
Special Session Paper

Quantum Computer Architecture:

Towards Full-Stack Quantum Accelerators
K. Bertels, A. Sarkar, T. Hubregtsen, M. Serrao,

A.A. Mouedenne, A. Yadav, A. Krol, I. Ashraf

Quantum Computer Architecture lab

Delft University of Technology, Netherlands

Abstract—This paper presents the definition and imple-
mentation of a quantum computer architecture to enable
creating a new computational device - a quantum computer
as an accelerator. A key question addressed is what such a
quantum computer is and how it relates to the classical
processor that controls the entire execution process. In
this paper, we present explicitly the idea of a quantum
accelerator which contains the full stack of the layers of an
accelerator. Such a stack starts at the highest level describ-
ing the target application of the accelerator. The next layer
abstracts the quantum logic outlining the algorithm that
is to be executed on the quantum accelerator. In our case,
the logic is expressed in the universal quantum-classical
hybrid computation language developed in the group, called
OpenQL, which visualised the quantum processor as a
computational accelerator. The OpenQL compiler trans-
lates the program to a common assembly language, called
cQASM, which can be executed on a quantum simulator.
The cQASM represents the instruction set that can be
executed by the micro-architecture implemented in the
quantum accelerator. We propose that the industrial and
societal application developers use perfect qubits that have
no decoherence or error-rates. The perfect qubits offers
facilities to the quantum application developer and they
are not blocked by issues such as decoherence.

I. INTRODUCTION

The history of computer architecture dates back var-

ious decades and has been very evolving. An impor-

tant extension is the emergence of accelerators [1] as

specialised processing units to which the host processor

offloads suitable computational tasks. Recently, computer

architecture research is getting more focused on quantum

computing. In the next 5 to 10 years of quantum com-

puter development, it does not makes sense to talk about

quantum computing in the sense of a universal, Turing

computer that can be applied in any kind of application

domain. Given the recent insights leading to e.g. Noisy

Intermediate-Scale Quantum (NISQ) technology as ex-

pressed in [2], we are much more inclined to believe that

the first industry-based and societal relevant application

will be a hybrid combination of a classical computer and

a quantum accelerator. It is based on the idea that any

end-application contains multiple computational kernels

and the properties of these parts are better executed by a

particular accelerator which can be, as shown in Figure 1,

either field-programmable gate arrays (FPGA), graphics-

processing units (GPU), neural processing units (NPU)

like Google’s tensor processing unit, etc. The formal def-

inition of an accelerator is indeed a co-processor linked

to the central processor that is capable of accelerating the

execution of specific computational intensive kernels, as

to speed up the overall execution according to Amdahl’s

law. We now add two classes of quantum accelerator

as additional co-processors. The first one is based on

quantum gates and the second is based on quantum

annealing. The classical host processor keeps the control

over the total system and delegates the execution of

certain parts to the available accelerators.

Computer architectures have evolved quite dramati-

cally over the last couple of decades. The first computers

that were built did not have a clear separation between

compute logic and memory. It was only with von Neu-

mann’s idea to separate and develop these distinctly that

the famous von Neumann architecture was born. This

architecture had for a long time a single processor and

was driven forward by the ever increasing number of

transistors on the chip, which doubled every 18 months.

In the beginning of the 21st century, the single cores

became too complex and did not provide any substantial

processing improvement. This led to the incorporation of

multiple cores. The homogeneous multi-core processor

dominated the processor development for a couple of

years but companies such as IBM and Intel started

understanding that heterogeneity is the right way forward

to improve the compute power. GPUs and FPGAs are

seen as natural extensions of the computer architecture,

implying that the quantum accelerator would be a logical

next step.

In the quantum computing world, there exist two im-

portant challenges. The first is to have enough numbers

of good quality qubits in the experimental quantum

processor. The current competiting qubit technologies

include ion traps, majoranas, semi-conducting and su-

perconducting qubits, NV-centers and even graphene.

978-3-9819263-4-7/DATE20/ c©2020 EDAA 139



Special Session Paper

Fig. 1: System architecture with heterogeneous accelerators

Improving the overall status of the qubits is challeng-

ing as these suffer from decoherence that introduces

errors when performing quantum gate operation. It is

only when the quantum physical community overcomes

those challenges that the quantum accelerator will be a

widespread adopted solution. This direction is shown in

the left picture of Figure ?? where different quantum

technologies are depicted in the lowest layer. The second

challenge is to formulate at a high level the quantum

logic that companies and other organisations need to

be able to use high-performance accelerators for certain

computations that can only run on the quantum device.

This requires a long-term investment in terms of people

and technical know-how from companies that want to

pursue this direction and reap the benefits. The right

part of Figure ?? shows the industrial commitment to

think about the required quantum logic that can be

executed using the full-stack, evaluated and tested on

a quantum simulator. It is important to emphasise that

the qubits are called perfect qubits that do not decohere

or have any other kind of errors generated by them.

With the emergence of huge amounts of data, commonly

called big data, it is understood that this paradigm is

not scalable to super-large data sets. The key factor is

the huge amount of data that needs to be processed by

multiple computing cores which is a very tough problem

to solve. The data communication between the cores

is a very difficult programming problem and the data

management problem is substantially slowing down the

overall performance.

As shown in Figure ??, an important concept that

we have been implementing in the quantum computing

world is the implementation of a full stack for a quantum

accelerator as will be described later in this paper. The

basic philosophy of any accelerator is that a full stack

needs to be defined and implemented. The last 10 to

15 years have shown a large number of accelerators

that were developed as part of any modern computer

architecture. It always consists of the same following

layers: it starts at the highest level describing the logic

that needs to be mapped on the accelerator. Examples

are video processing, security, matrix computation, etc.

These application-specific algorithms can be defined in

various languages such as C++ or Fortran. In the case

of FPGAs, these algorithms are translated into VHDL or

Verilog. In the case of GPUs, the language is often for-

mulated using mathematics or other libraries and trans-

lated by the compiler to an assembly language that can

be mapped on the GPU-architecture. Especially in the

case of FPGAs, there is no standard micro-architecture

on which the VHDL or Verilog can be executed. Such

an architecture needs to be developed for every appli-

cation that needs to be accelerated. The final layer is

a chip based implementation of the micro-architecture

combined with the hardware accelerator blocks that are

needed.

II. THE QUANTUM FULL-STACK

In the context of quantum accelerator development, the

same full-stack approach is adopted for either perfect

or realistic qubits. The execution can be either on an

experimental quantum chip or on the QX simulator. The

highest level starts at the end-user application for which

a part of that application is developed in a quantum

language, such as OpenQL. The quantum part of any

industrial or societal application can be executed on any

kind of available quantum prototype. For any quantum

logic that is specified, a specific and target-related micro-

architecture needs to be defined and used. We present

the considerations for the various layers in this section.

Besides gate-based quantum computing approach, we

140 Design, Automation And Test in Europe (DATE 2020)



Special Session Paper

Fig. 2: Simulated full-stack with perfect qubits

also include the quantum annealer based system/simu-

lator as we currently investigate the components of all

types of architectures currently in the market. We first

introduce here the different kinds of qubit models that

we support at this state of research in the quantum

computer engineering field. The real, realistic and perfect

qubits are presented here, that can be used for either

purely experimental or purely application development

perspective.

A. Perfect qubits

An important concept that is introduced for our line

of research is the use of perfect qubits. Companies, gov-

ernments and other organisations interested in building

a quantum accelerator need to evaluate the availability

of quantum computing resources in terms of quantum

algorithms and have a way to test the correctness of

the quantum logic. To serve these needs, we use perfect

qubit, such that any of the erroneous behaviour arising

due to qubit quality can be avoided during application

development phase. These qubit modelled in the simu-

lator do not decohere and stay in ideal state required

for the algorithm. Using these perfect qubits guarantees

that the end-users can verify and check the algorithm

that they are working on and test if the computed results

have a meaning that can be easily interpreted. We are

not the only ones who use this but it is a very clear

concept that separates the two directions that we are

investigating in the Quantum Computer Architecture lab.

As explained above, we introduce in OpenQL, a datatype

which represents the perfect qubit which has a more

stable behaviour than the realistic qubits. Whether or not

the nearest-neighbour constraint applies, is a discretion

of the designer. The compiler may or may not compute

a route for the qubits. These decisions are based on the

requirement and maturity of the application development

stage before translating to realistic experimental testing.

B. Industrial and societal quantum application logic

The highest layer in the full-stack focuses on the

application that needs to be developed for any organisa-

tion. On current, modern architectures, there are a large

number of initiatives developed that run on either the

FPGA, the GPU or the TPU as the accelerator platform.

When envisioning the quantum accelerator idea, many

similar topics are well suited, such as security, artificial

intelligence, autonomous driving, genome sequencing,

sensors and trajectories for aeroplanes and rockets. For

the two application examples that we are currently de-

veloping, we assume the use of perfect qubits such that

the focus can be completely given to the algorithm logic

and the micro-architecture design.

1) We research algorithms for accelerating quantum

genome sequencing. These are motivated by the

application of gene therapy and personalised medi-

cation for every single individual on earth. The treat-

ment will be based on every person’s DNA-profile

that has to be generated by extensive computational

processing of the reads from sequencing devices.

2) We are also working on a quantum accelerator

model in collaboration with a German car manufac-

turer focusing on autonomous and electrical cars.

For confidentiality agreements, we do not go into

any detail of this project.

Given the potential of quantum acceleration, this top-

down approach is necessary to understand how investing

in the development of quantum computing has the po-

tential to become a world-wide technology that can be

used by every country, organisation or individual.

We focus on one such candidate application of genome

sequence reconstruction. For instance, quantum compu-

tational power would be imperative if we aim want

to compute the DNA-profile of every human being in

the world, which takes around one week on a large

network of very powerful servers for one person’s DNA.

With the availability of enough qubit capacity, the entire

parallel input data-set can be evolved simultaneously as a

superposition of a wave function. This particular property

makes it possible to perform the computation of the

entire data-set in parallel. This kind of computational ac-

celeration provides a promising approach to address the

computational challenges of DNA analysis algorithms.

The essence of accelerating sequence reconstruction is

the ability to run parallel search operations on the short

reads obtained from sequencing an individual DNA from

a sequencing machine, onto an already available refer-

ence of the organism. In recent years, GPU, FPGA and

Design, Automation And Test in Europe (DATE 2020) 141



Special Session Paper

cluster computing frameworks like Hadoop and Spark

have been used to reduce the total run-time. Potentially,

quantum computation offers a fundamentally different

way to address the enormous volume of data by employ-

ing superposition of reads in the search process, thereby

reducing the memory requirement maybe even exponen-

tially. The quantum search primitive (Grover’s search)

itself is provably optimal [3] over any other classical

or quantum unstructured search algorithm. The rather

modest quadratic speedup in cycles however becomes

extremely relevant for industrial application due to the

total CPU run-time involved in the big data manipulation

(in order of 1000s of CPU hours [4] for a single human

DNA sequence reconstruction).

C. Programming language, compiler and run-time sup-

port

The quantum algorithms and applications presented

in the previous section can be described using a high-

level programming language such as Q# [5], Scaffold [6],

Quipper [7] or OpenQL [8] and compiled into a series

of instructions that belong to the (quantum) instruction

set architecture.

As shown in Figure 3, the compiler infrastructure

for such a heterogeneous system consists of the clas-

sical compiler for the host processor combined with

the quantum compiler. It is important to note that the

architectural heterogeneity where classical processors are

combined with different accelerators such as the quantum

accelerator, imposes a specific compiler structure where

each compiler part can target the different instruction

sets and ultimately generates one binary file which can

be executed on different instruction set architectures. For

the computer architecture envisioned in our research, any

high-level implementation of the system application will

consist of two interleaved types of logic: the classical

logic which will be executed by the micro-architecture

of the controlling processor and the quantum logic which

will be mapped onto the quantum processor. The quan-

tum logic can be encapsulated by classical language

structures such as decision and loop constructs. The

micro-architecture extracts the quantum part and send

it to the quantum processor.

As we adopt the quantum circuit model as a com-

putational model, the quantum compiler translates the

quantum logic into quantum circuits for which reversible

circuit design, quantum gate decomposition and circuit

mapping are needed. The output of this compiler is a

series of instructions, expressed in a quantum assembly

language, such as cQASM, that belongs to the defined

instruction set architecture. 1 The definition of a shared

1QASM is one candidate for such a language and was originally
produced by Nielsen and Chuang to generate the LATEX figures for the
quantum circuits for their book.

quantum assembly language is a key challenge such that

there is uniformity in the algorithmic descriptions of

different research groups. Perfect qubits: The compiler

can also target the use of perfect qubits. As defined

above, that implies that these qubits live as long as they

are needed and have principally no error-rates in the

quantum gates that are executed. Depending on the state

of the execution platform, connectivity constraints can

be imposed for mapping and routing. When we generate

everything in terms of perfect qubits, that also implies

that there is no separation anymore between logical

and physical qubits as there is no requirement for error

coding.

D. Quantum micro-architecture

Any computer has a series of instructions which can be

executed on the dominant processor. To this purpose, any

kind of processor has a particular architecture capable

of executing any sequence of the legitimate instructions.

This also holds for the quantum processor, which also has

a series of instructions that it can execute, some of which

are classical logic and others are the quantum instructions

that will be executed on the quantum chip. So the

quantum accelerator will consist of two components: the

classical and digital micro-architecture part that has a

classical processor to execute part of the accelerator logic

and the quantum chip that contains the qubits that need

to be executed in an analogue way.

Essential to any kind of computational device is the

presence of one or multiple computer architectures that

are responsible for executing the instructions that are

delegated to the co-processor. The architecture of a

machine connects the physical hardware to the applica-

tions that can run (on that hardware) and dictates how

instructions are executed. This is also true for the case

of a quantum accelerator. For the quantum algorithms

to be understood by the quantum accelerator, a low level

representation of the quantum instructions is required that

the classical control hardware of the quantum chip can

understand. This is known as the Quantum Instruction

Set Architecture (QISA). The content of the QISA can

be modified for each accelerator logic that needs to

be implemented. For any micro-architecture, there are

a number of properties that we have to estimate, such

as the appropriate instruction-length, pipeline depth (for

parallel quantum gates) and targeting multiple control

channels per single instruction. Based on these principles,

the basic blocks are constructed, such as timing control

unit and the microcode instruction set of the overall

micro-architecture. We do not yet have a full implemen-

tation of the micro-architecture for logic expressed in

terms of the perfect qubits.

142 Design, Automation And Test in Europe (DATE 2020)



Special Session Paper

Fig. 3: Compiler infrastructure

E. Mapping of quantum circuits

Mapping of quantum circuits is considered in two

different contexts: the first is when applied on small

real quantum processors and the second one targets a

simulation engine that addresses larger number of qubits.

Depending on the test objective, we can either take into

account large number of qubits or stay at a small scale

and closer to the experimental state-of-the-art.

Perfect qubits: When the algorithmic behaviour and

content is not yet defined, which is the case in most of

the situations, it is important to be able to use perfect

qubits that are more reliable and predictable than the ex-

perimental ones, as that have no decoherence and execute

reliably the quantum gates of the quantum circuit.

• Scheduling of operations: With perfect qubits,

we have the freedom to impose or relax similar

kind of restrictive scheduling instructions on their

behaviour.

• Placement and routing of qubits: Also for this fea-

ture, it depends on how much freedom the algorithm

designers needs to experiment with the algorithm

they are designing. The more restrictive we are

in the placement and routing, the more difficult is

becomes. In a more relaxed situation, the designer

enjoys more possibilities to experiment and test the

algorithm.

F. QX simulator

The QX simulator was developed in our group as

a platform to simulate quantum operations on either

realistic or perfect qubits. The QX engine can execute

any quantum logic expressed in OpenQL and translated

by the compiler to cQASM, the common quantum as-

sembly language. The assumed micro-architectural layer

encapsulating the QX simulator executes the cQASM

instructions by sending the quantum instruction to QX,

which then executes it, measures the qubit states and

sends back the results to the micro-architecture. The

QX simulator is scalable based on the underlying host

processor, and is capable of simulating with up to 35

fully-entangled qubits on a laptop PC, which are either

perfect or realistic. The main advantage of a platform

like QX is to provide application developers, computer

scientists and computer engineers the tools to model

and test designs before experimental implementation on

quantum processors. A order of 50 fully entangled qubits

already give a lot of possibilities to test the application

in a proof-of-concept simulation. We can also use the

different kinds of qubits that we presented in this paper.

Perfect qubits: For application development, there

is the need to execute the quantum logic to verify

the computed results of the algorithm in the functional

sense. The QX simulator is capable of assuming the

non-emergence of errors. The current stage of research

on quantum genome sequencing algorithm uses the QX

simulator in this mode of development. In principle,

any universal quantum logic can be executed on the

simulator, the result can be measured and fed back to

the micro-architecture.

III. FUTURE PROSPECTS AND CONCLUSION

It is very important that companies and other organ-

isations start investing as soon as possible in Quantum

Technology. Figure 4 shows a projection of when dif-

ferent parts of software and hardware development will

Design, Automation And Test in Europe (DATE 2020) 143



Special Session Paper

(a) Development time frame (b) Structural division between perfect
and realistic qubits

Fig. 4: Quantum computer development future projections

be required, to create an efficient quantum computer.

The distinction is made between the use of quantum

accelerators and that of manufacturing a quantum chip.

In general, any commercial or other organisation is

interested in new technology if the Technology Readiness

Level (TRL) is high enough. If we adopt the same

levels as for classical technology, the TRL needs to

have reached level 8 and that is sketched in the red

and black line that are shown in Figure 4(a). There are

4 different moments. Phase I focuses on the reflection

by the organisation on the concrete need that exists and

for which a quantum accelerator logic can be developed.

Phase II resembles the team members brainstorming on

the logic for the quantum accelerator. Phase III then

focuses exclusively on the actual implementation and

execution of the Quantum Accelerator logic, whether on

an experimental quantum chip or on the QX simulator.

This is the moment when the top and low curves can be

combined in a real quantum prototype of the accelerator.

Figure 4(b) represents the way that the two lines of

research are currently separated and which will be joined

in maybe over the next decade.

Over the last couple of decades, quantum computing

has been a one-dimensional research effort focusing on

understanding how to make coherent qubits and how

to implement the different universal quantum gate sets

on any of the multiple quantum approaches. As far as

computer architectural choices were made, the commu-

nity has been focused very much on the von-Neumann

computer architecture and defined qubits in terms of

memory and processing qubits. Two approaches seem to

be very promising: the first comes from the accelerator

community and involves the full stack integration of the

different layers that are needed to build the quantum

accelerator. The use of perfect qubits in that context

makes sense as the end-users of any quantum accelerator

can focus their reasoning on the quantum logic of the

application and verify it through some implementation of

the micro-architecture and the execution of the quantum

instructions on the quantum simulator. The second option

is to use the full-stack for the control of, for instance, su-

perconducting and semiconducting qubits with a micro-

code layer where we translate any kind of common

QASM into an operational set of micro-instructions, for

a meaningful adoption of existing computer technology.

It is very difficult as that also depends on the quantum

application that is being looked at and the way the qubits

are manufactured.

REFERENCES

[1] Vassiliadis, S. et al. The molen polymorphic processor. IEEE

Transactions on Computers 53, 1363–1375 (2004).
[2] Preskill, J. Quantum computing in the NISQ era and beyond.

arXiv:1801.00862 (2018).
[3] Zalka, C. Grover’s quantum searching algorithm is optimal.

Physical Review A 60, 2746 (1999).
[4] Houtgast, E. J., Sima, V.-M., Bertels, K. & Al-Ars, Z. Hardware

acceleration of bwa-mem genomic short read mapping for longer
read lengths. Computational biology and chemistry 75, 54–64
(2018).

[5] Svore, K. et al. Q#: Enabling scalable quantum computing
and development with a high-level dsl. In Proceedings of the

Real World Domain Specific Languages Workshop 2018, 7 (ACM,
2018).

[6] Abhari, A. J. et al. Scaffold: Quantum programming language.
Tech. Rep., Princeton University (2012).

[7] Green, A. S., Lumsdaine, P. L., Ross, N. J., Selinger, P. & Valiron,
B. An introduction to quantum programming in quipper. In
International Conference on Reversible Computation, 110–124
(Springer, 2013).

[8] Khammassi, N. et al. Openql 1.0: A quantum programming
language for quantum accelerators,. QCA Technical Report 8
(2018).

144 Design, Automation And Test in Europe (DATE 2020)


