [52]. Furthermore, networks
with an attentional memory (i.e., MANN-like networks) often
require a large number of floating-point operations and req-
uisite data transfer – e.g., to perform cosine similarity metric
calculations for necessary attentional operations, which can
greatly increase energy consumption and hardware cost.
An attractive hardware alternative for performing parallel

comparisons is to use CAMs. Unlike a conventional computer
memory where each data word is retrieved from a provided

Design, Automation And Test in Europe (DATE 2020) 1467



Special Session Paper

address and then compared, with a CAM or ternary CAM
(TCAM), data is provided as input to memory, the closest
possible match can be returned via a single reference, and no
data transfer is required. With a TCAM cell, it is possible to
store a “don’t care” state, which is useful for encoding ranges
[53], [54], and is employed in initial work.

Still, using CAMs for similarity metric calculations intro-
duces challenges – e.g., cosine similarity calculations neces-
sitate many multiplication and division operations, which are
not supported per the above. Thus, there have been systematic
studies of alternative distance metrics including L1, L2 and
L∞ (that may be more CAM friendly) to determine the
resulting impact on accuracy, physical memory size required,
and the number/type of operations to compare a query with a
network’s learned memory.

B. Evaluation of Different Encoding Schemes

As CAMs/TCAMs only support Hamming distance compu-
tation, data encodings can significantly impact the the accuracy
of the resulting MANNs. Below we discuss representative
encodings and their associated performance.

1) Range Encoding: Range encoding with no expansion
(RENE) [53], [54], a TCAM similarity-based search, leverages
binary reflected gray code (BGRC) range encoding. The query
point is translated to a cube of increasing sizes until the k-
nearest neighbor is found. As range size increases, the number
of ”don’t care” states increases as well. Thus, range encoding
can be used to compute nearest neighbor metrics such as L1,
L∞, etc. RENE’s range-encoding scheme has been used and
applied to MANNs [48]. A lifelong learning memory module
consisting of key-value pairs are added to a NN consisting of a
4-layer convolutional NN and 2-layer fully connected network.
The lifelong learning memory module acts as an associative
working memory while the NN learns, comparing the current
input query to the past entries stored in the memory based
on their similarity. To enable the use of TCAMs, floating
point-based feature vectors are converted to a fixed-point
representation.

While FOM such as latency and energy must be studied,
for TCAM-based MANNs to be viable, they must also offer
task-level accuracies that are comparable to a GPU-baseline
– e.g., that uses a cosine distance metric. As a representative
example, by employing combined L∞ and L2 approach with
a 4-bit, fixed point precision with 512 memory entries, we
can achieve a 96.00% classification accuracy for the Omniglot
5-way, 1-shot classification task [48] By comparison, a 32-
bit floating point-based cosine similarity based MANN has
a 99.06% accuracy for the same task. With this approach,
essentially only a few TCAM lookups are required versus
M ·D multiplications required by the attentional memory with
a 32-bit floating point-based cosine similarity search (where
M is the number of memory entries, and D is the number of
dimensions of the feature embeddings) [48].

With binary comparators (i.e., an XNOR gate), to find the
K nearest neighbors of the search vector among the stored
vectors, multiple consecutive searches need to be performed
[48]. Thus, each cube-based query point might represent a
TCAM lookup/array reference, multiple references may be
required to identify KNN, and we still incur energy and latency

overheads from charging/discharging the match lines (MLs) in
a TCAM array multiple times (i.e., with each search) [48]. It is
much more desirable for the TCAM to compute any requisite
distance norm with just a single search – while simultaneously
computing the degree of match.

2) Locality Sensitive Hashing: As the mismatch between
the search vector and stored vector increases (or decreases),
a match-line (ML) discharges faster (or slower) [48], [55].
Therefore, it is possible to compute the degree of match by
sensing the discharge rates of the MLs. Note that a TCAM
only computes the Hamming distance (HD) norm between
the query and the stored vectors, through direct measurement
of the number of mismatched bits. To address this problem,
LSH functions can be used to hash real value feature vectors
to a binary signature [56] as an intermediate step, and then
utilize a TCAM array to find the HD between the binary
signatures (Fig. 5). LSH encodes the feature vectors such that
similar vectors will be mapped with the same signature. The
stored vector with the minimum HD from the query vector is
chosen as the nearest vector. With this approach, CAMs can be
employed to implement the external memory in a MANN, and
calculate the distance between the requested search vector and
all the memory entries with just a single parallel search across
the array, which can significantly improve both energy and
latency in memory search operations versus a cosine similarity
calculation performed on a GPU backed by DRAM.

One- and few-shot learning tasks given this context have
been considered for the Omniglot dataset [57]. The last fully
connected layer in a CNN (that generates feature vectors) is
replaced with an LSH function layer [58] (Fig. 5). The LSH
layer is used to convert features from a real-valued feature
vector to a binary signature As the LSH and the original
fully connected layer have similar computational demands,
the replacement does not incur overhead in either storage or
computation. LSH with random projections is used such that
feature vectors (e.g., images) associated with the same class
have similar binary signatures. Thus, a greater (or smaller) HD
between the binary signatures implies less (or more) similarity
between the features represented by the signatures. By storing
the binary signatures in the TCAM, one can search in parallel
for the supporting class that is closest to a given query. The
number of LSH hashing planes is a hyper-parameter and is
tuned until further increase does not further improve accuracy.

The TCAM-based MANN exhibits classification accuracies
that approach (and sometimes match) those obtained with the
conventional cosine similarity calculation when implemented
on a GPU backed by external DRAM (Fig. 5 (inset)). Further-
more, we observe 24X and 2,582X and reductions in energy
and latency, respectively, for memory search operation when
a 16T CMOS TCAM replaces DRAM. As such, alternative
hardware architectures have the potential to substantially im-
prove inference energy and latency.

C. Paths Forward

Per Sec. I, [9] has reported an FeFET TCAM array pro-
totype that implements an in-memory HD compute function
between the query vector, and all the vectors stored in a
TCAM array. The FeFET TCAM cell is comprised of just
2 FeFETs – as opposed to a 16T CMOS TCAM cell. Studies

1468 Design, Automation And Test in Europe (DATE 2020)



Special Session Paper

(inset)

Fig. 5: GPU-based vs. TCAM-based MANNs (from [9]); (inset) classification accuracy (cosine distance vs. LSH).

suggest that replacing 16T CMOS TCAMs with 2 FeFET
TCAMs can further reduce the latency and energy for memory
search operations in MANNs by 1.1X and 2.4X respectively. A
more compact FeFET design could also enable larger MANN
memories. That said, issues related to FeFET endurance, how
to best exploit cell non-volatility, and improved accuracy
(among others) must still be considered. For example, per Fig.
5 (inset), when TCAM-based distance metrics are employed,
not all few-shot learning problems approach iso-accuracy. One
potential solution is to choose hash values such that nearby
feature vectors (in a Euclidean sense) are mapped to hash
values that are close in HD. The efficacy of this approach
with more sophisticated datasets (e.g., omniglot versus mini-
ImageNet) must also be investigated.

V. EMERGING MACHINE LEARNING WORKLOADS

Personalized recommendation is an important and emerging
class of ML workloads. Recommendation is the task of
serving personalized content to users based on their prefer-
ences. Personalization forms the backbone of many, pervasive
internet services such as search, e-commerce, social media,
news, and entertainment [59]. Central to these services is the
ability to accurately rank content based on the preferences
of individual users. Following recent advances from the ML
and AI communities, state-of-the-art recommender systems
rely on deep learning methods [59]–[61]. In fact, NNs for
recommender systems (not CNNs/RNNs) now comprise an
overwhelming majority of cycles devoted to AI inference in
datacenters [62]–[64]. The efficient deployment of emerging
NN based recommender systems will require the design of
novel hardware platforms.

A. Unique neural network architecture

To recommend content based on users’ personal pref-
erences, NNs for recommendation employ a unique archi-
tecture. While CNNs and RNNs operate over continuous,
dense features (i.e., vectors, matrices, and images), inputs to

recommendation models include both dense and categorical,
sparse features. Categorical features are key to enabling highly
accurate recommendation models. While categorical features
represent users’ interactions with possible items to be rec-
ommended, a typical user only ”interacts” with a handful of
(potentially millions) of items (e.g., videos on Youtube, goods
on Alibaba, social media posts on Facebook, etc.). These
interactions are represented as multi-hot encoded vectors,
which not only makes training more challenging, but also
requires (i) intrinsically different operations (e.g., embedding
tables) and (ii) model architectures (to process which require
novel compute and memory systems for efficient execution)

Fig. 6 is a simplified diagram of an execution flow for a
NN based recommendation system. As previously mentioned,
inputs to the model are a collection of dense and sparse
features. Dense features are processed by a series of DNN
layers (typically multi-layer perceptron (MLP) layers). Sparse
features are first transformed to a dense representation via
embedding tables. (While the sparse to dense projection could
be implemented as MLP layers or matrix factorization, the
compute demands for doing so are large when compared to
simpler hash-based embedding lookups). Based on the multi-
hot encoded vector, the corresponding rows of the embedding
table (which represent learned latent feature vectors) are
pooled. The aggregated latent feature vectors are concatenated
across embedding tables, along with the output of the dense-
feature DNN stack, and processed by the final predictor DNN
stack. The output of the network is the predicted ”click-
through-rate” of the user interacting with a given item.

B. Research challenges and opportunities

The efficient deployment of NN-based recommendation
models poses a number of open research challenges. Compared
to CNNs and RNNs, recommendation models incur orders of
magnitude larger storage capacity and irregular memory access
patterns. As such, the memory system is of the utmost im-
portance. First, state-of-the-art recommendation models range

Design, Automation And Test in Europe (DATE 2020) 1469



Special Session Paper

Dense 

Features

Sparse 

Features

Sparse 

Features

User Item 

Query

N

N

N

Dense 

feature 

DNN-stack

Embedding

 Table 

Lookup

Embedding

 Table 

Lookup

Memory Capacity and 

Bandwidth Dominated

Sparse 

feature 

pooling

Communication

Dominated

Predictor

DNN-stack

Computation

Dominated

Click 

Through 

Rate(s) 
N

DNN-Based Personalized

Recommendation Model
 Recommendation 

Inputs

Feature 

Interaction

Ranked items 

to 

recommend 

user
User
Items

Fig. 6: Simplified model-architecture of NN based recommendation systems.

from hundreds of MBs to tens of GBs in capacity [59]. This
is a result of large embedding tables where the number of
rows scales with the range of possible items to recommend
(e.g., millions) and the column dimension is set by the latent
feature size (e.g., tens). While recent work has applied reduced
precision to compress embedding tables by up to 16×, a
recommendation model’s capacity remains well above the
capability of traditional local, on-chip storage in state-of-the-
art hardware platforms [65].

Embedding table operations exhibit orders of magnitude
lower compute intensity as compared to CNN and MLP
operations [59]. Namely, the large capacity and irregular
memory accesses (i.e., from the multi-hot encoded sparse
input features), results in performance constraints due to the
associated memory references. Accelerating these operations
will require the co-design of the memory system with the
recommendation models and could leverage techniques such
as caching, prefetching, and near memory processing [66].

In addition to unique memory system challenges, recom-
mendation models incorporate a variety of NN architectures

– i.e., the recommendation model in Fig. 6 can be configured
to represent a variety of NN architectures [59]–[61], [67]–
[69]. If the model is configured to have large, dense feature
DNN-stacks and predictor DNN stacks, it will be compute
dominated. Alternatively, a larger number of embedding tables
and multi-hot encoded sparse input vectors results in a model
that is constrained by memory capacity and bandwidth. Fur-
thermore, emerging recommendation models rely on explicitly
modeling sequences of user interactions and interests with
RNNs and attention. Given the diversity of employed NN
topologies, accelerators for emerging recommendation systems
must carefully balance specialization with flexibility.

Finally, in addition to improving inference efficiency, the
training of recommendation models also poses challenges.
Training highly accurate recommendation systems to provide
personalized user experiences requires large datasets with
millions of users and interactions that are on the order of tens
of GBs [70]. Given the compute and storage requirements of
the recommendation model and the size of training datasets,
state-of-the-art recommendation models are typically trained
across many machines [62]. Thus, efficient training requires
carefully balancing compute, memory, and network com-
munication. Furthermore, to capture evolving user interests,

recommendation systems are periodically updated [62]. For
instance, Facebook’s recommendation models are re-trained
on hourly and daily intervals. As each training run spans
many hours, open research challenges remain with respect
to designing hardware friendly meta-learning and few-shot
learning techniques for recommendation systems.

VI. CONCLUSION

We have reviewed efforts toward the realization of analog
crossbar architectures that can be used to support existing
NN models such as RNNs and CNNs, as well as emerging
network models such as MANNs. As described herein, CAM
arrays have also been proposed to support emerging models
such as MANNs. (Moreover, CAM-based architectures may
also benefit from crossbar arrays, as ”helper networks” to
generate feature embeddings that may take the form of a
CNN, etc.) Furthermore, NN models for problems such as
recommendation systems face challenges in that often there is
not a single, dominating kernel function that could serve as
a potential acceleration target. We hope this discussion will
further engage the design automation community with respect
to architectural design space exploration efforts, etc. to address
computational workloads associated with new NN models.

ACKNOWLEDGMENTS

This work was supported in part by ADA, ASCENT, and
C-BRIC – three of the six centers in JUMP, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA.

REFERENCES

[1] M. McCloskey et al. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and
motivation, volume 24, pages 109–165. Elsevier, 1989.

[2] A. Santoro, et al. Meta-Learning with Memory-Augmented Neural
Networks. In ICML, pages 1842–1850, 2016.

[3] A. Graves, et al. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

[4] A. Graves, et al. Hybrid computing using a neural network with dynamic
external memory. Nature, 538(7626):471, 2016.

[5] O. Vinyals, et al. Matching networks for one shot learning. In Advances
in neural information processing systems, pages 3630–3638, 2016.

[6] Ł. Kaiser, et al. Learning to Remember Rare Events. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings, 2017.

[7] A. Ranjan, et al. X-MANN: A Crossbar based Architecture for Memory
Augmented Neural Networks. In DAC, page 130, 2019.

[8] A. Graves, et al. Neural Turing Machines. abs/1410.5401, 2014.

1470 Design, Automation And Test in Europe (DATE 2020)



Special Session Paper

[9] K. Ni, et al. Ferroelectric Ternary Content Addressable Memory for
One-Shot Learning. Nature Electronics, 2:521–529, November 2019.

[10] S. Shukla, et al. A scalable multi-teraops core for ai training and
inference. IEEE Solid-State Circuits Letters, 1(12):217–220, Dec 2018.

[11] N. Wang, et al. Training deep neural networks with 8-bit floating point
numbers. In Advances in neural information processing systems, pages
7675–7684, 2018.

[12] X. Sun, et al. Hybrid 8-bit Floating Point (HFP8) Training and Inference
for Deep Neural Networks. In H. Wallach, et al., editors, Advances in
Neural Information Processing Systems 32, pages 4901–4910. 2019.

[13] J. Choi, et al. Accurate and efficient 2-bit quantized neural networks.
2nd SysML Conference, 2019.

[14] T. Gokmen et al. Acceleration of deep neural network training with
resistive cross-point devices: Design considerations. Frontiers in Neu-
roscience, 10:333, 2016.

[15] B. Widrow. An adaptive ’Adaline’ neuron using chemical ’memistors’,
1960. TR No. 1553-2, Stanford Electronics Laboratories, Stanford
University, Stanford, Calif.

[16] K. Steinbuch. Die lernmatrix. Kybernetik, 1(1):36–45, 1961.
[17] Z. Xu, et al. Parallel programming of resistive cross-point array for

synaptic plasticity. Procedia Computer Science, 41:126–133, 2014.
[18] G. W. Burr, et al. Experimental demonstration and tolerancing of a large-

scale neural network (165 000 synapses) using phase-change memory
as the synaptic weight element. IEEE Transactions on Electron Devices,
62(11):3498–3507, 2015.

[19] T. Gokmen, et al. Training deep convolutional neural networks with
resistive cross-point devices. Frontiers in Neuroscience, 11:538, 2017.

[20] M. J. Rasch, et al. Training large-scale anns on simulated resistive
crossbar arrays. abs/1906.02698, 2019.

[21] M. R. Mahmoodi et al. An Ultra-low Energy Internally Analog, Ex-
ternally Digital Vector-matrix Multiplier Based on NOR Flash Memory
Technology. In Proceedings of the 55th Annual Design Automation
Conference, DAC ’18, pages 22:1–22:6, 2018.

[22] N. Gong, et al. Signal and noise extraction from analog memory
elements for neuromorphic computing. Nature Comm., 9(1):2102, 2018.

[23] E. Eleftheriou, et al. Deep learning acceleration based on in-memory
computing. IBM J. of Res. and Development, 63(6):7:1–7:16, Nov 2019.

[24] S. Ambrogio, et al. Equivalent-accuracy accelerated neural-network
training using analogue memory. Nature, 558(7708):60, 2018.

[25] S. R. Nandakumar, et al. Mixed-precision architecture based on com-
putational memory for training deep neural networks. In International
Symposium on Circuits and Systems (ISCAS), pages 1–5, May 2018.

[26] W. Kim, et al. Reliability benefits of a metallic liner in confined PCM. In
2018 IEEE International Reliability Physics Symposium (IRPS), pages
6D.5–1–6D.5–5, March 2018.

[27] I. Giannopoulos, et al. 8-bit precision in-memory multiplication with
projected phase-change memory. In 2018 IEEE International Electron
Devices Meeting (IEDM), pages 27.7.1–27.7.4, Dec 2018.

[28] V. Joshi, et al. Accurate deep neural network inference using computa-
tional phase-change memory. abs/1906.03138, 2019.

[29] H.-Y. Chang, et al. AI hardware acceleration with analog memory:
Microarchitectures for low energy at high speed. IBM Journal of
Research and Development, 63(6):8:1–8:14, Nov 2019.

[30] H. Kim, et al. Zero-shifting technique for deep neural network training
on resistive cross-point arrays. abs/1907.10228, 2019.

[31] C. Li, et al. Efficient and self-adaptive in-situ learning in multilayer
memristor neural networks. Nature Communications, 9(1):2385, 2018.

[32] R. Mochida, et al. A 4M Synapses integrated Analog ReRAM based
66.5 TOPS/W Neural-Network Processor with Cell Current Controlled
Writing and Flexible Network Architecture. In 2018 IEEE Symposium
on VLSI Technology, pages 175–176, June 2018.

[33] T. Gokmen, et al. The marriage of training and inference for scaled
deep learning analog hardware. In IEEE International Electron Devices
Meeting (IEDM), 2019.

[34] E. A. Cartier, et al. Reliability challenges with materials for analog
computing. In 2019 IEEE International Reliability Physics Symposium
(IRPS), pages 1–10, March 2019.

[35] T. Gokmen et al. Algorithm for training neural networks on resistive
device arrays. arXiv preprint arXiv:1909.07908, 2019.

[36] S. Oh, et al. Ferroelectric materials for neuromorphic computing. APL
Materials, 7(9):091109, 2019.

[37] H. Ishiwara. Proposal of adaptive-learning neuron circuits with ferro-
electric analog-memory weights. Japanese Journal of Applied Physics,
32(Part 1, No. 1B):442–446, jan 1993.

[38] X. Sun, et al. Exploiting Hybrid Precision for Training and Inference:
A 2T-1FeFET Based Analog Synaptic Weight Cell. In International
Electron Devices Meeting (IEDM), pages 3.1.1–3.1.4, Dec 2018.

[39] S. Oh, et al. Improved endurance of hfo2-based metal- ferroelectric-
insulator-silicon structure by high-pressure hydrogen annealing. IEEE
Electron Device Letters, 40(7):1092–1095, July 2019.

[40] M. Frank, et al. Analog resistance tuning in TiN/HfO2/TiN ferroelectric
tunnel junctions. In 49th IEEE SISC, 2018.

[41] E. J. Fuller, et al. Li-ion synaptic transistor for low power analog
computing. Advanced Materials, 29(4):1604310, 2017.

[42] J. Tang, et al. ECRAM as Scalable Synaptic Cell for High-Speed, Low-
Power Neuromorphic Computing. In 2018 IEEE International Electron
Devices Meeting (IEDM), pages 13.1.1–13.1.4, Dec 2018.

[43] D. Bishop, et al. Time resolved conductance in electrochemical systems
for neuromorphic computing. In International Conference on Solid State
Devices and Materials, page 23, 2018.

[44] S. Kim et al. Metal-oxide based, CMOS-compatible ECRAM for deep
learning accelerator. In IEEE IEDM, pages 35.7.1–35.7.4, 2019.

[45] A. S. et al. One-shot Learning with Memory-Augmented Neural
Networks. CoRR, abs/1605.06065, 2016.

[46] J. Weston et al. Memory Networks. CoRR, abs/1410.3916, 2014.
[47] S. Sukhbaatar et al. End-to-end memory networks. CoRR,

abs/1503.08895, 2015.
[48] A. F. Laguna, et al. Design of Hardware-Friendly Memory Enhanced

Neural Networks. In 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1583–1586. IEEE, 2019.

[49] A. F. Laguna, et al. Ferroelectric FET Based In-Memory Computing for
Few-Shot Learning. In GLSVLSI, pages 373–378.

[50] S. Hochreiter, et al. Learning to Learn Using Gradient Descent. In 2001,
International Conference Artificial Neural Networks (ICANN) Vienna,
Austria, August 21-25, 2001 Proceedings, pages 87–94, 2001.

[51] S. Hochreiter et al. Long Short-Term Memory. Neural Computation,
9(8):1735–1780, 1997.

[52] L. Kaiser, et al. Learning to Remember Rare Events. abs/1703.03129,
2017.

[53] A. Bremler-Barr, et al. Ultra-Fast Similarity Search Using Ternary
Content Addressable Memory. In Proceedings of the 11th International
Workshop on Data Management on New Hardware, DaMoN 2015, pages
12:1–12:10, 2015.

[54] A. Bremler-Barr et al. Space-Efficient TCAM-Based Classification
Using Gray Coding. In IEEE International Conference on Computer
Communications (INFOCOM), pages 1388–1396, May 2007.

[55] M. Imani, et al. Approximate Computing Using Multiple-Access Single-
Charge Associative Memory. IEEE Transactions on Emerging Topics in
Computing, 6(3):305–316, July 2018.

[56] A. Andoni et al. Near-Optimal Hashing Algorithms for Approximate
Nearest Neighbor in High Dimensions. CACM, 51(1):117, 2008.

[57] B. M. Lake, et al. Human-Level Concept Learning Through Probabilistic
Program Induction. Science, 350(6266):1332–1338, 2015.

[58] Y. LeCun, et al. Deep learning. Nature, 521(7553):436, 2015.
[59] U. Gupta, et al. The architectural implications of facebook’s dnn-based

personalized recommendation. arXiv preprint arXiv:1906.03109, 2019.
[60] X. He, et al. Neural collaborative filtering. In Proceedings of the 26th

international conference on world wide web, pages 173–182, 2017.
[61] H.-T. Cheng, et al. Wide & deep learning for recommender systems.

In Proceedings of the 1st workshop on deep learning for recommender
systems, pages 7–10. ACM, 2016.

[62] K. Hazelwood, et al. Applied machine learning at facebook: A datacenter
infrastructure perspective. In International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 620–629. IEEE, 2018.

[63] C.-J. Wu, et al. Deep learning: It’s not all about recognizing cats and
dogs.

[64] J. Park, et al. Deep learning inference in facebook data centers:
Characterization, performance optimizations and hardware implications.
arXiv preprint arXiv:1811.09886, 2018.

[65] A. Ginart, et al. Mixed dimension embeddings with application to
memory-efficient recommendation systems, 2019.

[66] Y. Kwon, et al. TensorDIMM: A Practical Near-Memory Processing
Architecture for Embeddings and Tensor Operations in Deep Learning.
In International Symposium on Microarchitecture, pages 740–753, 2019.

[67] G. Zhou, et al. Deep interest network for click-through rate prediction.
In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1059–1068. ACM, 2018.

[68] G. Zhou, et al. Deep interest evolution network for click-through
rate prediction. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 5941–5948, 2019.

[69] M. Naumov, et al. Deep learning recommendation model for personal-
ization and recommendation systems. arXiv:1906.00091, 2019.

[70] J. Ni, et al. Justifying recommendations using distantly-labeled reviews
and fine-grained aspects. In Conf. on Empirical Methods in Natural
Language Processing and the 9th Int. Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 188–197, 2019.

Design, Automation And Test in Europe (DATE 2020) 1471


