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Abstract— Approximate computing allows improving design energy 

efficiency at the cost of computing accuracy. Stochastic computing is 

an approximate computing technique, where numbers are 

represented as probabilities using stochastic bit streams. The serial 

processing of the bit streams leads to reduced hardware complexity 

but induces high processing latency. Silicon photonics has the 

potential to overcome this limitation thanks to high propagation 

speed of signals and high bandwidth. However, the technology 

remains costly, which calls for optical accelerators capable to adapt 

to application-specific requirements. In this paper, we propose a 

reconfigurable optical accelerator capable to adapt to computing 

accuracy, energy efficiency, and throughput objectives. The 

architecture can be configured to execute i) 4
th

 order function for 

high accuracy processing or ii) 2
nd

 order function for high-energy 

efficiency or high throughput purposes. Evaluations are carried out 

using image processing Gamma correction application. Compared to 

a static architecture for which accuracy is defined at design time, the 

proposed architecture leads to 36.8% energy overhead but increases 

the range of reachable accuracy by 65%. 

 

Index Terms— nanophotonics, stochastic computing, hardware 

accelerator, reconfigurable architecture. 

I. INTRODUCTION 

Stochastic computing (SC) is an approximate computing 
technique, in which data are represented as bit streams. Data is 
processed serially, which contributes to reduce the hardware 
complexity and the energy consumption [1]. SC is thus suitable for 
resources-constrained applications that tolerate approximations, 
such as image processing [2]. A key challenge related to the 
deployment of the paradigm to a wider range of applications is the 
high latency induced by the intrinsic serial processing. 

Nanophotonics technology is regularly investigated to 
implement computing architectures, due to signal propagation 
characteristics, such as low latency and high bandwidth. For 
instance, the co-integration of photonic and electronic devices on 
the same die allows implementing microwave processors [3]. 

Stochastic computing and integrated optics are thus 
complementary. In [4], we proposed an optical architecture 
allowing the execution of polynomial functions using the SC 
paradigm. The architecture relies on a non-linear effect, which 
allows all optical processing of the data according to the 
coefficients of the polynomial function. However, the architecture 
suffers from a limited flexibility to adapt to accuracy requirements.  

In this paper, we propose a reconfigurable optical accelerator 
relying on SC. The architecture can be adapted according to 
application requirements related to computing accuracy, energy 
efficiency, and throughput. It can be configured to execute either 

a 4th order function for high accuracy purposes, or a 2nd order 
function for high energy efficiency and design throughput. The 
energy efficiency is estimated using a transmission model we 
implement, and we evaluate the computing accuracy using 
Gamma correction application. We carried out a comparison 
between the proposed reconfigurable and static (i.e., non-
reconfigurable) [4] architectures.  

II. BACKGROUND AND RELATED WORK 

During the last decades, silicon photonics technology has been 
investigated for the design of optical computing architectures with 
the aim to accelerate the processing time over electronics-based 
architectures. Table 1 summarizes related architectures, for which 
computing complexity ranges from Boolean operations [5] to 
microwave filters [3]. The computing architectures are 
implemented using key optical devices we detail in the following. 

 Table 1: Computing architectures implemented using silicon photonics.  

Architecture Application 

Optical devices Reconfigurability 

MZI DC MRR AOF Application 
Performance 

trade-off 

Reconfigurable 

Directed Logic (RDL) 

[6] 

Arithmetic/logic 

operations 
    

 

  

Optical LookUp Table  

(OLUT) [7] 

Arithmetic/logic 

operations 
    

 
 

Microwave processors 

[3] 
FIR filter     

 
 

Optical neural network 

[8] 

Matrix 

multiplication 
    

 
 

Optical logic gates [5] 
Boolean 

functions 
    

 
 

Optical full adder [9] Full adder       

Optical stochastic 

computing [4] 

Polynomial 

functions 
    

 
 

Reconfigurable optical 

stochastic computing 

(this work) 

Polynomial 

functions 
      

A. Silicon Photonics based Computing Architectures 

The following introduces computing architectures relying on 
silicon photonics devices shown in Fig. 1. 

Mach-Zehnder Interferometer (MZI): It is composed of two 

arms in which the power of an input signal is equally distributed 

(Fig. 1(a)). On the output side, destructive and constructive 

interferences are obtained by changing the refractive index in one 

arm. This device will be used to modulate high power signal. The 

signal power on the output depends on the Insertion Loss (IL) and 

the Extinction Ratio (ER), which is estimated using the 

transmission: 

         (1) 
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In the context of microwave processors [3], MZI are configured 
to implement topologies suitable for filters processing (e.g., FIR). 
More recently, MZIs have been used to implement neural 
networks [8]. For this purpose, an accurate control of MZIs is 
carried out to define the losses experienced by signals propagating 
from a layer to another, hence implementing multipliers.  
 

 

Fig. 1: Silicon photonics devices. 
 

Directional Coupler (DC): Similar to the MZI, a DC is composed 
of two parallel arms implemented using waveguides (Fig. 1(b)). 
The device operates in two states: when no voltage is applied, the 
intrinsic refractive index of the waveguides leads to coupling of 
the signal from a waveguide to another, i.e., cross state. When a 
voltage is applied, the change in the refractive index leads to a 50% 
reduction of the coupling length. Thus, the signals continue 
propagating on the same waveguide, i.e., bar state. The 
transmission is defined by: 

                                         (2) 

In [9], an optical full adder is implemented using DC, which 
operates as a 2 1 multiplexer. This allows the selection of the 
right output, i.e., the sum and the carry-out. 

MicroRing Resonator (MRR): It is characterized by an initial 

resonant wavelength i and is controlled using fast electro-optics 

effect (Fig. 1(c)). It is used to modulate signals as follows: when 

no voltage is applied (OFF state), the signals at i are coupled into 

the MRR, which results in a strong attenuation. Whereas, 

applying a voltage leads to a detuning of the resonant wavelength 

(ON state), hence the signal transmission to the output is 

maximized. The transmission t of MRR is given by [10]: 

      (3) 

where r1 and r2 are the self-coupling coefficients, res and signal are the 
MRR resonant wavelength and signal wavelength, respectively.  is 
the wavelength shift between ON and OFF states, a is the single-pass 
amplitude transmission, and  is the single-pass phase shift.  

The Reconfigurable Directed Logic (RDL) architecture [6] 
relies on MRRs organized to implement sum of products. RDL 
allows executing arithmetic and Boolean functions, such as 
encoders and adders. The design of Optical LookUp Table 
(OLUT) [7], using MRRs, takes advantage of Wavelength Division 
Multiplexing (WDM) to execute multiple functions simultaneously.  

All-Optical Filter (AOF): a non-linear effect induced by Two-
Photons Absorption (TPA) can be triggered in resonating devices 
[5]. Indeed, high intensity pump signal allows temporal detuning 
of the intrinsic resonant wavelength ref. In [11], a detuning of 
0.1nm for an average 10mW pump signal was reported. As 

illustrated in Fig. 1(d), signals at wavelength 1 and 2 continue 
propagating through the horizontal waveguide when no pump 
signal is injected. In case a pump signal is injected, the ring 
resonant wavelength is detuned to a signal wavelength ( 2 in the 
example), which leads to the transmission of the corresponding 
signal to the vertical waveguide. The drop transmission is given by: 

     (4) 

 In [5], logic gates (e.g., AND, OR and XNOR) operating at 100ps 
switching time are demonstrated using TPA.  

Overall, due to the rather large size of optical devices (typically 
few m2 for MRR [12] to mm2 for MZI [13]), most architectures 
are intended to be reconfigurable, i.e., they allow executing a 
variety of the same type of application. While this configurability 
level compensates the area and technology complexity overhead, it 
does not allow adapting the performances, such as throughput, 
energy efficiency and computing accuracy. Furthermore, the related 
architectures also suffer from a limited scalability; indeed, the 
computing paradigms rely on imply a significant number of devices 
to execute complex applications. For example, the design of a full 
adder using OLUT [7] requires a total of 23 MRRs. Overall, 
computing paradigm that intrinsically allows reducing the hardware 
complexity is needed. SC paradigm offers such a key feature, as 
detailed in the sequel.  

B. Stochastic Computing 

In SC, data are represented as stochastic bit streams that are 
processed serially. This allows computing functions (e.g., 
addition and multiplication) with limited hardware resources [14]. 
The computing accuracy depends on bit stream length (BSL) [1]; 
the longer the stream, the higher the accuracy. SC is commonly 
used in image processing applications (e.g., edge detection [2] 
and Gamma correction [15]), neural networks to execute 
multiplication [16], and signal processing (e.g., FIR filter in [17]). 

The Reconfigurable Stochastic Computing (ReSC) architecture  
[15] allows executing any single input function represented in the 
form of Bernstein polynomial function given by: 

                        (5) 
 

where x is the input data, n is the polynomial order, bi are the 
polynomial coefficients, and Bi,n(x) is the Bernstein basis 
polynomial of order n. 

As illustrated in Fig. 2(a), the architecture is composed of an 
adder and a multiplexer. For n order function, n stochastic number 
generators (SNG) generate the bit streams corresponding to the 
input data x and n+1 SNGs generate the streams corresponding to 
the coefficients b0 to bn. The bits generated from input x are 
summed, leading to an n-level control signal. The latter selects the 
coefficient to be output to a counter. Fig. 2(b) illustrates a 
processing example for a 3rd order function of x=0.5. 

 

 

Fig. 2: ReSC architecture proposed in [15].   
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Fig. 3: a) The proposed architecture with the two configurations: b) Cfg1x4 leads to a single 4th order function for accurate computing, and c) Cfg2x2 leads 

to two 2nd order functions for high throughput and energy efficiency purposes. 

 

In our prior work, we proposed an optical implementation of 
the ReSC architecture [4]. MZIs operate as an adder and an AOF 
implements the multiplexer. While computing accuracy and 
power consumption are adapted through BSL and laser power, 
the order of the polynomial function is defined at design time.   

In this work, for the first time, we propose an optical 
accelerator allowing to adapt, at run-time, energy, throughput and 
computing accuracy. Differently from the static architecture 
detailed in [4], the proposed architecture allows reconfiguring the 
polynomial order at run-time. It enables the execution of either a 
4th order function (for accuracy purposes) or 2nd order functions 
(for energy efficiency and high throughput purposes).  

III. PROPOSED DESIGN 

In this section, we propose the design of a reconfigurable 
accelerator and we discuss the design challenges related to the 
technological and system-level parameters. 

A. Reconfigurable Accelerator  

Fig. 3(a) illustrates the proposed reconfigurable accelerator. It 
allows executing polynomial functions on input data XA and XB 
according to Bernstein coefficients (input b0..b2 and b3..b5). Two 
configurations are available: Cfg1x4 allows executing a 4th order 
function on the data (i.e., XA=XB) and Cfg2x2 leads to two 2nd 
order functions processed in parallel (i.e., XA XB). Depending on 
the selected configuration, the results are output either on Y1x4 
(for Cfg1x4) or Y2x2_A and Y2x2_B (for Cfg2x2). 

The reconfigurability involves a symmetrical architecture: 
two sets of adders and modulators are designed using MZIs and 
MRRs, respectively. Each one is responsible for generating 
optical signals corresponding to the related input data (i.e., XA or 
XB) and coefficients (b0..b2 or b3..b5). The data signals are 
generated as follows: from data XA (resp. XB), streams of bits XA1 
and XA2 (resp. XB1 and XB2) are generated using independent 
SNGs; their outputs modulate MZIs, thus leading to constructive 

state (1) or destructive state (0) on signals at pump (see mark  in 

Fig. 3(a)). Eventually, for each pair of MZIs, three optical power 

levels can be obtained: 0 for 00, 1 for 01/10 and 2 for 11 (see ). 

The optical signals corresponding to coefficients bi are obtained 
through modulation of MRRs at i using SNGs, where 0 i 5 (see 

). WDM allows transporting the coefficient signals simultaneously. 

The distance between consecutive coefficient signals is defined by 
wavelength spacing (WLspacing). Data and coefficient signals are 
combined into a waveguide prior entering a reconfigurable 

multiplexer implemented using DCs and AOFs (see ). The 

configuration depends on the states of the DCs, as detailed in the 
following: 

• Configuration Cfg1x4 involves both DCs in the cross state 

(Fig. 3(b)). The two groups of data and coefficient signals are 

combined into the same waveguide as follows (see ): while the 

coefficient signals combined without interfering due to WDM, 

data signals cumulate with each other, since they both propagate 

at pump. This leads to five pump power levels able to detune the 

AOF to five wavelengths at which the coefficient signals 

propagate. The signal at the wavelength selected by the AOF is 

dropped to output Y1x4, where the number of ‘1’ is counted for 

stochastic to binary data conversion purposes. This configuration 

allows executing a 4th order function. 

• Configuration Cfg2x2 involves both DCs in the bar state (Fig. 
3(c)). The two groups of data and coefficient signals continue 

propagating independently from each other (see ). For each 

group, the pump signal detunes the corresponding AOF to one of 
the three wavelengths propagating the coefficient signals (i.e., 

0.. 2 for Y2x2_A and 3.. 5 for Y2x2_B). This allows simultaneous 
execution of two 2nd order functions. 

Since DCs enable the switching between a single 4th order 
function (Cfg1x4) and two 2nd order functions (Cfg2x2), the 
architecture allows exploring accuracy and throughput tradeoffs 
at run-time. For image processing applications, the high 
polynomial order available in Cfg1x4 configuration is suitable to 
meet objectives related to computing accuracy. On the other hand, 
the parallelism available in Cfg2x2 configuration accelerate the 

(a) Proposed 

reconfigurable 

architecture

(b) Cfg1x4: 4
th order 

polynomial  function

(c) Cfg2x2: two 2nd order 

polynomial functions
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processing, either using data level parallelism (by applying the 
same filter on multiple images simultaneously) or instruction 
level parallelism (by applying multiple filters on the same image). 
However, compared to static architecture [4], this adaptability 
leads to area and energy overhead. This calls for design 
optimization with the key challenges introduced in the following. 

B. Design Method 

The laser powers are key design parameters to optimize. 
Indeed, while the laser powers should be minimized for energy 
efficiency purpose, enough optical power should be injected to 
ensure that the design works properly and the computations are 
correct. The reconfigurability of the architecture leads to additional 
constraints, since the same injected pump power should control 
either a single AOF (Cfg1x4) or two AOF (Cfg2x2). While existing 
methods allow adapting laser powers at run-time [18], they lead to a 
significant control overhead we intend to avoid in the context of SC 
as they would impact both latency and area. Instead, we aim to 
optimize, at design time, the laser powers taking into account the 
characteristics of the involved devices, i.e., MZI, MRR, DC and 
AOF, and system-level parameters, such as BER (Table 2). For this 
purpose, we investigate the wavelengths of the coefficient signals, 
since they affect both lasers pump and probe powers. 

Table 2: System-level and technological parameters. 

 Name Description Unit 

System 

n Polynomial order - 

BSL Bit Stream Length - 

BER Bit Error Rate - 

WLspacing Wavelength spacing between probe signals nm 

MZI TMZI Transmission through MZI (Eq. 1) % 

DC TDC Transmission through DC (Eq. 2) % 

MRR 

i Resonant wavelength in OFF state nm 

 Wavelength shift between ON and OFF nm 

t Through transmission (Eq. 3) % 

AOF 

ref Resonant wavelength w/o injected carrier nm 

OTE Optical Tuning Efficiency nm/mW 

d Drop transmission (Eq. 4) % 

Laser  Lasing efficiency % 

Photodetector 
R Responsivity A/W 

in Internal noise current A 

First, we define two groups of wavelengths to be processed in 
parallel under Cfg2x2 configuration. Each group contains 
consecutive wavelengths, hence the pump power is equally 
distributed to two AOFs. The total wavelengths range (i.e., from 0 
to 5) is also equally distributed, which allows using the same 
optical tuning efficiency for all the AOFs. Second, we define for 
each AOF an initial resonant wavelength ref allowing to 
minimize the covered wavelength distance. For Cfg2x2, ref is 
defined as close as possible to the right-most wavelength in the 
group ( 2 and 5 for Y2x2_A and Y2x2_B, respectively), which is 
given by the minimum optical power received by the AOF (i.e., 
00), hence it depends on the MZI and DC insertion losses. 
Finally, a large WLspacing leads to a low crosstalk between the 
coefficient signals, which minimizes the required lasers probe 
powers. On the other hand, this requires higher pump power to 
cover a larger wavelength distance by the AOF. Therefore, the 
optimal spacing, i.e., the spacing minimizing the total laser power, 
is searched analytically by exploring the WLspacing. The design 
calls for a transmission model we define in the sequel. 

IV. IMPLEMENTATION AND MODEL 

The configuration proposed in Section III, allows run-time 
adaptation of accuracy, energy-efficiency and throughput that 
comes with power overhead. In this section, we detail the signal 
transmission model of the reconfigurable accelerator. It allows 
evaluating the Signal-to-Noise Ratio (SNR), from where the laser 
energy consumption is estimated. The model is unified and is thus 
applicable for the two configurations. The configuration is 
defined by cfg, which controls the state of the DCs (i.e., Cfg2x2 
and Cfg1x4 lead to bar state and cross state, respectively). The 
coefficient signal i propagates through a) the modulating MRRi, 
b) modulators MRRw dedicated to other signals, c) a DC, and d) 
an AOF, as defined by: 

        

   

                    (6)  
 

 

where s is the optical coefficient signal and z is the value of the 
coefficient. zi=1 implies a  detuning of the MRR (ON state) 
and zi=0 leads to an alignment of the modulator with signal at i 
(OFF state). The attenuation by the other MRRs depends on zw, 
while the one experienced in the DC depends on the 
configuration. Eventually, the transmission on the drop port of the 
AOF (i.e., to the photodetector) is given by the detuning achieved 
by the pump signal. The wavelength spacing between consecutive 
coefficient signals is given by: 

                                                              (7)  

The detuning of the AOF depends on the transmission of 

the pump signal through the MZIs and the DCs. It is given by:  

 (8.a) 

                                    (8.b) 

where OTE is the Optical Tuning Efficiency (assumed to be 
0.01nm/mW [11]). TMZI[Xj] is the transmission through the MZIs, 
for which the states (constructive or destructive) depend on the 
data input Xj. Eq. (8.b) indicates which MZIs will be considered 
in the transmission according to the selected configuration: either 
the pump signals are separated (Cfg2x2), or they remain combined 
(Cfg1x4). The SNR is defined as:  

    (9)  

where R is the photodetector responsivity (1A/W),  is the 

photodetector internal noise (4µA),  is the transmission of 

signal i as ‘1’, while the crosstalk signals from other MRRs are 

transmitted as ‘0’, and is the transmission of all 

crosstalk signals as ‘1’, while signal i is transmitted as ‘0’. Finally, 
the Bit Error Rate (BER) is calculated from SNR by assuming 
ON/OFF keying (OOK) modulation of the coefficient signals. 

                         (10) 

 

Modulating MRR transmission Other MRR transmission 

DC transmission  AOF transmission  
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V. RESULTS 

In this section, we evaluate the performances of the proposed 

reconfigurable accelerator using Gamma correction application. 

We also evaluate the energy and area overhead compared to a 

non-reconfigurable version of the architecture. 

 

Fig. 4: Error free function f(x) and approximate polynomial functions for 
Cfg1x4 and Cfg2x2. 

A. Accuracy and Throughput Trade-off 

Gamma correction image processing application [19] is 

defined as: . We assume =0.45, which allows 
expanding dark pixels into a wider range of values, thus 
improving the contrast. We aim for an execution on 2

nd
 order 

(Cfg2x2) and 4
th
 order (Cfg1x4) architectures. For this purpose, the 

Bernstein coefficients (b0 to b2) and (b0 to b4) are calculated for 
Cfg2x2 and Cfg1x4, respectively, using the method detailed in [15]. 
Fig. 4 shows the outputs from processing input data x [0,1] using 
an error free function f(x), and approximated 2

nd
 and 4

th
 order 

polynomial functions. As expected, the approximation level 
increases with the reduced polynomial order, which impacts the 
error rate and leads to design tradeoff we explore in the following.  

To evaluate the architecture, we simulate the processing of 

160 160 pixels images for BSL ranging from 28 to 212 and 

BER=10-3. We explore the WLspacing, which leads to optimal 

WLspacing=0.155nm. The computing accuracy is calculated using 

Mean Error Distance (MED), which is obtained by comparing the 

pixels processed using our architecture with pixels obtained 

directly from error free results. Cfg1x4 leads to sequential 

processing of the pixels (Fig. 5(a)). For this purpose, each pixel is 

sent to XA and XB and the 5 coefficients are distributed to the 

MRRs. Cfg2x2 is used to process two pixels simultaneously for 

high throughput purposes (Fig. 5(b)). In this case, XA and XB 

receive different pixels and the same coefficients are sent to the 

two groups of MRRs. By assuming 1Gbit/s modulation speed and 

BSL=210, the average processing time per pixel are 1024ns and 

512ns for Cfg1x4 and Cfg2x2, respectively. Fig. 5(c) shows the 

signal transmissions for the two configurations. In the example 

dedicated to Cfg1x4, we assume a value ‘1’ for the coefficient 

signals at 2 and 4 and a value ‘0’ for the remaining , thus 

leading to the transmissions illustrated in  and . The signals 

are merged and propagate to the same AOF. We assume a 

received 53mW pump signal power (corresponding to 

XA1=XB2=1 and XA2=XB1=0), allowing to detune the AOF from 

ref to 2 (see ), thus leading to the transmission of 110µW to 

Y1x4. For Cfg2x2, we assume the transmission of ‘1’ at 2, 4, and 

5 (see  and ). The groups of signals propagate to two AOFs, 

which are detuned independently from each other. The assumed 

data inputs values lead to the transmission of the signals at 1 and 5 

to Y2x2_A (10µW) and Y2x2_B (90µW), respectively (see  and ). 

B. Static vs Reconfigurable Architectures 

Table 3 reports the energy and area overheads of the 
reconfigurable architecture compared to the static architecture 
defined in [4]. For a fair comparison, we design our architecture 
to ensure that Cfg1x4 and Cfg2x2 achieve the same computing 
accuracy as the 4th and 2nd order static architectures, respectively. 
The simulation results show that Cfg1x4 and Cfg2x2 lead to 53% 
and 36.8% energy overhead, respectively, which is mainly due to 
the losses induced by the DCs on the propagation path.  

 

Fig. 5: Image processed for a) Cfg1x4: pixels are serially processed, and b) Cfg2x2: pixels are processed in parallel.  and  are the transmissions 

through MRRs for Cfg1x4 and Cfg2x2, respectively.  and  are the transmissions towards the photodetectors for Cfg1x4 and Cfg2x2, respectively. 
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Table 3: Energy and area overhead evaluation. 

  

Static Architecture 

[4] 

Reconfigurable Architecture      

(this work) 

n=4 n=2 abs wrt. n=4 wrt. n=2 

Energy 

efficiency 
nJ/pixel 34 19 

Cfg1x4:52 

Cfg2x2:26 

+53% 

-23.5% 

+173% 

+36.8 

Accuracy MED 0.023 0.034 
Cfg1x4:0.023 

Cfg2X2:0.034 

- 

+47.8% 

-32.4% 

- 

No. of optical 

devices 

Pump laser 

Probe laser 

MZI 

DC 

MRR 

AOF 

Photodetector 

1 

5 

4 

0 

5 

1 

1 

1 

3 

2 

0 

3 

1 

1 

1 

6 

4 

2 

6 

3 

3 

Accuracy/energy 

adaptability 

Order   

BSL   

 

We also evaluate the impact of BSL on the computing 
accuracy and energy efficiency. For this purpose, we evaluate the 
error and the energy efficiency of all architectures for BSL 
ranging from 28 to 212. As can be seen in Fig. 6, the proposed 
architecture allows covering MED ranging from 0.05 to 0.017, 
while static architectures cover [0.05-0.03] and [0.04-0.017] for 
2nd and 4th order, respectively. The improvement in the reachable 
range of accuracy (+65% and +43.5%) demonstrates the benefits 
of adapting the polynomial order to satisfy application-level 
requirements. Interestingly, adapting the polynomial order is, in 
some cases, more energy efficient than adapting the BSL. For 
instance, assuming a 2nd order static architecture in Fig. 6, 
reducing the error from 0.04 to 0.03 can be achieved by 

increasing the BSL from 29 (see  in the figure) to 212 (see ), 

which results in 67nJ/pixel. Using the proposed accelerator, the 
same computing accuracy can be achieved by switching from 

Cfg2x2 (see ) to Cfg1x4 (see ), which leads to 26nJ/pixel. It is 

worth noticing that, in addition to the 61.2% energy saving, a x8 

throughput is achieved thanks to a lower BSL (29 for  wrt. 212 

for ). 
 

 

Fig. 6: Accuracy and energy efficiency results to process 160 160 pixels 

images for BSL ranging from 28 to 212. 

To summarize, although the proposed accelerator leads to an 

area overhead, it covers a large range of computing accuracy, 

which is needed to adapt to user requirements. This adaptability 

allows, depending on the targeted accuracy, to improve the energy 

efficiency or the throughput compared to the static architecture. 

 

VI. CONCLUSION 

In this paper, we proposed a reconfigurable optical 
accelerator relying on stochastic computing paradigm. It allows 
adapting the order of the executed polynomial functions for 
accuracy, energy efficiency, and throughput purposes. Compared 
to a static architecture, in which the order is defined at design time, 
the reconfigurable accelerator leads to 36.8% energy overhead. 
However, it increases the range of reachable accuracy by 65%, 
which is a key to meet users requirements. We also demonstrated 
that, in some cases, adapting the polynomial order is more energy 
efficient than adapting the BSL. Future work includes i) the use of 
power gating to improve the energy efficiency and ii) the design 
of higher order architectures to further adapt to accuracy 
requirements.  
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