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Abstract—Emerging data-driven applications such as graph
processing applications are characterized by their excessive
memory footprint and abundant parallelism, resulting in high
memory bandwidth demand. As the scale of datasets for ap-
plications is reaching orders of TBs, performance limitation
due to bandwidth demands is a major concern. Traditional
on-chip electrical networks fail to meet such high bandwidth
demands due to increased energy-per-bit or physical limitations
with pin counts. Silicon photonic networks have emerged as a
promising alternative to electrical interconnects, owing to their
high bandwidth density and low energy-per-bit communication
with negligible data-dependent power. Wide-scale adoption of
silicon photonics at chip level, however, is hampered by their
high sensitivity to process and thermal variations, high laser
power due to losses along the network, and power consumption
of the electrical-optical conversion. Device-level technological
innovations to mitigate these issues are promising, yet they do not
consider the system-level implications of the applications running
on manycore systems with photonic networks. This work aims to
bridge the gap between the system-level attributes of applications
with the underlying architectural and device-level character-
istics of silicon photonic networks to achieve energy-efficient
computing. We particularly focus on graph applications, which
involve unstructured yet abundant parallel memory accesses that
stress the on-chip communication networks, and develop a cross-
layer framework to evaluate 2.5D systems with silicon photonic
networks. We demonstrate 38% power savings through system-
level management using wavelength selection policies with only
1% loss in system performance and further evaluate architectural
design choices on 2.5D systems with photonic networks.

I. INTRODUCTION

Data-intensive workloads are becoming increasingly

widespread in different domains such as physics simulations,

biochemistry, image processing, aircraft scheduling, etc. [1].

As the scale of data being processed by applications in

these domains is increasing, graph processing is emerging

as an important medium for modeling and evaluating the

patterns and relationships in interconnected data. There

have been major efforts to improve the data organization

and representation of graph data [2], with further work on

developing graph-specific architectures [3], [4] to improve the

performance of graph applications. As current core counts

are not sufficient for supporting the ever-increasing datasets

of these domains, these data-intensive graph workloads are

pushing the need for large manycore systems.

To support graph applications on manycore systems, we

need a dense integration of large number of cores with high-

bandwidth and low-latency communication networks. Tradi-

tional 2D systems are reticle-limited and give rise to high

manufacturing costs due to poor yield. Even 3D-integrated

technologies, despite their much higher bandwidth densities

than 2D system, often suffer from thermal challenges [5] due

to dense integration. Therefore, 2.5D manycore systems are

materializing as low-cost and energy-efficient alternative [6],

[7]. Multiple smaller chiplets are stacked over a large inter-

poser chip in a 2.5D system. Such 2.5D manycore systems

provide a favorable computing substrate for data-intensive

graph applications that demonstrate high parallelism.

Graph applications, however, are fundamentally character-

ized by their high orders of random and irregular data accesses.

With datasets of real world graphs being on the order of

TBs, the performance of graph applications are limited by the

memory bandwidth offered by the interconnection networks in

manycore systems. To support graph processing applications

on 2.5D manycore systems, we need inter-chiplet communica-

tion bandwidth on the order of 1Tbps. Traditional high-speed

electrical links fail to provide this required bandwidth due to

pin limitations.

With the emergence of CMOS-integrated photonic technol-

ogy, photonic networks have been demonstrated to provide

high-bandwidth and low-latency communication with neg-

ligible data-dependent power [8]–[10]. Therefore, photonic

networks are a promising alternative to electrical links for

inter-chiplet communication in 2.5D manycore systems. Chip-

scale photonic communication is conventionally performed

using photonic links with microring resonators (MRRs). MRRs

are used for modulating the light waves at the transmitter site

(Tx) as well as filtering light waves at the receiver site (Rx)

of the photonic link. In recent years, photonic networks using

MRRs have been explored for 2.5D systems [11]–[13].

Though silicon-photonic link technology has shown promise

of sub-pJ energy-per-bit communication, the maturity of chip-

scale photonic networks is hampered by the high sensitivity of

MRRs to thermal and process variations, high power overhead

along the network and bandwidth-energy tradeoff for optimal

utilization. The thermal sensitivity of MRRs and device-

level techniques to mitigate such thermal effects have been

studied over the past years [14]. Conventionally, a closed-loop

feedback monitoring mechanism detects the MRR resonance

shift due to thermal variations and performs controlled local

heat injection to tune the MRRs back to resonance. Several

such techniques, analog and digital, have been demonstrated to

handle large temporal thermal variations [15]–[17]. However,

there is a strong diversity among applications with respect

to their runtime bandwidth needs and resource utilization

that result in highly application-specific power and thermal
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profiles. We could increase the network bandwidth to the

required peak value, but this comes at a considerably high

power cost of lasers, electrical-optical conversion circuitry and

the thermal tuning of MRRs. Therefore, we strongly argue for

application-aware and device-level solution aware solutions to

manage the system performance and power.

Our specific contributions are as follows:

1) We demonstrate that graph processing on large datasets

has bandwidth requirements of the order of 1 − 2Tbps
(Sec. II-A). When running these applications on 2.5D

manycore systems, we identify photonic networks as a

promising solution for inter-chiplet communication as it

provides the required high bandwidth density. (Sec. II-B)

2) We observe that graph applications’ bandwidth needs

are highly diverse. We argue for a need for system-

level management policies that caters to application-

specific bandwidth needs on top of underlying device-

level solutions (Sec. IV). We demonstrate the benefits

of our wavelength selection policy, WAVES, on graph

applications and obtain power savings of 36% on average

using minimum required bandwidth for an application

(Sec. V-B).

3) We perform a detailed architectural evaluation of 2.5D

manycore systems with integrated photonic networks.

We observe that large L2 caches do not provide any

performance improvements when photonic links are able

to meet the required bandwidth of applications. Further-

more, photonic links are also able to provide scalable

bandwidth for highly parallel graph applications as the

number of chiplets increases (Sec. V-C, V-D).

II. BACKGROUND AND MOTIVATION

A. Graph applications

A graph represents the basic relationship between two ver-

tices. Graphs are rather ubiquitous in real-world applications,

such as social network applications, web applications, trans-

portation applications, etc. The graphs in these applications

are extremely large with upto a billion of vertices and similar

number of edges interconnecting these vertices [18].

A primary bottleneck in the execution of these graph appli-

cations is the highly irregular memory access patterns resulting

in poor spatial and temporal locality. These irregular access

patterns often result in high and frequent memory accesses.

In large 2.5D systems, when the last level caches (LLC)

are spread over multiple chiplets, the data accesses to LLC

on separate chiplets and DRAM accesses constitute a major

fraction of the application execution time. This is illustrated

in Fig. 1, which shows high fraction of time spent in memory

accesses for graph applications for two different memory and

LLC access bandwidths. As the network bandwidth increases

from 96Gbps to 1.5Tbps, there is an average 61% reduction

in the fraction of time spent in memory accesses. Therefore,

the memory and LLC bandwidths play a crucial role in

influencing the performance of large 2.5D systems running

graph applications.

Fig. 1: Fraction of time spent in memory accesses for applications
from NAS Parallel Benchmarks [19] (ep and lu) and graph applica-
tions from GAP-BS [20] (pr, sssp, bc, tc and bfs) for two different
memory and LLC access bandwidth.

B. Silicon-photonic links

To support the high bandwidth density of graph applications,

electrical links often fall short due to pin limitations. On

the other hand, silicon-photonic technology has seen a rapid

growth that has promised much higher orders of chip-scale

communication bandwidth in 2.5D manycore systems. Several

device-level innovations have demonstrated the feasibility of

integrating photodiodes [21], low-loss waveguides [22], and

MRR modulators and filters [23] through the use of slightly

adapted or unmodified CMOS process. This has paved the way

for realization of efficient photonic links for communication.

A major obstacle towards attaining sub-pJ per bit en-

ergy communication in photonic links stems from the high

laser power due to losses along the waveguide [22] and

the high thermal tuning power resulting from MRR sensitiv-

ity towards manufacturing process [24] and on-chip thermal

variations [17]. In large 2.5D systems, high core activity

creates large thermal variations and hot spots. These hot

spots can reach high temperatures (>85◦C) for these data-

intensive graph workloads. Therefore, MRRs on the interposer

experience resonance wavelength shifts. To compensate for

resonant wavelength shifts, the MRRs are thermally tuned

by controlled local heat injection. When using wavelength

division multiplexing, if n laser wavelengths are used within

a free-spectral range of FSR, the maximum tuning shift that

any MRR has to undergo is FSR/n.
Device-level solutions such as analog thermal control loop

for thermal management continuously monitor the MRR res-

onance shift and supply required heating power to tune the

MRRs back to resonance [15]–[17]. The heater aims to

maintain a fixed temperature for an MRR, so that the MRR

resonance is locked to a laser wavelength. A distinguishing

feature of this thermal control loop is that it enables remapping

of MRRs to any laser wavelengths at runtime. Therefore, if

only k among n laser wavelengths are activated at runtime,

depending on the thermal profile of an application, different set

of k MRRs can be mapped to the k activated laser wavelengths

with the goal of minimizing the overall heating power. We first

conduct system-level studies to determine bandwidth needs of

an application and then activate the minimum required number

of laser wavelengths that can satisfy the average bandwidth

needs of applications. The underlying thermal control loop

maps the appropriate MRRs to the activated laser wavelengths.
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III. RELATED WORK

Graph applications have been extensively studied due to

their use in a wide variety of fields. Processing-in-memory

(PIM) based solutions have been studied for graph applica-

tions, as PIM designs provide a high bandwidth density [4].

Ham et al. [3] design a specialized hardware pipeline and

memory subsystem for graph analytics. These prior works

primarily focus on obtaining microarchitectural insights, eval-

uating tradeoffs and proposing architectural solutions that can

address the high parallelism, memory and bandwidth needs

for graph applications.

2.5D-integrated systems with chip-scale photonic networks

have been extensively studied because of their potential per-

formance and thermal advantages. Galaxy [12] is a multi-

chip architecture that integrates multiple small chiplets through

optical fibers and incorporates photonic waveguides for distant

intra-chiplet communication. Grani et al. [13] implement a

crossbar-based photonic network using arrayed waveguide

grating router on a silicon interposer and demonstrate high

bisection bandwidth at low energy-per-bit values. Fotouhi et

al. [11] design a scalable uniform memory architecture with

photonic interconnects by moving large LLC from processor

chiplet to separate chiplets.

System-level management policies to address power con-

cerns in photonic networks and further improve the energy

efficiency have been shown to be effective. RingAware [25]

and FreqAlign [26] employ thread allocation and migration to

manage the thermal gradients around communicating MRRs

and reduce the thermal tuning power. Aurora [27] encompasses

a cross-layer approach at the device, system and OS-level to

control the thermal tuning power. Chen et al. [28], [29] per-

form dynamic laser management using cache reconfiguration

on a manycore system with silicon-photonic crossbar NoC.

As silicon photonic networks provide scalable bandwidth

with laser wavelengths and 2.5D systems enable dense integra-

tion of chiplets, we observe that such large 2.5D systems with

chip-scale photonic networks are energy-efficient solutions

to address the high parallelism and bandwidth demands of

graph applications. In contrast to earlier works, our system-

level wavelength selection encompasses application-specific

bandwidth needs and the device-level solutions to address the

power-bandwidth tradeoff in photonic networks. We further

evaluate graph applications with different architectural param-

eters and provide insights about their behavior with memory

hierarchy and increasing chiplet counts in 2.5D systems.

IV. SYSTEM ARCHITECTURE AND MANAGEMENT POLICY

Our target system is a 2.5D homogeneous manycore system

with inter-chiplet photonic network called Processors On Pho-

tonic Silicon inTerposer ARchitecture (POPSTAR) that was

presented in our earlier work [30]. In this section, we briefly

detail the POPSTAR architecture and our wavelength selection

methodology, WAVES. We then demonstrate the benefits of

WAVES on graph workloads running large datasets.

Fig. 2: The POPSTAR architecture.

Table I: Microarchitectural details of POPSTAR

Execution Core 533MHz IA-32 core, x86 ISA with out-of-order execution

Dispatch width 4, branch misprediction penalty = 10

On-chip caches 16KB private L1 I and D cache, 4-way, 3 cycle, 64B line size

64KB private L2 cache, 4-way, 8 cycle, 64B line size

Shared distributed L3 cache, 8MB per chiplet, 16-way, 20

cycles, 64B line size

Inter-chiplet pho-

tonic network

Single-writer multiple reader link

12Gbps datarate per laser wavelength, 1.5Tbps peak aggregate

interposer bandwidth

A. System architecture

POPSTAR is a 96-core system with compute chiplets and

TxRx chiplets integrated on a photonic interposer as depicted

in Fig. 2. There are six compute chiplets, each consisting of

16 IA-32 cores from Intel SCC [31]. The microarchitectural

details of POPSTAR are detailed in Table. I. There are eight

TxRx chiplet, each composed of the electronic circuit for

routing, flow control, arbitration, and Electrical-Optical (E-

O) and Optical-Electrical (O-E) conversion. Six TxRx chiplets

connect to the compute chiplets via a 96-bit wide interface,

and two TxRx chiplets connect to external off-interposer main

memory. The MRRs and photodiodes for photonic communi-

cation are organized in microring resonator groups (MRRG)

underneath each TxRx chiplet on the photonic interposer. An

off-chip laser emits up to 16 wavelengths that are carried by

a vertical fiber attachment and coupled onto the waveguides

in the interposer via grating couplers. The 16 wavelengths

are evenly spaced in an FSR of 10.8nm around a center

wavelength of 1310nm.

B. Simulation framework

We design a simulation framework [30] encompassing a

performance simulator, a logic power calculator, a photonic

network power model, and a thermal simulator. We use

Sniper [32] as our performance simulator. We model the ar-

chitectural parameters of POPSTAR in Sniper and evaluate the

system performance. We use widely used graph applications

such as PageRank (pr), Breadth First Search (bfs), Single-

Source Shortest Paths (sssp), Betweenness Centrality (bc) and

Triangle Counting (tc) from GAP Benchmark Suite [20]. We

evaluate the graph applications on three datasets, two Kro-

necker graphs with 2
18 and 2

20 nodes and a real-world dataset

from Google web graph (|V|=875713, |E|=5105039) [18].
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We feed the performance statistics from Sniper as input

to McPAT [33] and calculate the core and cache power. We

collect power traces from all our experiments and use the

published data from Intel SCC to calibrate our dynamic power

data [31]. Since the leakage power component is strongly

dependent on temperature, we implement a linear temperature-

dependent leakage power model in our thermal simulator [34].

To calculate the photonic power component, we use our

analytical model developed in our earlier work [30]. We

calculate the laser and EOE power based on the number of

activated laser wavelengths in the system. We use the 3D

extension of HotSpot [35], [36] to determine the thermal

profile of each MRR. Using the compute chiplet power and

TxRx chiplet power as inputs to HotSpot, we determine the

thermal profile in the photonic interposer and calculate the

temperature of each MRR. We assume the MRR temperatures

within a MRRG remain the same due to the small area

footprint of a MRRG. Since each MRR is designed to resonate

at a specific laser wavelength at a temperature of 300K, we

calculate the tuning shift required to tune each MRR back to

the desired resonance. Using the MRR temperatures obtained

from our thermal simulation, we determine the aggregate

heating power to thermally tune all the MRRs to the activated

laser wavelengths in the system.

C. Wavelength selection policy (WAVES)

The power consumption along a photonic link consists of

the laser power, the EOE power and the heating power to ther-

mally tune the MRRs. The overall photonic power increases

as the number of the activated laser wavelengths (λact) in the

system increases. Therefore, even though a higher λact is de-

sirable for higher performance, it comes at a considerably high

power cost. Figure 3 illustrates the normalized execution time

of graph applications as we increase the peak aggregate band-

width in the interposer by activating more laser wavelengths.

We observe substantial speedup initially as we increase the

inter-chiplet bandwidth, λact. This speedup corresponds to

the increased L2-L3 and L3-DRAM bandwidth. However,

the performance saturates at different bandwidth values for

different applications. It is, therefore, counter-productive to

activate all laser wavelengths in the system for all applications.

We argue that it is essential to address this bandwidth-power

tradeoff and activate the minimum number of activated laser

Fig. 3: Normalized performance with increasing inter-chiplet band-
width for graph applications on Google web graph. The performance
is normalized to the performance with peak bandwidth of 1.536Tbps.

wavelengths, λmin, for different applications that caters to

specific bandwidth requirements of that application.

WAVES is a static wavelength policy that determines λmin
required for an application through offline analysis based on

a set performance loss threshold (Lthr). The performance

loss is calculated from the case where all laser wavelengths

in the system are activated, i.e. λact = λtot. By setting an

Lthr that is deemed acceptable for a system, we ensure that

we are achieving maximum power savings by meeting the

performance requirements. Once we determine the λmin for

an application offline, the runtime execution can result in

highly application-specific thermal profile. As different MRRs

in the system incur different resonance shifts, we determine

the aggregate resonance shift of all MRRs. Furthermore, there

are
(

λtot

λmin

)

combinations to activate λmin laser wavelengths

among λtot, and each combination requires a different tuning

range of MRRs to lock on to the laser wavelengths. We

determine the optimal combination of λmin that result in the

lowest thermal tuning range. The analog thermal control loop

continuously monitors the MRR resonance shift and supplies

appropriate heating power to tune each MRR to selected laser

wavelengths.

V. EVALUATION RESULTS

In this section, we perform an architectural evaluation of

graph applications on 2.5D manycore systems with photonic

networks. Furthermore, we evaluate the benefits of our wave-

length selection policy, WAVES, on graph applications.

A. Different system utilization of graph application

We first explore the parallelism of graph applications in our

96-core POPSTAR system. We observe from Fig. 4 that the

overall system performance of graph applications improves

significantly as we execute them with higher thread counts.

We get performance improvement of upto 74% for pr and an

average improvement of 60% by running these applications

with 96 threads compared to 24 threads. This can primarily

be attributed to the inherent parallelism of graph applications.

As the number of threads increases, the overall LLC and

memory accesses also increases, resulting in higher inter-

chiplet communication traffic. The high-bandwidth silicon-

photonic links are able to meet the high bandwidth demands

with increasing thread counts and, therefore, facilitate the

execution of these parallel graph applications.

Fig. 4: Normalized execution time with increasing thread counts. The
performance is normalized to the execution time with 24 threads.
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Fig. 5: Power consumption in photonic network for graph applications
on three different datasets. Power numbers are normalized to baseline
case where all laser wavelengths are activated.

B. WAVES on graph applications

To investigate the power benefits from WAVES on graph

applications, we compare to a baseline case where we activate

all laser wavelengths in the system (λtot) to achieve peak

aggregate bandwidth of 1.5Tbps. We set the performance loss

threshold, Lthr, of 1%, and determine the number of laser

wavelengths, λmin, that is able to provide an inter-chiplet

bandwidth to meet system performance within this threshold.

Figure. 5 shows the normalized photonic power with λmin,

compared to the power with the highest bandwidth, i.e. λtot.

On average, we obtain 36% reduction in power with λmin

than using the peak aggregate bandwidth with λtot using our

WAVES policy across applications. For the real-world Google

web graph, we obtain power savings of 38% with λmin. Our

policy also accounts for the thermal profile of applications and

MRR process variations, and selectively activates the λmin

that result in lowest thermal tuning power. The underlying

thermal control loop [17] remaps the MRR to the activated

λmin laser wavelengths. We also observe that graphs with

larger datasets consume higher photonic power. This is due to

the increased bandwidth needs and higher inter-chiplet com-

munication traffic as the scale of input dataset increases. Our

WAVES policy, therefore, addresses the power-performance

tradeoffs of applications executing on 2.5D manycore systems

with photonic links and provides an energy-efficient execution.

C. Graph bandwidth needs with increasing L2 size

We evaluate the performance of graph applications with

varying private L2 cache sizes for two different inter-chiplet

bandwidth. For this experiment, we use the Google web graph

dataset from SNAP [18]. We observe that the application

performance improves as we increase the L2 cache size for a

low inter-chiplet bandwidth of 192Gbps (see Fig. 6). However,

a higher inter-chiplet bandwidth of 960Gbps shows minimal

execution time variations with increasing L2 cache size.

For lower inter-chiplet bandwidth and smaller L2 cache

sizes, the execution time due to L2 misses also includes the

high fraction of queue latency in the photonic link. Increasing

the L2 cache size improves the hit rate and we observe a

speedup in the performance. However, the L2 miss latency is

still dominated by the queue latency in the photonic link. When

we increase the inter-chiplet bandwidth to meet the bandwidth

requirements of graph applications, we significantly reduce the

queue latency. As a result, the L2 cache misses for the same

(a) bc (b) pr

Fig. 6: Performance of bfs and pr with different inter-chiplet band-
width, when executed on 2 systems with different L2 cache sizes.

L2 cache size is serviced faster with a high-bandwidth link.

Due to irregular memory accesses in graph applications, we

do not observe performance improvement with increasing L2

cache when the bandwidth requirements are met.

As photonic links for inter-chiplet communication in 2.5D

manycore systems are able to meet the high bandwidth de-

mands of applications, there is an opportunity to incorporate

a smaller L2 cache per core and per chiplet.

D. Graph bandwidth needs with higher chiplet counts

In this section, we evaluate the performance scaling of graph

applications with increasing core counts. As 2.5D systems

enable modularity, we integrate more chiplets on the inter-

poser, keeping the same number of cores per chiplet. For this

experiment, we use our largest data graph, the Kronecker graph

with 220 vertices. As the number of chiplets increases from six

compute chiplets in a 96-core system to eight chiplets in a 128-

core system, the peak aggregate bandwidth on the interposer

increases for same number of activated laser wavelengths. The

maximum bandwidth with λact = 16 increases from 1.5Tbps

in 96-core system to 1.9Tbps in 128-core system.

We observe a performance improvement of 21% on average

for a 128-core system compared to a 96-core system for the

same number of activated laser wavelengths (see Fig. 7). It

is interesting to note that the system performance saturates

at a higher inter-chiplet bandwidth for the 128-core system

than the 96-core system. For example, in bfs, we obtain a

system performance within 1% of peak performance for an

inter-chiplet bandwidth of 864Gbps (λact = 9) in a 96-

core system, while in the 128-core system, we obtain 1% of

peak performance for an inter-chiplet bandwidth of 1.56Tbps

(λact = 13). Similarly, in pr, we obtain the peak performance

for λact = 6 for both systems. However, the aggregate

bandwidth corresponds to 576Gbps in a 96-core system and

720Gbps in a 128-core system.

(a) bfs (b) pr

Fig. 7: Performance of bfs and pr with different inter-chiplet band-
width, when executed on 2 systems with different core counts.
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These observations enforce the scalability of graph applica-

tions with number of coures due to their inherent parallelism.

There is a significant increase in inter-chiplet traffic with in-

creasing LLC and memory accesses with higher chiplet counts.

Therefore, 2.5D manycore systems with photonic links are

able to meet the required bandwidths for graph applications.

Furthermore, as application’s bandwidth needs increase with

larger chiplet counts as seen in Fig. 7, our proposed WAVES

policy can adapt to meet these changing bandwidth needs.

VI. CONCLUSION

Graph applications form a domain of emerging workloads

that demand high bandwidth, due to increased data footprint

of real-world graphs and abundant parallel memory accesses.

2.5D integration provide the opportunity for modular inte-

gration of a large number of chiplets to support these graph

applications. The inter-chiplet bandwidth demands of emerg-

ing data-centric applications can reach as high as 1− 2Tbps.

Silicon-photonic links, despite their capability to meet the high

bandwidth demands of graph applications, often suffer from

high power cost. In this work, we demonstrate the benefits

of wavelength selection, WAVES, that enables power-efficient

execution of graph applications on a 2.5D manycore system

with photonic links.

Furthermore, as silicon-photonic links are able to meet the

high bandwidth demands, there lies a favorable premise to

move to larger 2.5D systems that are beneficial to highly-

parallel applications. We also demonstrate a study showing

the redundancy of large L2 caches, as photonic links provide

an opportunity to rethink the conventional cache hierarchy.
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